

Krita 5.2 설명서에 오신 것을 환영합니다!

Krita는 디지털 아티스트를 위해 디자인된 스케치 및 페인팅 프로그램입니다. Krita 개발에 대한 우리의 비전은 다음과 같습니다.

Krita는 자유 오픈 소스 크로스 플랫폼 애플리케이션으로, 처음부터 디지털 아트 파일을 만들 수 있는 엔드 투 엔드 솔루션을 제공합니다. Krita는 빈번하고 장기간에 초점을 맞춘 사용에 최적화되어 있습니다. 구체적으로 지원되는 그림 분야는 일러스트레이션, 컨셉 아트, 무광택 페인팅, 텍스처, 만화 및 애니메이션입니다. 사용자와 함께 개발된 Krita는 실제 요구 사항과 작업 흐름을 지원하는 앱입니다. Krita는 개방형 표준을 지원하고 다른 앱과 상호 운용됩니다.

Krita의 도구는 위의 비전을 염두에 두고 개발되었습니다. 다른 래스터 편집기와 중복되는 기능을 갖추고 있지만, 디지털 페인팅과 예술 작품을 처음부터 제작할 수 있는 강력한 도구를 제공하는 것이 목적입니다. Krita의 기능을 익히면서 알게 되겠지만, Photoshop을 대체할 수 있는 목적으로 개발되지 않았습니다. 즉, Krita의 도구는 디지털 페인팅, 컨셉 아트, 일러스트레이션 및 텍스처링에 초점을 맞춘 반면, 다른 프로그램에서는 사진을 자르고 붙이는 것과 같은 이미지 편집 작업에 더 많은 초점을 맞추고 있습니다. Krita의 설계 기반은 바로 이 점입니다.

이 설명서는 EPUB [https://docs.krita.org/ko/epub/KritaManual.epub] 형식으로 다운로드할 수 있습니다.

	
[image: _images/Hero_userManual.jpg]

사용자 설명서

Krita의 기능을 온라인 사용자 설명서에서 확인하십시오. 다른 앱에서 전환하는 데 도움을 줍니다.

	
[image: _images/Hero_tutorials.jpg]

Tutorials and How-tos

Krita가 동작하는 모습을 개발자와 사용자가 만든 튜토리얼에서 확인하십시오.

	
[image: _images/Hero_getting_started.jpg]

시작하기

Krita는 처음인데 어디서부터 시작해야 할까요?

	
[image: _images/Hero_reference.jpg]

참조 문서

사용할 수 있는 모든 도구를 빠르게 보여 줍니다.

	
[image: _images/Hero_general.jpg]

일반적 개념

Krita에 한정된 것이 아닌 일반적인 미술과 기술 개념에 대해 알아봅니다.

	
[image: _images/Hero_faq.jpg]

Krita FAQ

Krita에 관한 가장 일반적인 질문과 답변입니다.

	
[image: _images/Hero_resources.jpg]

Resources

텍스처, 브러시 팩 및 Python 플러그인을 사용하여 다양한 아트워크를 추가할 수 있습니다.

	
[image: _images/Hero_index.jpg]

색인

용어를 검색하기 위한 설명서의 색인 목록입니다.

사용자 설명서

Krita의 기능을 온라인 사용자 설명서에서 확인하십시오. 다른 앱에서 전환하는 데 도움을 줍니다.

내용:

	시작하기
	설치

	Krita 시작하기

	기초 개념

	탐색

	다른 소프트웨어에서 전환하기
	Introduction to Krita coming from Photoshop

	Introduction to Krita coming from Paint Tool SAI

	Drawing Tablets
	What are Tablets?

	Supported Tablets

	Drivers and Pressure Sensitivity

	Where it can go wrong: Windows

	Wacom Tablets

	Loading and Saving Brushes
	The Brush settings drop-down

	Making a Brush Preset

	Sharing Brushes

	On-Canvas Brush Editor

	Mirror Tools
	Mirroring along a rotated line

	Painting with Assistants
	형식

	Setting up Krita for technical drawing-like perspectives

	Working with Images
	What do Images Contain?

	Metadata

	이미지 크기

	Author and Description

	Cropping and resizing the canvas

	Resizing the canvas

	Saving, Exporting and Opening Files

	파일 저장, 자동 저장, 백업
	저장

	자동 저장

	백업 파일

	Templates
	애니메이션 템플릿

	만화 템플릿

	디자인 템플릿

	DSLR templates

	텍스처 템플릿

	Introduction to Layers and Masks
	Managing layers

	Types of Layers

	How are layers composited in Krita?

	Inherit Alpha or Clipping layers

	Masks and Filters

	선택
	Creating Selections

	Editing Selections

	Removing Selections

	Display Modes

	Global Selection Mask (Painting a Selection)

	Selection from layer transparency

	Pixel and Vector Selection Types

	Common Shortcuts while Using Selections

	Python 스크립팅
	Managing Python plugins

	Introduction to Python Scripting

	How to make a Krita Python plugin

	Tag Management
	Adding a New Tag for a Brush

	Assigning an Existing Tag to a Brush

	Changing a Tag’s Name

	Deleting a Tag

	소프트 프루핑
	Out of Gamut Warning

	Vector Graphics
	What are vector graphics?

	Tools for making shapes

	Arranging Shapes

	Editing shapes

	Working together with other programs

	Snapping

	Krita 애니메이션
	작업 흐름

	Introduction to animation: How to make a walk cycle

	Japanese Animation Template
	Basic structure of its layers

	Its layer contents

	Basic steps to make animation

	색역 마스크
	Selecting a gamut mask

	In the color selector

	Editing/creating a custom gamut mask

	Importing and exporting

시작하기

Krita 설명서에 오신 것을 환영합니다! 이제 시작할 준비가 되셨나요?

디지털 페인팅에 대해서 친숙하다면 다른 소프트웨어와 Krita 기능 비교를 설명하는 다른 소프트웨어에서 전환하기 분류에 있는 문서를 확인하는 것을 추천합니다.

디지털 예술이 처음이라면 Krita 설치에 대해서 다루는 설치 문서를 먼저 읽는 것을 추천하며, 그 다음에는 새 문서를 만들고 저장하는 방법에 대해서 설명하는 Krita 시작하기, Krita의 기능을 분류별로 설명하는 기초 개념, 마지막으로 패닝, 크기 조정, 회전 등 기본 기능에 대한 도움말인 탐색 문서 순으로 읽는 것을 추천합니다.

기본 문서를 익히셨다면 사용자 설명서에 있는 개별 기능 소개 문서를 쉽게 이해할 수 있습니다. (디지털) 페인팅의 개념을 알아 보려면 일반적 개념 문서를 읽어 보십시오. 특정한 기능이 무엇인지를 알아 보려면 사용자 설명서에서 검색할 수 있습니다.

목차:

	설치

	Krita 시작하기

	기초 개념

	탐색

설치

Windows

Windows 사용자는 Krita를 웹사이트, Windows 스토어, Steam에서 다운로드할 수 있습니다. Steam과 스토어에 있는 버전은 유료이나, 웹사이트에 있는 무료 버전과 기능적으로 동일 [https://krita.org/en/item/krita-available-from-the-windows-store/]합니다. 그러나 웹사이트 버전과 달리, 두 유료 버전은 Krita의 새 버전이 출시될 때 자동으로 업데이트됩니다. 구매 비용은 스토어의 수수료를 공제한 후 Krita의 개발에 사용됩니다.

	웹사이트:
	최신 버전은 항상 웹사이트 [https://krita.org/download/]에 올라와 있습니다.

해당 페이지에서는 자동으로 올바른 아키텍처(64비트 또는 32비트)를 추천하지만, “모든 다운로드 버전”을 누르면 더 많은 선택 사항을 볼 수 있습니다. 컴퓨터 아키텍처를 직접 확인하려면 설정 ‣ 정보 메뉴로 이동하여 디바이스 사양 항목의 시스템 종류 부분을 확인하십시오.

기본값으로 Krita 설치 EXE 파일을 다운로드하지만, 포터블 압축 파일 버전을 다운로드할 수도 있습니다. 설치 프로그램 버전과 달리, 포터블 버전은 Windows 탐색기에 자동으로 미리 보기를 표시하지 않습니다. 포터블 버전에서 미리 보기를 표시하려면 다운로드 페이지에 있는 Krita의 Windows 셸 확장 프로그램을 설치하십시오.

해당 파일은 KDE 다운로드 디렉터리 [https://download.kde.org/stable/krita/]에서도 이용할 수 있습니다.

	Windows 스토어:
	적은 비용을 내고 Windows 스토어 [https://www.microsoft.com/store/productId/9N6X57ZGRW96]에서 Krita를 다운로드할 수 있습니다. 이 버전을 사용하려면 Windows 10이 필요합니다.

	Steam:
	적은 비용을 내고 Steam [https://store.steampowered.com/app/280680/Krita/]에서도 Krita를 다운로드할 수 있습니다.

	Epic Store
	For a small fee, you can also download Krita from the Epic Store [https://www.epicgames.com/store/en-US/p/krita].

Krita 포터블 버전을 다운로드하려면 KDE [https://download.kde.org/stable/krita/] 다운로드 디렉터리에서 setup.exe 설치 파일 대신 압축 파일을 다운로드하십시오.

참고

Krita requires Windows 8.1 or newer. The Store version requires Windows 10.

리눅스

많은 리눅스 배포판에는 최신 버전의 Krita가 포함되어 있습니다. 때때로 추가 저장소를 활성화해야 하기도 합니다. Krita는 KDE 앱이고 KDE 라이브러리가 필요하지만, KDE, 그놈, LXDE, Xfce 등 대부분의 데스크톱 환경에서도 잘 작동합니다. 배포판에 따라서 KDE 시스템 설정 모듈을 설치하고 사용하는 GUI 테마와 글꼴을 조정해야 할 수도 있습니다.

노틸러스/니모 파일 관리자 확장 프로그램

2016년 4월부터 KDE의 Dolphin 파일 관리자에서는 KRA와 ORA 파일을 미리 볼 수 있으나, 노틸러스와 파생 프로그램에서는 확장 프로그램을 설치해야 합니다. Moritz Molch의 XCF, KRA, ORA, PSD 섬네일 확장 기능을 추천합니다 [https://moritzmolch.com/1749].

AppImages

For Krita 3.0 and later, first try out the AppImage from the official website [https://krita.org/en/download/krita-desktop/]. 90% of the time this is by far the easiest way to get the latest Krita. Just download the AppImage, and then use the file properties or the bash command chmod to make the AppImage executable. Double-click it, and enjoy Krita. (Or run it in the terminal with
./appimagename.appimage)

	Open the terminal into the folder you have the AppImage.

	아래 명령어로 실행 가능하도록 설정하십시오:

chmod a+x krita-3.0-x86_64.appimage

	아래 명령어로 Krita를 실행하세요!

./krita-3.0-x86_64.appimage

AppImages are ISOs with all the necessary libraries bundled inside, that means no fiddling with repositories and dependencies, at the cost of a slight bit more disk space taken up (And this size would only be bigger if you were using Plasma to begin with).

우분투와 쿠분투

It does not matter which version of Ubuntu you use, Krita will run just fine. However, by default, only a very old version of Krita is available. You should either use the AppImage, Flatpak or the Snap available from Ubuntu’s app store. We also maintain a PPA for getting the latest builds of Krita, you can read more about the PPA and install instructions here [https://launchpad.net/~kritalime/+archive/ubuntu/ppa].

OpenSUSE

최신 안정판 빌드는 KDE:Extra 저장소에서 설치할 수 있습니다:

	https://download.opensuse.org/repositories/KDE:/Extra/

참고

Krita는 공식 저장소에 있으므로 Yast에서 설치할 수 있습니다.

페도라

Krita는 공식 저장소에 있으며, packagekit(소프트웨어 추가 및 삭제)를 사용하거나 터미널에서 다음 명령을 입력하여 설치할 수 있습니다.

dnf install krita

그놈 소프트웨어 센터 또는 Plasma Discover를 사용하여 Krita를 설치할 수도 있습니다.

데비안

데비안에서 사용할 수 있는 Krita의 최신 버전은 3.1.1입니다. Krita를 설치하려면 터미널에 다음 명령을 입력하십시오.

apt install krita

Arch

Arch 리눅스는 Extra 저장소에서 Krita 패키지를 제공합니다. 다음 명령을 입력하여 Krita를 설치할 수 있습니다:

pacman -S krita

Arch 사용자 저장소(AUR)에서 Krita pkgbuild를 찾을 수 있으나, 항상 최신 git 버전이 올라와 있지는 않습니다.

Flatpak

We also have Flatpak for nightlies and stable builds, these builds are not maintained by the core developers themselves. You can either get the builds from the KDE community website [https://binary-factory.kde.org] or from the Flathub Maintainers [https://flathub.org/apps/details/org.kde.krita]. The KDE community website only offers nightly builds of Flatpak.

To install Flatpak build from the software center just open the Flatpakrepo files with Discover or the software center provided by your distribution:

Flathub 저장소 [https://flathub.org/repo/flathub.flatpakrepo]

KDE Flatpak 저장소 [https://distribute.kde.org/kdeapps.flatpakrepo]

After adding one of the above repos you can then search for Krita and the software center will show you the Flatpak version for installation.

If you prefer doing it from terminal you can use the following commands to install Krita’s Flatpak build

KDE Flatpak 저장소를 사용하는 경우:

flatpak --user remote-add --if-not-exists kdeapps --from https://distribute.kde.org/kdeapps.flatpakrepo

flatpak --user install kdeapps org.kde.krita-nightly

Flathub 저장소에서 설치하는 경우:

flatpak --user remote-add --if-not-exists flathub https://flathub.org/repo/flathub.flatpakrepo

flatpak --user install flathub org.kde.krita

Snap

우분투 Snap 개발자가 제공하는 Snap 패키지가 있으나, 이들은 보통 최신 버전이 아닙니다. Krita 개발자는 Snap 패키지를 직접 제공하거나 빌드하지 않습니다. 따라서 Krita를 Snap 패키지로 설치하려면 먼저 snapd 앱을 설치해야 합니다. snapd는 우분투 계열 배포판에 기본적으로 설치되어 있습니다.

우분투 계열 배포판을 사용하고 있다면 소프트웨어 센터에서 Krita Snap 패키지를 찾을 수 있거나 터미널에 다음 명령을 실행하여 설치할 수 있습니다.

sudo snap install krita

참고

Flatpak과 Snap 빌드는 Krita의 핵심 개발자가 테스트하지 않기 때문에 Krita를 해당 옵션으로 설치했다면 종종 버그가 발생할 수도 있습니다.

macOS

You can download the latest binary from our
website [https://krita.org/download/krita-desktop/].
The binaries work only with macOS version 10.12 and newer.

소스

소스 코드에서 Krita를 컴파일하는 것은 사전에 제작된 패키지에서 설치하는 것보다 훨씬 어렵지만, 이러한 노력을 가치 있게 만드는 몇 가지 이점이 있습니다:

	Krita가 개발된 과정의 발자취를 직접 따라갈 수 있습니다. 개발 저장소에서 정기적으로 Krita를 컴파일하면 현재 작업 중인 모든 새로운 기능을 빠르게 사용할 수 있습니다.

	프로세서에 최적화된 컴파일을 할 수 있습니다. 대부분의 사전 제작 패키지는 가장 많은 환경에서 작동할 수 있도록 빌드되기 때문입니다.

	가장 빠르게 버그 수정을 적용받을 수 있습니다.

	개발 중인 기능에 대한 피드백을 제공하고 버그 수정을 테스트해 볼 수 있습니다. 이는 매우 중요한 작업이며, 따라서 정기적으로 참여하는 테스터의 이름도 개발자 이름과 함께 정보 대화 상자에 표시됩니다.

물론 단점 또한 존재합니다. 개발 중인 소스 저장소에서 빌드한다면 미완성된 기능을 있는 그대로 사용하게 됩니다. 한동안 안정성이 떨어질 수도 있으며, 사용자 인터페이스에 표시되는 것이 제대로 작동하지 않을 수도 있습니다. 실질적으로는 매우 불안한 기능이 추가되는 경우는 적으며, 만에 하나 그렇다고 하더라도 작동하는 리비전으로 쉽게 되돌아갈 수도 있습니다.

만약 소스 코드를 컴파일해 보고 싶다면, 여기에 있는 최신 빌드 도움말을 참조하십시오.

문제가 발생했거나 소프트웨어를 컴파일하는 것이 익숙하지 않다면, 주저하지 말고 Krita 개발자에게 문의하십시오. 다음과 같은 3가지 주요 통신 채널이 있습니다.

	irc: web.libera.chat, channel #krita

	메일링 리스트 [https://mail.kde.org/mailman/listinfo/kimageshop]

	Krita 아티스트 [https://krita-artists.org]

Krita 시작하기

Krita를 처음 시작했을 때 새 캔버스나 문서가 기본적으로 열리지는 않습니다. 대신 시작 화면이 나타나는데, 이곳에서 새 파일을 만들거나 기존 문서를 열 수 있습니다. 새 캔버스를 만들 때에는 파일 메뉴에서 새 문서를 만들거나, 시작 화면의 시작 섹션에서 새 파일을 클릭하십시오. 그러면 새 파일 대화 상자가 열립니다. 기존 이미지를 열 때에는 파일 ‣ 열기…를 사용하거나, 컴퓨터에서 이미지를 Krita 창으로 드래그하십시오.

[image: ../../_images/Starting-krita.png]

새 문서 만들기

다음 방법으로 새 문서를 만들 수 있습니다.

	앱 위쪽에 있는 메뉴에서 파일을 클릭하십시오.

	그 다음 새로 만들기를 클릭하십시오. 또는 Ctrl + N 단축키를 눌러 이 작업을 수행할 수 있습니다.

	이제 아래 그림과 같이 새 문서 대화 상자가 표시됩니다.

[image: ../../_images/Krita_newfile.png]
Click on the Custom Document section and in the Dimensions tab choose A4 (300ppi) or any size that you prefer from the Predefined drop down. To know more about the other sections such as create document from clipboard and templates see 새 문서 만들기.

색 프로필이 RGB이고 색상 섹션에서 색 농도를 8비트 정수/채널로 설정했는지 확인하십시오. 색상 및 색 관리에 대한 자세한 내용은 해당 문서를 참조하십시오.

브러시 사용하기

이제 빈 흰 캔버스에 마우스 왼쪽 단추를 클릭하거나 그래픽 태블릿에 펜으로 그림을 그리십시오. 모든 것이 올바르게 작동한다면 캔버스에 그림을 그릴 수 있습니다! Krita를 시작할 때 기본적으로 브러시 도구를 선택하지만, 그렇지 않다면 도구 상자의 [image: toolfreehandbrush] 아이콘을 클릭하여 브러시 도구를 활성화할 수 있습니다.

다른 브러시를 사용하고 싶다면 오른쪽의 브러시 사전 설정 도커(또는 F6 키 누름)에서 펜이나 크레용 등 다양한 브러시를 사용할 수 있습니다.

사전 설정을 조정하려면 도구 모음의 브러시 편집기를 사용하십시오. F5 키를 눌러도 브러시 편집기를 열 수 있습니다.

[image: ../../_images/Krita_Brush_Preset_Docker.png]
아무 사각형이나 골라 브러시를 선택한 다음 캔버스에 그리십시오. 색상을 변경할 때에는 고급 색상 선택기 도커에 있는 삼각형을 클릭하십시오.

지우기

지우개 브러시 사전 설정이 존재하지만, 지우개 전환을 사용하는 것이 더 빠릅니다. E 키를 눌러서 지우개와 브러시를 전환할 수 있습니다. 이 지우기 방법은 대부분의 도구에서 작동합니다. 선 도구, 직사각형 도구 외에도 그라디언트 도구를 사용하여 지울 수 있습니다.

파일 저장하고 열기

이제 Krita에서 무언가를 그리는 방법을 알아냈다면 저장한 후 나중에 볼 수 있습니다. 저장 옵션은 다른 모든 컴퓨터 프로그램에 있는 것과 같은 위치에 있습니다. 메뉴 표시줄의 파일, 저장을 클릭하십시오. 이미지를 저장할 폴더를 선택하고 사용할 파일 형식을 선택하십시오(.kra는 Krita의 기본 형식이며 모든 것을 저장할 수 있습니다). 그 다음 저장을 누르십시오. 일부 이전 버전의 Krita에는 버그가 있기 때문에 확장자를 수동으로 입력해야 합니다.

인터넷에 이미지를 표시하려면 웹 저장 튜토리얼을 참조하십시오.

더 많은 기본 정보를 보려면 탐색 문서를, Krita에서 사용하는 각종 개념을 이해하려면 기초 개념 문서를 참조하십시오. 준비가 되었다면 직접 Krita를 탐험해 보십시오!

기초 개념

이 페이지는 Krita에서 디지털 페인팅을 처음 시작하는 데 필요한 기본적이지만 중요한 개념에 대해 간략하게 소개하는 페이지입니다. 디지털 페인팅을 처음 시작한다면 읽어 보는 것을 추천합니다.

비록 매우 길지만, 이 페이지에서는 Krita의 가장 중요한 기능 중 몇 가지를 간략하게 설명합니다. Krita의 다양한 메뉴와 단추의 기능을 이해하는 데 도움을 줄 것입니다.

목차

	기초 개념

	래스터와 벡터

	이미지, 보기, 창

	이미지

	보기

	도커

	창

	Krita의 캔버스

	레이어와 합성

	도구

	브러시 엔진

	색상

	투명도

	혼합 모드

	마스크

	필터

	Filter Brush Engine

	필터 레이어, 필터 마스크, 레이어 스타일

	변환

	Deform Brush Engine

	Transform Masks

	Animation

	도우미, 격자, 안내선

	사용자 설정

래스터와 벡터

Krita는 래스터 기반 앱이지만, 벡터 편집 기능 또한 탑재하고 있습니다. 디지털 페인팅 매체를 처음 접하는 경우 먼저 래스터 및 벡터 기반 이미지의 배경을 숙지할 필요가 있습니다.

디지털 이미징에서 픽셀은 가장 기본적이고 작은 단위입니다. 이는 각각 특정한 색을 표시하는 점들을 격자형으로 늘어놓은 것으로, 래스터 편집은 이 픽셀을 조작하고 편집합니다. 예를 들어 검정색으로 칠해진 1픽셀의 브러시로 Krita의 흰 캔버스를 칠한다면, 실제로는 브러시 아래에 있는 픽셀의 색을 흰색에서 검은색으로 바꾸고 있는 것입니다. 확대해서 브러시 스트로크를 보면 작은 사각형들이 많이 보이는데, 이 사각형이 픽셀입니다:

[image: ../../_images/Pixels-brushstroke.png]
래스터 이미지와 다르게 백터 그래픽 이미지는 픽셀과 독립된 수식을 기반으로 합니다. 예를 들어 Krita의 벡터 레이어에 직사각형을 그린다면, 실제로는 ‘x’ 축과 ‘y’ 축의 특정 좌표에 위치한 노드라고 불리는 지점을 통과하는 경로를 그립니다. 이러한 점의 크기를 조정하거나 이동할 때 시스템이 경로를 계산하고 다시 그리며, 이를 통해 형성된 모양을 사용자에게 표시합니다. 따라서 벡터 이미지는 품질 손실 없이 이미지의 크기를 원하는 수준으로 조정할 수 있습니다. Krita에서는 벡터 레이어에 있지 않은 모든 것은 전부 래스터 기반에 해당됩니다.

이미지, 보기, 창

그림을 그리는 프로그램에는 작업 공간을 구성하는 세 가지 주요 요소가 있습니다.

이미지

가장 중요한 것은 이미지입니다.

이 이미지는 파일 대화 상자를 통해 열거나 만들 수 있는 이미지의 복사본입니다. Krita는 파일 메뉴를 통해 파일을 복사본으로 열거나, 새 파일로 저장하거나, 증분된 복사본을 만들 수 있도록 합니다.

이미지에는 레이어, 이미지와 레이어의 색 공간, 캔버스 크기 등 데이터와 만든 사람, 만든 날짜, DPI 등 메타데이터가 포함되어 있습니다. Krita는 한 번에 여러 개의 이미지를 열 수 있으며, 창 메뉴를 통해 이미지 간을 전환할 수도 있습니다.

이미지는 하드 드라이브에 있는 이미지의 복사본이기 때문에, 다음과 같은 저장 방법을 사용할 수 있습니다.

	새로 만들기
	새 이미지를 만듭니다. 저장을 누르면 하드 드라이브에 새 파일을 만듭니다.

	열기…
	기존 이미지의 복사본을 만듭니다. 저장을 누르면 작업 복사본으로 원본 이미지를 덮어씁니다.

	기존 문서를 제목 없는 문서로 열기…
	열기…와 비슷하지만 저장 시 위치를 물어 보며, 새 사본을 만듭니다. 이는 다른 프로그램의 menuselection:가져오기… 기능과 비슷합니다.

	현재 이미지에서 복사본 만들기
	기존 문서를 제목 없는 문서로 열기…와 비슷하지만, 현재 선택한 이미지에서 복사본을 만듭니다.

	증분 버전 저장
	버전 번호가 추가된 새 파일을 만들어 현재 이미지의 스냅샷을 만들 수 있습니다.

이러한 옵션은 파일 간의 빠른 전환이 필요하거나 극단적인 작업을 수행해서 백업 파일이 필요한 프로덕션 작업자에게 매우 유용합니다. 또한 Krita는 자동 저장, 파일 백업, 충돌 복구의 형태로 파일 백업 시스템을 갖고 있습니다. 일반 설정에서 이러한 기능에 대한 옵션을 설정할 수 있습니다.

보기를 통해 이미지를 봅니다.

보기

보기는 이미지의 창입니다. Krita에서는 보기 여러 개를 표시할 수 있는데, 이미지 자체를 편집하지 않고도 보기를 조작하여 이미지를 확대, 회전, 반전 또는 수정할 수 있습니다. 한 쪽으로 치우친 그림처럼 흔한 실수를 검사할 때 이미지를 보는 방법을 바꾸는 방법을 흔히 사용하므로, 예술가에게 유용한 기능입니다. M 키로 이미지를 반전시키면 이러한 왜곡을 쉽게 알 수 있습니다.

특정 곡선을 그리기 어렵다면 이미지를 회전시켜 그릴 수 있습니다. 물론 정밀하거나 거친 작업을 위한 확대/축소 기능도 사용할 수 있습니다.

[image: ../../_images/Krita_multiple_views.png]

Krita에서 같은 이미지를 보기 여러 개로 보기

Krita에서는 창 ‣ 새 보기 ‣ 이미지 이름을 통해 여러 개의 보기로 보는 것이 가능합니다. 창 메뉴나 Ctrl + Tab 단축키를 사용해 여러 보기를 전환하거나, 설정에서 하위 창 모드가 활성화되어 있다면 창 –> 바둑판식 보기를 통해 동일한 영역에서 볼 수 있습니다.

도커

도커는 Krita의 인터페이스에 있는 하위 창입니다. 색상 선택기, 레이어 스택, 도구 옵션 등 유용한 도구를 포함합니다.

[image: ../../_images/Dockers.png]
The image above shows some dockers in Krita.

모든 보기와 도커는 창 안에서만 열립니다.

창

이전에 컴퓨터를 사용해 본 적이 있다면 창이 무엇인지 알 수 있을 것입니다. 이는 컴퓨터 프로그램을 위한 커다란 컨테이너입니다.

Krita에서는 창 ‣ 새 창을 통해 창 여러 개를 열 수 있습니다. 다중 모니터를 사용한다면 다른 창을 다른 모니터로 드래그할 수 있습니다.

아래 이미지는 Krita에 여러 창이 열린 예시입니다.

[image: ../../_images/Multi-window.png]

Krita의 캔버스

Krita에서 새 문서를 만들었을 때 직사각형 형태의 흰 영역을 볼 수 있습니다. 이를 캔버스라고 합니다. 아래 이미지에서 붉은 사각형으로 표시된 영역이 캔버스입니다.

[image: ../../_images/Canvas-krita.png]
이미지를 JPG, PNG 등으로 저장하거나 인쇄할 때에는 이 영역 내부의 내용만을 고려합니다. 영역 밖에 있는 것은 무시됩니다. Krita는 캔버스 외부 영역의 정보를 저장하지만 단지 볼 수 없을 뿐입니다. 이 데이터는 레이어에 저장됩니다.

레이어와 합성

풍경화를 그릴 때 가장 먼저 하늘을 그리고 멀리 있는 요소들을 먼저 칠하듯이, 컴퓨터 또한 그리려고 하는 모든 것을 똑같이 그릴 것입니다. 같은 자리에 사각형 다음에 원을 그릴 경우 그 원은 항상 나중에 그려집니다. 이를 레이어 순서라고 합니다.

레이어 스택은 레이어 요소를 분리하고 어떤 레이어에 어떤 것이 그려지는지를 보여 줍니다. 레이어의 순서를 변경하고 그 밖의 모든 효과를 적용할 수 있습니다. 이를 합성이라고 합니다.

이를 통해 색채 위, 즉 산 앞에 있는 나무의 선화를 그릴 수 있고, 다른 그림의 영향을 받지 않고 각각을 편집할 수 있습니다.

Krita는 다양한 형식의 레이어를 지원하며, 각각 레이어마다 고유한 사용 목적이 있습니다.

	칠하기 레이어
	이 레이어는 래스터 레이어이며, Krita에서 가장 자주 사용되며 기본값으로 설정된 레이어입니다. 주로 이 레이어에 그림을 그립니다.

	벡터 레이어
	벡터 그래픽을 그리는 레이어입니다. 일반적으로 벡터 그래픽은 래스터 그래픽보다 단순하며, 변형을 할 때 이미지가 흐려지지 않는다는 이점이 있습니다.

	그룹 레이어
	드래그 앤 드롭을 통해 여러 레이어를 그룹화할 수 있습니다. 그룹으로 묶인 구성, 이동, 마스크 적용 및 기타 작업을 함께 수행합니다.

	복제 레이어
	레이어를 만들 때 선택한 레이어의 복사본입니다. 원본 레이어를 변경할 때 자동으로 업데이트됩니다.

	파일 레이어
	Krita 외부의 기존 이미지를 참조하며, 외부 이미지가 업데이트 되는 즉시 함께 업데이트됩니다. 로고나 엠블럼처럼 자주 바뀌는 이미지에 유용합니다.

	채우기 레이어
	이 레이어는 특정한 색깔이나 무늬처럼 Krita가 즉석에서 만들 수 있는 것으로 채워져 있습니다.

	필터 레이어
	이 레이어는 해당 레이어 아래에 있는 레이어로 만든 합성 이미지에 영향을 주는 필터를 적용합니다.

도구를 이용해 레이어의 내용을 변경할 수 있습니다.

도구

도구를 이용해 이미지 데이터를 변경할수 있습니다. 가장 흔한 것은 자유형 브러시로, Krita를 열었을 때 기본적으로 선택되어 있습니다. Krita에는 다섯 가지 도구 종류가 있습니다.

	칠하기 도구
	페인트 레이어에 그림을 그리는 도구입니다. 직사각형, 원, 직선과 같은 모양뿐만 아니라 자유형 경로를 그릴 수 있습니다. 브러시 엔진에서는 이러한 모양을 사용하여 모양과 그리기 효과를 만듭니다.

	벡터 도구
	벡터 편집에 사용하는 도구입니다. 자유형 브러시를 제외한 모든 칠하기 도구는 벡터 레이어에도 사용할 수 있습니다. 해당 도구를 사용하면 일반 레이어에 칠하기 도구를 사용한 것과는 다르게 외곽선에 브러시 사전 설정을 사용하지 않습니다.

	선택 도구
	다른 항목에 영향을 주지 않고 작업 중인 레이어의 특정 영역을 편집할 수 있습니다. 선택 도구를 사용하여 현재 선택 영역을 그리거나 수정할 수 있습니다. 이는 전통적인 그림을 그리는 방법 중 마스킹 액체(masking-fluids)를 사용하는 것과 같지만, 마스킹 액체와 필름을 사용하는 것에 비해 훨씬 섬세하고 사용하기 편합니다.

	안내선 도구
	격자나 도우미와 같은 도구입니다.

	변형 도구
	캔버스에서 레이어나 객체를 변환할 때 사용하는 도구입니다.

모든 도구는 도구 상자에서 찾을 수 있으며, 각각 도구에 대한 정보는 매뉴얼의 도구 섹션에서 확인할 수 있습니다.

브러시 엔진

브러시 엔진은 앞에서 말한 바와 같이 선이 지나는 경로와 태블릿의 정보를 취하여 스트로크를 만드는 역할을 합니다.

Krita에서 엔진은 어떠한 기능의 핵심이며 다양하게 설정할 수 있는 상호 작용 코드 세트를 설명할 때 사용하는 단어입니다. 즉, 자동차의 엔진이 자동차를 움직이고, 엔진의 종류와 구성이 차를 사용하는 방법에 영향을 미치듯이, 브러시 엔진은 브러시의 모습과 느낌을 결정합니다. 따라서 브러시 엔진이 달라지면 결과 또한 달라집니다.

Krita에는 서로 다른 효과를 구현하는 다양한 브러시 엔진이 있습니다.

[image: ../../_images/Krita_example_differentbrushengines.png]

왼쪽: 픽셀 브러시, 가운데: 색상 번짐 브러시, 오른쪽: 스케치 브러시.

예를 들어 픽셀 브러시 엔진은 단순하고 기본적인 작업을 할 수 있지만, 그림을 많이 그릴 때에는 색상 번짐 브러시 엔진이 더 유용할 수도 있습니다. 픽셀 브러시 엔진보다 사용 속도가 느리지만 색상을 섞는 작업은 훨씬 빠르게 할 수 있기 때문입니다.

만약 아주 다른 것을 원한다면, 스케치 브러시 엔진은 지저분한 선을 연출하는 데에 도움이 되고, 모양 브러시 엔진은 큰 플랫을 빠르게 만들 수 있게 해 줍니다. Krita의 브러시 엔진에는 멋진 효과가 아주 많으니, 모두 시험해 보고 브러시 엔진별 설명을 꼭 확인해 보십시오.

이러한 효과는 F5 키를 이용해 접근하는 브러시 설정 드롭다운에서 설정할 수 있습니다. 여기에서 저장된 구성은 F6 키를 이용해 브러시 사전 설정 도커로 빠르게 접근할 수 있습니다.

브러시는 색으로 그려지지만, 컴퓨터는 이 색들을 어떻게 이해할까요?

색상

인간은 수백만 가지 색을 볼 수 있습니다. 색은 표면에서 반사되어 나오는 빛의 조합으로, 물체의 표면에서는 그 일부만을 흡수합니다.

[image: ../../_images/Krita_basics_primaries.png]

Subtractive CMY colors on the left and additive RGB colors on the right. This difference means that printers benefit from color conversion before printing.

전통적인 방식으로 그림을 그릴 때에는 원하는 색상의 물감을 사용합니다. 물감은 특정한 색상의 빛을 흡수하며, 물감을 섞을수록 빛이 많이 흡수되어 점점 어두운 검은색으로 변합니다. 그래서 우리는 물감의 혼합을 감산 혼합이라고 합니다. 물감을 많이 섞을수록 빛이 빠지기 때문입니다. 따라서 전통적인 물감 혼합을 할 때 가장 효율적인 색상은 시안(Cyan), 마젠타(Magenta), 노랑(Yellow)의 세 가지 색상(CMY)입니다.

컴퓨터 또한 삼원색을 사용하며 각각 색상을 원색의 혼합 비율로 저장합니다. 다만 컴퓨터 화면은 빛을 발산하므로, 여러 색상이 섞일수록 더 많은 빛이 더해져서 점점 흰색으로 변합니다. 이러한 방식을 가산 혼합이라고 합니다. 컴퓨터의 색상 혼합에 있어 가장 효율적인 색상이 빨강, 초록, 파랑(RGB)인 것도 이러한 이유입니다.

컴퓨터는 픽셀당 원색의 값을 저장하며, 색 농도에 따라서 최댓값이 달라집니다. 프로그램이나 문서에 따라서 구성 요소나 채널이라는 이름으로 불립니다.

[image: ../../_images/Krita_basic_channel_rose.png]

이 그림은 붉은 장미 그림의 빨간색 채널입니다. 보이는 바와 같이 꽃잎이 흰색인데, 이 부위에 빨간색이 가득 들어 있음을 나타냅니다. 잎 부분은 훨씬 어두운데, 녹색이기 때문에 빨간색이 들어 있지 않음을 나타냅니다.

기본적으로 컴퓨터는 RGB를 사용하지만 CMYK(감산 모델) 또는 LAB과 같은 지각 모델로 변환할 수도 있습니다. 이는 단지 색상이 서로 어떻게 연관되어 있는지를 나타내는 방법일 뿐이며, 따라서 일반적으로 3개의 구성 요소를 갖습니다. 여기서 예외적인 것은 그레이스케일인데, 그레이스케일은 컴퓨터가 얼마나 흰색을 갖고 있는지 만을 기억하면 되기 때문입니다. 따라서 그레이스케일은 메모리 측면에서 효율적입니다.

실제로 각 채널을 따로 보면 그레이스케일 이미지로도 보이지만, 사실 흰색은 빨간색, 녹색, 파란색이 얼마나 있는지만을 나타낼 뿐입니다.

Krita는 매우 복잡한 색 관리 시스템을 갖고 있습니다. 이에 관해서는 이 문서에서 더 자세히 읽을 수 있습니다.

투명도

빨간색, 녹색, 파란색과 마찬가지로, 컴퓨터는 픽셀이 얼마나 투명한지를 저장할 수 있습니다. 이는 앞에서 언급한 합성에 매우 중요합니다. 투명하지 않다면 여러 레이어를 갖는 것이 의미가 없기 때문입니다.

투명도는 색상과 같은 방식으로 저장되는데, 투명도도 하나의 채널이라는 것을 의미합니다. 보통 이러한 채널을 알파 채널이라고 부르거나, 줄여서 알파라고 부릅니다. 알파라고 불리는 이유는 프로그래밍에서 ‘α’라는 글자로 나타내기 때문입니다.

일부 오래된 프로그램은 기본적으로 투명도를 사용하지 않지만, Krita는 그와 반대입니다. 투명도 정보가 없는 이미지에는 항상 투명도 채널을 추가합니다. 주어진 픽셀이 모든 레이어에서 완전히 투명하다면 Krita는 위에 있는 장미 그림처럼 체커보드 패턴을 표시합니다.

혼합 모드

색은 숫자로 저장되기 때문에 색에 수학적인 계산을 할 수 있습니다. 이를 혼합 모드 또는 합성 모드라고 부릅니다.

혼합 모드는 레이어당, 또는 브러시 스트로크당 수행될 수 있습니다. 따라서 레이어 합성의 일부라고 할 수 있습니다.

	곱하기
	일반적으로 사용되는 혼합 모드는 곱하기입니다. 구성 요소를 곱하여 어두운 색상으로 만들며, 이를 통해 감산 혼합을 시뮬레이션하여 그림자를 쉽게 그릴 수 있습니다.

	더하기
	또 다른 흔한 혼합 모드는 더하기입니다. 한 층의 구성 요소를 다른 층에 첨가하여 빛이 나는 효과를 내기에 제격입니다.

	지우기
	지우기는 Krita에만 있는 혼합 모드입니다. 지우개 도구는 없지만 E 키로 빠르게 전환하면 지우개가 됩니다. 레이어에서도 사용할 수 있습니다. 다른 혼합 모드와 달리 지우개는 알파 채널에만 영향을 주어 사물을 투명하게 만듭니다.

	평균
	평균 혼합 모드에서는 맨 위의 색상이 얼마나 투명한지에 따른 색상 간의 평균을 산출합니다.

Krita는 이외에도 서로 다른 혼합 모드가 총 76개 있습니다. 자세한 내용은 혼합 모드 페이지를 참조하십시오.

채널을 그레이스케일 이미지로 볼 수 있기 때문에, 반대로 그레이스케일 이미지를 채널로 변환할 수도 있습니다. 그레이스케일 이미지를 투명도로 사용하는 것이 그 예시이며, 이를 마스크라고 부릅니다.

마스크

마스크는 레이어에 적용되는 하위 효과의 일종으로, 일반적으로 그레이스케일 이미지로 나타냅니다.

자주 사용되는 마스크 중에는 그레일스케일 이미지를 사용하여 투명도를 지정하는 투명도 마스크가 있습니다. 투명도 마스크에서 검은색은 모든 것을 투명하게, 흰색은 완전히 불투명하게 만듭니다.

브러시를 사용하여 마스크에 페인트를 칠하거나 일반 페인트를 마스크로 변환할 수도 있습니다. 마스크의 가장 큰 장점은 아래에 있는 픽셀을 제거하지 않고도 사물을 투명하게 만들 수 있다는 점이며, 이를 이용해 전체 그룹 레이어를 한번에 드러내거나 숨길 수도 있습니다.

예를 들어, 여기 새하얀 유령이 있습니다.

[image: ../../_images/Krita_ghostlady_1.png]
하지만 이 사람이 정말 유령인지 아니면 그냥 하얀 사람인지 알 수 없습니다. 유령이 허공에 떠 있다는 느낌을 주기 위해 레이어에 마우스 오른쪽 단추를 클릭하여 투명도 마스크를 추가합니다. 이후 마스크를 선택하고 검은색과 흰색의 선형 그라데이션을 그려 검은색이 아래로 가도록 합니다.

[image: ../../_images/Krita_ghostlady_2.png]
검은색이 어디에 있든 간에, 이제 이 유령은 투명해져서 정말 귀신처럼 보입니다!

마스크라는 이름은 전통적인 마스킹 액체와 필름에서 유래되었습니다. 이전에 언급했던 선택 영역과 마스킹 액체에 대한 비유를 다시 생각해 볼 수도 있습니다. 선택 영역도 내부적으로는 그레이스케일 이미지로 저장되며 마스크의 일종인 로컬 선택 영역으로 저장하거나 투명도 마스크로 변환할 수 있습니다.

필터

앞서 혼합 모드를 설명하며 수학적인 계산을 할 수도 있다고 언급했습니다. 하지만 픽셀이나 픽셀 그룹뿐만 아니라, 전체 레이어를 사용한 계산을 할 수도 있습니다. Krita에서는 여러 종류의 작은 계산을 여러 레이어에 걸쳐서도 할 수 있습니다. 이 작업을 필터라고 부릅니다.

작업의 예시는 다음과 같습니다.

	채도 감소
	모든 픽셀을 회색으로 만듭니다.

	흐림
	이웃한 픽셀의 평균치를 산출하여 날카로운 대비를 없애고 전체 이미지를 흐릿하게 보이게 합니다.

	선명하게
	픽셀 간의 대비를 증가시킵니다.

	색상을 알파로
	선택한 모든 색을 투명하게 만드는 필터로, 자주 쓰이는 필터 중 하나입니다.

[image: ../../_images/Krita_basic_filter_brush.png]

이미지의 다른 부분에 각각 다른 필터 브러시를 사용한 예시입니다.

Krita에서 사용할 수 있는 필터에 대해 더 알아보려면 이 문서를 참조하십시오.

Filter Brush Engine

대부분의 작업은 픽셀 단위로 적용되기 때문에, Krita는 필터를 필터 브러시 엔진의 일부로 사용할 수 있습니다.

대부분의 이미지 편집 소프트웨어에서 필터는 별도의 도구이지만, Krita는 브러시 엔진을 사용하기 때문에 다른 소프트웨어보다 더 많은 부분을 변경할 수 있습니다.

픽셀을 무채색으로 바꾸거나 색조를 바꾸는 브러시도 만들 수 있다는 의미입니다.

필터 레이어, 필터 마스크, 레이어 스타일

Krita는 필터 레이어와 필터 마스크를 통해 필터를 레이어 스택에 포함시킬 수 있습니다. 필터 레이어는 동일한 계층 구조 내에서 해당 레이어 아래의 모든 레이어에 영향을 미칩니다. 투명도와 필터 레이어에 적용한 투명도 마스크는 레이어가 적용되는 위치에 영향을 미칩니다.

반면 마스크는 단일 레이어에만 영향을 주며, 그레이스케일 이미지로 결정됩니다. 그룹에 적용할 경우 투명도 마스크와 마찬가지로 그룹 내의 모든 레이어에 영향을 미칩니다.

이 필터를 사용하여 유령을 더 으스스하게 보이게 할 수 있습니다. 유령 레이어를 선택한 후 복제 레이어를 만듭니다. 이후 마우스 오른쪽 단추를 클릭하고 필터 레이어를 추가하여 가우시안 흐림 효과를 10픽셀 내외로 지정합니다. 복제 레이어를 원래 레이어 뒤에 두고 혼합 모드를 ‘색상 닷지’로 설정해 으스스한 빛이 나는 것처럼 연출합니다. 원래 레이어에 계속 그림을 그릴 수 있으며, 계속 모든 것이 자동으로 업데이트됩니다!

[image: ../../_images/Krita_ghostlady_3.png]
레이어 효과나 레이어 스타일은 일반 마스크보다 빠르지만 다용도는 아닌, Photoshop에서 널리 사용되는 필터 마스크입니다. 레이어를 마우스 오른쪽 단추로 클릭한 후 ‘레이어 스타일’을 선택하여 사용합니다.

변환

변환은 이미지의 픽셀에서 수행되는 작업이라는 점에서 필터와 유사합니다. 일반적인 이미지와 레이어 단위 변환은 이미지와 레이어 최상위 메뉴에 있으며, 전체 이미지의 크기를 조정하거나 회전하고 뒤집을 수도 있습니다.

캔버스 크기에만 영향을 미치는 자르기 도구와 주어진 레이어만 이동하는 이동 도구도 있습니다. 이 이상의 변환이 필요한 경우 변형 도구를 사용하십시오.

[image: ../../_images/Krita_transforms_free.png]
이 도구를 사용해 캔버스를 회전 및 크기를 조정하거나 원근법에 맞게 배치할 수 있습니다. 또한 휨, 유동화, 케이지와 같은 고급 변형 도구를 사용할 수 있습니다. 해당 도구를 사용하면 사용자 지정 포인트를 그리거나 변형 브러시처럼 자유로운 변환을 할 수 있습니다.

Deform Brush Engine

Like the filter brush engine, Krita also has a Deform Brush Engine, which allows you to transform with a brush. This deform is like a much faster version of the Liquefy transform tool mode, but in exchange, its results are of much lower quality.

[image: ../../_images/Krita_transforms_deformvsliquefy.png]

Apple transformed into a pear with liquefy on the left and Deform brush on the right.

또한 왜곡 브러시는 비파괴 마스크에는 적용할 수 없습니다.

Transform Masks

Like filters, transforms can be applied as a non-destructive operation that is part of the layer stack. Unlike filter and transparency masks however, Transform Masks can’t be driven by a grayscale image, for technical reasons. You can use transform masks to deform clone and file layers as well.

Animation

[image: ../../_images/Introduction_to_animation_walkcycle_02.gif]
From version 3.0 onwards, Krita got raster animation support. You can use the timeline, animation and onionskin dockers, plus Krita’s amazing variety of brushes to do raster based animations, export those, and then turn them into movies or GIFs.

도우미, 격자, 안내선

다양한 기술적인 기능만 보고 Krita가 그림을 그리는 프로그램이라는 사실을 잊을지도 모릅니다. Krita는 일러스트레이터가 전통적인 방식으로 작업할 때처럼 그리기를 쉽게 도와 주는 다양한 기능을 제공합니다.

[image: ../../_images/Krita_basic_assistants.png]

Krita의 소실점 도우미 사용 예시입니다.

	격자와 안내선 도커
	캔버스 위에 격자 또는 안내선을 보여 주는 설정할 수 있는 매우 간단한 안내 도구입니다.

	스냅
	격자, 안내선, 확장, 직교, 이미지의 중심과 경계선 등 모든 종류의 물체에 스냅 기능을 사용할 수 있습니다.

	도우미를 이용해 그림 그리기
	태블릿에 자를 붙일 수는 없기 때문에 캔버스 위에 도우미를 대신 나타냅니다. 동심원, 원근법, 평행선, 쉽게 잊어버리지만 그리기 어려운 것들을 그리도록 도와주는 기능입니다. Krita를 사용하면 도구 옵션을 통해 이러한 옵션에도 스냅 기능을 사용할 수 있습니다.

안내선은 Krita의 네이티브 형식으로 저장되므로, 나중에 쉽게 작업을 다시 시작할 수 있습니다.

사용자 설정

최종 개념인 사용자 설정으로 이어집니다.

Krita의 작업 공간은 사용자의 취향에 따라서 도커를 재배열하고 구성을 저장할 수 있습니다. 오른쪽 상단에 있는 단추를 통해 접근할 수 있습니다.

또한 설정 ‣ 도구 모음 설정, 설정 ‣ Krita 설정… ‣ 단축키, 설정 ‣ Krita 설정… ‣ 캔버스 입력 설정 항목에서도 단축키 및 도구 모음을 설정할 수 있습니다.

탐색

인터페이스

Krita’s interface is very flexible and provides an ample choice for the artist to arrange the elements of the workspace. An artist can snap and arrange the elements, much like snapping together Lego blocks. Krita provides a set of construction kit parts in the form of Dockers and Toolbars. Every set of elements can be shown, hidden, moved and rearranged, that lets the artist to easily customize their own user interface experience.

A Tour of the Krita Interface

As we’ve said before, the Krita interface is very malleable and the way that you choose to configure the work surface may not resemble those shown below, but we can use these as a starting point.

[image: ../../_images/Interface-tour.svg]
	A – Traditional File or action menu found in most windowed applications.

	B – Toolbar – This is where you can choose your brushes, set parameters such as opacity and size and other settings.

	C – Sidebars for the Movable Panels/Dockers. In some applications, these are known as Dockable areas. Krita also allows you to dock panels at the top and/or bottom as well.

	D – Status Bar – This space shows the preferred mode for showing selection i.e. marching ants or mask mode, your selected brush preset, Color Space, image size and provides a convenient zoom control.

	E – Floating Panel/Docker – These can be “popped” in and out of their docks at any time in order to see a greater range of options. A good example of this would be the 사전 설정 도커 or the Palette Docker.

Your canvas sits in the middle and unlike traditional paper, or even most digital painting applications, Krita provides the artist with a scrolling canvas of infinite size (not that you’ll need it of course!). The standard navigation tools are as follows:

Navigating the Canvas

Many of the canvas navigation actions, like rotation, mirroring and zooming have default keys attached to them:

	Panning
	This can be done through either [image: mousemiddle], or by holding Space + [image: mouseleft] and the directional keys.

	확대 및 축소
	Discrete zooming can be done through + and - keys. Using the Ctrl + Space or Ctrl + [image: mousemiddle] shortcuts allows for direct zooming with the stylus.

	Mirroring
	You can mirror the view can be quickly done via M key. Mirroring is a great technique that seasoned digital artists use to quickly review the composition of their work to ensure that it “reads” well, even when flipped horizontally.

버전 5.1에 추가: If you use Alt + M, mirroring will use the cursor position as the center to mirror around instead of the middle of the view. There is also a Mirror Canvas available in the Shortcut Settings to assign a shortcut to.

	Rotating
	You can rotate the canvas without transforming. It can be done with the Ctrl + [shortcut or 4 key and the other way with Ctrl +] shortcut or 6 key. Quick mouse based rotation is done with the Shift + Space and Shift + [image: mousemiddle] shortcuts. To reset rotation use the 5 key.

You can also find these under View ‣ Canvas.

도커

Krita subdivides many of its options into functional panels called Dockers (also known as Docks).

Dockers are small windows that can contain, for example, things like the layer stack, Color Palette or list of Brush Presets. Think of them as the painter’s palette, or his water, or his brush kit. They can be activated by choosing the Settings menu and the Dockers sub-menu. There you will find a long list of available options.

Dockers can be removed by clicking the x in the upper-right of the docker-window.

Dockers, as the name implies, can be docked into the main interface. You can do this by dragging the docker to the sides of the canvas (or top or bottom if you prefer).

Dockers contain many of the “hidden”, and powerful, aspects of Krita that you will want to explore as you start delving deeper into the application.

You can arrange the dockers in almost any permutation and combination according to the needs of your workflow, and then save these arrangements as Workspaces.

Dockers can be prevented from docking by pressing the Ctrl key before starting to drag the docker.

Sliders

Krita uses these to control values like brush size, opacity, flow, Hue, Saturation, etc… Below is an example of a Krita slider.

[image: ../../_images/Krita_Opacity_Slider.png]
The total range is represented from left to right and blue bar gives an indication of where in the possible range the current value is. Clicking anywhere, left or right, of that slider will change the current number to something lower (to the left) or higher (to the right).

To input a specific number, hold [image: mouseleft] on, or [image: mouseright] the slider. A number can now be entered directly for even greater precision.

Pressing the Shift key while dragging the slider changes the values at a smaller increment, and pressing the Ctrl key while dragging the slider changes the value in whole numbers or multiples of 5.

버전 5.1에서 변경: Shift while dragging will now also enable “relative mode”, which means that the cursor can be dragged outside the slider area.

도구 모음

[image: ../../_images/Krita_Toolbar.png]
Toolbars are where some important actions and menus are placed so that they are readily and quickly available for the artist while painting.

You can learn more about the Krita Toolbars and how to configure them in over in the Toolbars section of the manual.
Putting these to effective use can really speed up the Artist’s workflow, especially for users of Tablet-Monitors and Tablet-PCs.

버전 5.0에 추가: In addition to shortcuts and the toolbar, you can also search and quickly through all actions via the action search bar, which is accessed with Ctrl + Enter.

Workspace Chooser

The button on the very right of the Toolbar is the workspace chooser. This allows you to load and save common configurations of the user interface in Krita. There are a few common workspaces that come with Krita.

[image: ../../_images/workspace-chooser-button.svg]

팝업 팔레트

[image: ../../_images/Krita-popuppalette.png]
Pop-up Palette is a feature unique to Krita, designed to increase the productivity of the artist. It is a circular menu for quickly choosing brushes, foreground and background colors, recent colors while painting. To access the palette you have to just [image: mouseright] on the canvas. The palette will spawn at the position of the brush tip or cursor.

By tagging your brush presets you can add particular sets of brushes to this palette. For example, if you add some inking brush presets to inking tag you can change the tags to inking in the pop-up palette, and you’ll get all the inking brushes in the palette.

You can tag brush presets via the 사전 설정 도커, check out the resource overview page to know more about tagging in general.

If you call up the pop-up palette again, you can click the tag icon, and select the tag. In fact, you can make multiple tags and switch between them.
When you need more than ten presets, go into Settings ‣ Configure Krita… ‣ General ‣ Miscellaneous ‣ Number of Palette Presets and change the number of presets from 10 to something you feel comfortable.

다른 소프트웨어에서 전환하기

이 세상에 있는 디지털 페인팅 소프트웨어는 Krita뿐만이 아닙니다. 기존에 다른 앱을 사용하다가 Krita로 넘어 온 사용자도 있기 때문에, 앱 간의 차이점을 별도로 설명합니다.

목차:

	Introduction to Krita coming from Photoshop
	소개

	Krita Basics

	What Krita Has Over Photoshop

	What Krita Does Not Have

	Conclusion

	Introduction to Krita coming from Paint Tool SAI
	How do you do that in Krita?

	What do you get extra when using Krita?

	What does Krita lack compared to Paint Tool SAI?

	Conclusion

Introduction to Krita coming from Photoshop

소개

This document gives an introduction to Krita for users who have been using Photoshop. The intention is to make you productive in Krita as fast as possible and ease the conversion of old habits into new ones.
This introduction is written with Krita version 2.9 and Photoshop CS2 and CS3 in mind. But even though things may change in the future, the basics will most likely remain the same.
The first thing to remember is that Krita is a 2D paint application while Photoshop (PS) is an image manipulation program. This means that PS has more features than Krita in general, but Krita has the tools that are relevant to digital painting. When you get used to Krita, you will find that Krita has some features that are not part of PS.

Krita Basics

This chapter covers how you use Krita in the basic operations compared to PS.

View and Display

탐색

In Krita you can navigate your document using all these methods:

	‘Mouse wheel’: [image: mousescroll] down and up for zoom, and press [image: mousemiddle] down to pan your document.

	‘Keyboard’: with the + and - keys on your numpad keyboard.

	As in Photoshop, Painter, Manga Studio: use the Ctrl + Space shortcut to zoom, and the Space key to pan.

참고

If you add use the Alt key and so do a Ctrl + Alt + Space shortcut you’ll have a discrete zoom.

회전

Rotate the canvas with the Shift + Space, or Ctrl + [and Ctrl +] shortcuts or with the 4 or 6 keys. Reset the rotation with the 5 key.

Mirror

Press the M key to see your drawing or painting mirrored in the viewport.

Move and Transform

Moving and Transformation of contents is done using tools in Krita. You can then find them in the toolbar.
If you are familiar with the way to move layers in PS by holding down the Ctrl key, you can do the same in Krita by pressing the T key for the move tool (think ‘T’ranslate) or the Ctrl + T shortcut for transform tool.

Press the B key to go back to the brush tool when the transformation or translation is done.
To find how to make advanced deformations using the Transform tool, do not right-click on the on-canvas widget: all the option are in the Tool Options docker.

Changes can be applied with the Enter key for the Transform tool.

참고

Move tool changes are auto-applied.

선택

Like in PS, you can use the Alt or Shift keys during a selection to remove or add selection to the active selection. In addition, you can hold Alt + Shift to intersect. Krita also offers sub tools for this, and you can select them in the Tool Options if a select tool is active. These sub tools are represented as icons.

참고

You cannot press the Ctrl key to move the content of the selection (you have to press the T key or select the Move Tool).

Some other tips:

	If you want to convert a layer to a selection (to select the visible pixels), right-click on the layer docker, and choose Select Opaque.

	If you use a polygonal selection tool, or a selection which needs to be ‘closed’, you will be able to do it or by doing double-click, or by using a Shift + [image: mouseleft] shortcut.

You can scale selection. To do this, choose Select ‣ Scale.

참고

Also, in the Select menu there are more classical options to grow, shrink, feather, border, etc.

If you enable Show Global Selection Mask (Select menu) you can scale/rotate/transform/move or paint on selection like on regular grayscale layer.

	Ctrl + H: Show / Hide selection (same shortcut)

	Ctrl + A: Select All

	Ctrl + Shift + A: deselect All (and not the Ctrl + D shortcut as in PS)

Note for Gimp user: Krita auto-expands and auto defloats new layers created from a selection after pressing the Ctrl + C and Ctrl + V shortcuts, so you do not have to worry about not being able to paint outside the pasted element.

참고

This doesn’t work as intended right now. Intersect is a selection mode which uses the T key as the shortcut. However, the T key is also used to switch to the Move tool, so this shortcut is not functional right now. You have to use the button on the Tool Options.

Layer Handling

The most common default shortcuts are very similar in PS and Krita:

	Ctrl + J: duplicate

	Ctrl + E: merge down

	Ctrl + Shift + E: flattens all (not the Ctrl + Shift + M shortcut as in PS)

	Ins: insert a new paint layer

	Ctrl + G: create new layer group and move selected layers to this group

Groups and Blending Mode (Composite Mode):

The group blending mode in Krita has priority over child layers and overrides it. This can be surprising for Photoshop users. On Photoshop you can use groups to just clean your layer stack and keep blending mode of your layer compositing through all the stack. In Krita the compositing will happen at first level inside the group, then taking into account the blending mode of the group itself.
Both systems have pros and cons. Krita’s way is more predictable according to some artists, compositing-wise. The PS way leads to a cleaner and better ordered layer stack visually wise.

Multi Layer Transform or Move

You can select multiple layers on the stack by holding down the Shift key as in PS, and if you move the layer inside a group you can move or transform the whole group – including doing selection on the group and cut all the sub layers inside on the fly. You can not apply filters to group to affect multiple layers.

클리핑 마스크

Krita has no clipping mask, but there is a simpler workaround involving layer groups and Inherit alpha (see the alpha icon). Place a layer with the shape you want to clip the other with at the bottom of a group and layers above with the Inherit alpha option. This will create the same effect as the “clipping mask” PS feature, and also keeps the layer stack cleaner than the clipping mask implementation does.

This process of arranging groups for inherit alpha can be done automatically by Ctrl + Shift + G shortcut. It creates a group with base layer and a layer above it with the Inherit alpha option checked by default.

Pass-through mode

This is available in Krita, but not implemented as a blending mode. Rather, it is an option next to ‘inherit alpha’ on group layers.

Smart Layers

Instead of having smart layers that you can do non-destructive transforms on, Krita has the following set of functionality:

	File Layers
	These are layers which point to an outside file, and will get automatically updated if the outside file changes. Starting from version 4.0 users can convert an existing layer into a file layer by [image: mouseright] clicking on it and doing Convert ‣ to File Layer or by going to Layer ‣ Convert ‣ to File Layer. It will then open a save prompt for the file location and when done will save the file and replace the layer with a file layer pointing at that file.

	Clone Layers
	These are layers that are an ‘instance’ of the layer you had selected when creating them. They get updated automatically when the original layer updates.

	Transform Masks
	These can be used to non-destructive transform all layer types, including the file and clone layers.

	Filter Masks
	Like adjustment layers, these can apply filters non-destructively to all layer types, including file and clone layers.

레이어 스타일

You can apply Photoshop layer-styles in Krita by right-clicking any given layer type and selecting ‘layer style’ from the context menu. Krita can open and save ASL files, but not all layer style functionality is there yet.

기타

Layers and groups can be exported. See the Layer top menu for this and many other options.

참고

Krita has at least 5 times more blending modes than PS. They are sorted by categories in the drop-down menu. You can use the checkbox to add your most used to the Favorite categories.

Paint tools

This is Krita’s strong point. There are many paint tools, and they have a lot of options.

도구

In Krita, there is a totally different paradigm for defining what ‘tools’ are compared to PS. Unlike in PS, you will not find the brush, eraser, clone, blur tool, etc. Instead, you will find a way to trace your strokes on the canvas: freehand, line, rectangle, circle, multiple brush, etc. When you have selected the ‘way to trace’ you can choose the way to paint: erasing / cloning / blurring, etc are all part of way to paint managed by the brush-engines options. These brush engine options are saved into so-called presets, which you can find on Brush presets. You can fine tune, and build your own presets using the Edit Brush Settings icon on the top toolbar.

지우기

In Krita, the eraser is not its own tool; it is a Blending mode (or Composite mode). You can toggle between erase mode and paint mode by pressing the E key, individually for each of your brushes.

Useful shortcuts

	Shift: Grow or Shrink the brush size (or the [and] keys).

	/: Switch last preset selected and current (ex: a pencil preset, and an eraser preset).

	K and L: Increment Darker and Lighter value of the active color.

	I and O: Increment opacity plus or minus.

	D: Reset color to black/foreground and white/background.

	X: Switch background and foreground colors.

	Shift + I / Shift + N / Shift + M: A set of default keyboard shortcuts for accessing the on-canvas color selector.

참고

Some people regard these shortcuts as somewhat unfortunate. The reason is that they are meant to be used during painting and the left Shift key is at the opposite end of the keyboard from the I, M and N keys. So for a right-handed painter, this is very difficult to do while using the stylus with a right hand. Note that you can reassign any shortcut by using the shortcut configuration in Settings ‣ Configure Krita… ‣ Shortcuts.

Stabilization / Path Smoothing

Using the freehand ‘paint with brush’ tool that you can find on the Tool Options, more settings for smoothing the path and stabilization of your brush strokes are available.

Global pressure curve

If you find the feeling of Krita too hard or too soft regarding the pressure when you paint, you can set a softer or harder curve here: Settings ‣ Configure Krita… ‣ Tablet settings

Adjustment

Like in PS, you can use the classic filters to adjust many things while painting:

	Ctrl + L: Levels

	Ctrl + U: HSV adjustment

	Ctrl + I: Invert

Dodge / Burn / Blur Tools

Unlike Photoshop, where these are separate tools, in Krita, they are available via the Filter Brush Engine, which allows you to apply the majority of Krita’s filters in brush form.

테마

If you don’t like the dark default theme of Krita go to: Settings ‣ Themes, and choose a brighter or darker theme.
If you don’t like the color outside your viewport go to: Settings ‣ Configure Krita… ‣ Display, and change the Canvas border color.

What Krita Has Over Photoshop

As mentioned in the introduction, Krita is a specialized paint application. Thus, it has specialized tools for painting. Similar tools are not found in more generalized image manipulation applications such as PS. Here is a short list of the most important ones.

브러시 엔진

Krita has a lot of different so-called brush engines. These brush engines define various methods on how the pixels end up on your canvas. Brush engines with names like Grid, Particles, Sketch and others will bring you new experiences on how the brushes work and a new landscape of possible results. You can start customizing brushes by using the brush-settings editor, which is accessible via the toolbar, but it’s much easier to just press the F5 key.

Tags for brush presets

This is a very useful way to configure brush presets. Each brush can have any amount of tags and be in any group. You can make tag for blending brushes, for texture brushes, for effect brushes, favorites etc.

Settings curve

You can set setting to pressure (speed/distance/tilt/random/etc.) relation for each brush setting.

[image: ../../_images/Settings-curves.png]

The Pop-up Palette

[image: ../../_images/Krita-popuppalette.png]
Easily to be found on [image: mouseright], the pop-up palette allows you to quickly access brushes, color history and a color selector within arm’s reach. The brushes are determined by tag, and pressing the lower-right configure button calls a drop-down to change tags. This allows you to tag brushes in the preset docker by workflow, and quickly access the right brushes for the workflow you need for your image.

변환

The Krita transformation tool can perform transformations on a group and affect child layers. There are several modes, like free, perspective, warp, the powerful cage and even liquify.
Furthermore, you can use transformation masks to apply transforms non-destructively to any layer type, raster, vector group, you name it.

[image: ../../_images/Krita-transform-mask.png]

Transform masks allow non-destructive transforms

Incremental Save

You can save your artwork with the pattern : myartworksname_001.kra, myartworksname_002.kra, myartworksname_003.kra etc., by pressing a single key on the keyboard. Krita will increment the final number if the pattern “_XXX” is recognized at the end of the file’s name.

[image: ../../_images/Krita-incremental-saves.png]
This feature allows you to avoid overwriting your files, and keep track to your older version and work in progress steps.

Filter: Color to alpha

If you want to delete the white of the paper from a scanned artwork, you can use this filter. It takes a color and turns it into pure transparency.

[image: ../../_images/Krita-color-to-alpha.png]

Many Blending Modes

If you like using blending modes, Krita has many of them – over 70! You have plenty of room for experimentation.
A special system of favorite blending modes has been created to let you have fast access to the ones you use the most.

Painting Assistants

Krita has many painting assistants. This is a special type vector shapes with a magnetic influence on your brush strokes. You can use them as rulers, including with shapes other than just straight.

[image: ../../_images/Krita_basic_assistants.png]

Krita’s vanishing point assistants in action

Multibrushes: Symmetry / Parallel / Mirrored / Snowflake

Krita’s Multibrush tool allows you to paint with multiple brushes at the same time. Movements of the brushes other than the main brush is created by mirroring what you paint, or by duplicating it by any number around any axis. They can also be used in parallel mode.

[image: ../../_images/Krita-multibrush.png]

A Wide Variety of Color Selectors

The Advanced Color Selector docker offer you a wide choice of color selectors.

[image: ../../_images/Krita_Color_Selector_Types.png]

View dependent color filters

Using the LUT docker, Krita allows you to have a separate color correction filter per view. While this is certainly useful to people who do color correction in daily life, to the artist this allows for seeing a copy of the image in luminance grayscale, so that they instantly know the values of the image.

[image: ../../_images/Krita-view-dependant-lut-management.png]

Using the LUT docker to change the colors per view

HDR color painting

This same LUT docker is the controller for painting with HDR colors. Using the LUT docker to change the exposure on the view, Krita allows you to paint with HDR colors, and has native OpenEXR support!

[image: ../../_images/Krita-hdr-painting.png]

Painting with HDR colors

What Krita Does Not Have

Again, Krita is a digital paint application and Photoshop is an image manipulation program with some painting features. This means that there are things you can do in PS that you cannot do in Krita. This section gives a short list of these features.

필터

Krita has a pretty impressive pack of filters available, but you will probably miss one or two of the special filters or color adjustment tools you often use in Photoshop. For example, there is no possibility to tweak a specific color in HSV adjustment.

Automatic healing tool

Krita does not have an automatic healing tool. It does, however, have a so-called clone tool which can be used to do a healing correction, although not automatically.

Macro Recording

Macro recording and playback exists in Krita, but it is not working well at this time.

텍스트 도구

The text tool in Krita is less advanced than the similar tool in Photoshop.

Blending Modes While Transforming

When you transform a layer or a selection in Krita, the transformation appears on the top of your layer stack ignoring the layer blending mode.

힌트

Starting from Krita 5.0, the performance setting “Use in-stack preview in Transform Tool” allows for the layer blending mode to be previewed during transformation.

Photomerge

You may have used this tool in Photoshop to seamlessly and automatically stitch together a drawing that was scanned in segments. Krita does not have an equivalent, though an alternative is to use Hugin, which is cross-platform and free, just like Krita.

Hugin Website [http://hugin.sourceforge.net]

Tutorial for Using Scans in Hugin [https://www.davidrevoy.com/article314/autostiching-scan-with-hugin]

기타

Also, you cannot ‘Export for web’, ‘Image Ready’ for GIF frame or slicing web image, etc.

Conclusion

Using these tips you will probably be up to speed with Krita in a short time. If you find other things worth mentioning in this document we, the authors, would be interested in hearing about them.
Krita develops fast, so we believe that the list of things possible in Photoshop but not in Krita will become shorter in time. We will maintain this document as this happens.

Introduction to Krita coming from Paint Tool SAI

How do you do that in Krita?

This section goes over the functionalities that Krita and Paint Tool SAI share, but shows how they slightly differ.

Canvas navigation

Krita, just like SAI, allows you to flip, rotate and duplicate the view. Unlike SAI, these are tied to keyboard keys.

	Mirror
	This is tied to M key to flip.

	회전
	There’s a couple of possibilities here: either the 4 and 6 keys, or the Ctrl + [and Ctrl +] shortcuts for basic 15 degrees rotation left and right. But you can also have more sophisticated rotation with the Shift + Space + drag or Shift + [image: mousemiddle] + drag shortcuts. To reset the rotation, press the 5 key.

	확대/축소
	You can use the + and - keys to zoom out and in, or use the Ctrl + [image: mousemiddle] shortcut. Use the 1, 2 or 3 keys to reset the zoom, fit the zoom to page or fit the zoom to page width.

You can use the Overview docker in Settings ‣ Dockers to quickly navigate over your image.

You can also put these commands on the toolbar, so it’ll feel a little like SAI. Go to Settings ‣ Configure Toolbars… menu item. There are two toolbars, but we’ll add to the Main Toolbar.

Then, you can type in something in the left column to search for it. So, for example, ‘undo’. Then select the action ‘undo freehand stroke’ and drag it to the right. Select the action to the right, and click Change text. There, toggle Hide text when toolbar shows action alongside icon to prevent the action from showing the text. Then press OK. When done right, the Undo should now be sandwiched between the save and the gradient icon.

You can do the same for Redo, Deselect, Invert Selection, Zoom out, Zoom in, Reset zoom, Rotate left, Rotate right, Mirror view and perhaps Smoothing: basic and Smoothing: stabilizer to get nearly all the functionality of SAI’s top bar in Krita’s top bar. (Though, on smaller screens this will cause all the things in the Brushes and Stuff Toolbar to hide inside a drop-down to the right, so you need to experiment a little).

Hide Selection, Reset Rotation are currently not available via the Toolbar configuration, you’ll need to use the shortcuts Ctrl + H and 5 to toggle these.

참고

Krita 3.0 currently doesn’t allow changing the text in the toolbar, we’re working on it.

Right click color sampler

You can actually set this in Settings ‣ Configure Krita… ‣ Canvas input settings ‣ Alternate invocation. Just double-click the entry that says Ctrl + [image: mouseleft] shortcut before Sample Foreground Color from Merged Image to get a window to set it to [image: mouseright].

참고

Krita 3.0 actually has a Paint Tool SAI-compatible input sheet shipped by default. Combine these with the shortcut sheet for Paint Tool SAI to get most of the functionality on familiar hotkeys.

안정화 도구

This is in the tool options docker of the freehand brush. Use Basic Smoothing for more advanced tablets, and Stabilizer is much like Paint Tool SAI’s. Just turn off Delay so that the dead-zone disappears.

Transparency

So one of the things that throw a lot of Paint Tool SAI users off is that Krita uses checkers to display transparency, which is actually not that uncommon. Still, if you want to have the canvas background to be white, this is possible. Just choose Background: As Canvas Color in the new image dialogue and the image background will be white. You can turn it back to transparent via Image ‣ Image Background Color and Transparency… menu item. If you export a PNG or JPG, make sure to uncheck Store alpha channel (transparency) and to make the background color white (it’s black by default).

[image: ../../_images/Krita-color-to-alpha.png]
Like SAI, you can quickly turn a black and white image to black and transparent with the Filter: Color to Alpha dialog under Filters ‣ Colors ‣ Color to Alpha… menu item.

브러시 설정

Another, somewhat amusing misconception is that Krita’s brush engine is not very complex. After all, you can only change the Size, Flow and Opacity from the top bar.

This is not quite true. It’s rather that we don’t have our brush settings in a docker but a drop-down on the toolbar. The easiest way to access this is with the F5 key. As you can see, it’s actually quite complex. We have more than a dozen brush engines, which are a type of brush you can make. The ones you are used to from Paint Tool SAI are the Pixel Brush (ink), The Color Smudge Brush (brush) and the filter brush (dodge, burn).

A simple inking brush recipe for example is to take a pixel brush, uncheck the Enable Pen Settings on opacity and flow, and uncheck everything but size from the option list. Then, go into brush-tip, pick Auto Brush from the tabs, and set the size to 25 (right-click a blue bar if you want to input numbers), turn on anti-aliasing under the brush icon, and set fade to 0.9. Then, as a final touch, set spacing to ‘auto’ and the spacing number to 0.8.

You can configure the brushes in a lot of detail, and share the packs with others. Importing of packs and brushes can be done via the Settings ‣ Manage Resources…, where you can import .bundle or .kpp files.

지우기

Erasing is a blending mode in Krita, much like the transparency mode of Paint Tool SAI. It’s activated with the E key, or you can select it from the Blending Mode drop-down box.

혼합 모드

Krita has a lot of Blending modes, and thankfully all of Paint Tool SAI’s are amongst them except binary. To manage the blending modes, each of them has a little check-box that you can tick to add them to the favorites.

Multiple, Screen, Overlay and Normal are amongst the favorites.
Krita’s Luminosity is actually slightly different from Paint Tool SAI’s, and it replaces the relative brightness of color with the relative brightness of the color of the layer.

SAI’s Luminosity mode (called Shine in SAI2) is the same as Krita’s Luminosity/Shine (SAI) mode, which is new in Krita 4.2.4.
The SAI’s Shade mode is the same as Color Burn and Hard Mix is the same as the Luminosity and Shade modes.

레이어

	Lock Alpha
	This is the checker box icon next to every layer.

	Clipping group
	For Clipping masks in Krita you’ll need to put all your images in a single layer, and then press the ‘a’ icon, or press the Ctrl + Shift + G shortcut.

	Ink layer
	This is a vector layer in Krita, and also holds the text.

	마스크
	These grayscale layers that allow you to affect the transparency are called transparency masks in Krita, and like Paint Tool SAI, they can be applied to groups as well as layers. If you have a selection and make a transparency mask, it will use the selection as a base.

	Clearing a layer
	This is under Edit ‣ Clear, but you can also just press the Del key.

Mixing between two colors

If you liked this docker in Paint Tool SAI, Krita’s Digital Color Selector docker will be able to help you. Dragging the sliders will change how much of a color is mixed in.

What do you get extra when using Krita?

More brush customization

You already met the brush settings editor. Sketch brushes, grid brushes, deform brushes, clone brushes, brushes that are textures, brushes that respond to tilt, rotation, speed, brushes that draw hatches and brushes that deform the colors. Krita’s variety is quite big.

More color selectors

You can have HSV sliders, RGB sliders, triangle in a hue ring. But you can also have HSI, HSL or HSY’ sliders, CMYK sliders, palettes, round selectors, square selectors, tiny selectors, big selectors, color history and shade selectors. Just go into Settings ‣ Configure Krita… ‣ Color Selector Settings ‣ Color Selector tab, select an option in the Docker: drop-down box, to change the shape and type of your main color selector.

[image: ../../_images/Krita_Color_Selector_Types.png]
You can call the color history with the H key, common colors with the U key and the two shade selectors with the Shift + N and Shift + M shortcuts. The big selector can be called with the Shift + I shortcut on canvas.

Geometric Tools

Circles, rectangles, paths, Krita allows you to draw these easily.

Multibrush, Mirror Symmetry and Wrap Around

These tools allow you to quickly paint a mirrored image, mandala or tiled texture in no time. Useful for backgrounds and abstract vignettes.

[image: ../../_images/Krita-multibrush.png]

도우미

The painting assistants can help you to set up a perspective, or a concentric circle and snap to them with the brush.

[image: Krita의 소실점 도우미 사용 예시입니다.]

Krita의 소실점 도우미 사용 예시입니다.

Locking the Layer

Lock the layer with the padlock, so you don’t draw on it.

Quick Layer select

If you hold the R key and press a spot on your drawing, Krita will select the layer underneath the cursor. Really useful when dealing with many layers.

색 관리

This allows you to prepare your work for print, or to do tricks with the LUT docker, so you can diagnose your image better. For example, using the LUT docker to turn the colors grayscale in a separate view, so you can see the values instantly.

[image: ../../_images/Krita-view-dependant-lut-management.png]

Advanced Transform Tools

Not just rotate and scale, but also cage, wrap, liquify and non-destructive transforms with the transform tool and masks.

[image: ../../_images/Krita_transforms_liquefy.png]

More Filters and non-destructive filter layers and masks

With filters like color balance and curves you can make easy shadow layers. In fact, with the filter layers and layer masks you can make them apply on the fly as you draw underneath.

[image: ../../_images/Krita_ghostlady_3.png]

Pop-up palette

This is the little circular thing that is by default on the right click. You can organize your brushes in tags, and use those tags to fill up the pop-up palette. It also keeps a little color selector and color history, so you can switch brushes on the fly.

[image: ../../_images/Krita-popuppalette.png]

What does Krita lack compared to Paint Tool SAI?

	Variable width vector lines

	The selection source option for layers

	Dynamic hard-edges for strokes (the fringe effect)

	No mix-docker

	No Preset-tied stabilizer

	No per-preset hotkeys

Conclusion

I hope this introduction got you a little more excited to use Krita, if not feel a little more at home.

Drawing Tablets

This page is about drawing tablets, what they are, how they work, and
where things can go wrong.

What are Tablets?

Drawing with a mouse can be unintuitive and difficult compared to pencil
and paper. Even worse, extended mouse use can result in carpal tunnel
syndrome. That’s why most people who draw digitally use a specialized
piece of hardware known as a drawing tablet.

[image: ../_images/Krita_tablet_types.png]
A drawing tablet is a piece of hardware that you can plug into your
machine, much like a keyboard or mouse. It usually looks like a plastic
pad, with a stylus. Another popular format is a computer monitor with
stylus used to draw directly on the screen. These are better to use than
a mouse because it’s more natural to draw with a stylus and generally
better for your wrists.

With a properly installed tablet stylus, Krita can use information like
pressure sensitivity, allowing you to make strokes that get bigger or
smaller depending on the pressure you put on them, to create richer and
more interesting strokes.

참고

Sometimes, people confuse finger-touch styluses with a proper tablet. You can tell the difference because a drawing tablet stylus usually has a pointy nib, while a stylus made for finger-touch has a big rubbery round nib, like a finger. These tablets may not give good results and a pressure-sensitive tablet is recommended.

[image: ../_images/Krita_tablet_stylus.png]

Supported Tablets

Supported tablets are owned by Krita developers themselves, so they can reliably diagnose and fix bugs. We maintain a list of those here.

If you’re looking for information about iPad or Android tablets, look here.

Drivers and Pressure Sensitivity

So you have bought a tablet, a real drawing tablet. And you want to get it
to work with Krita! So you plug in the USB cable, start up Krita and…
It doesn’t work! Or well, you can make strokes, but that pressure
sensitivity you heard so much about doesn’t seem to work.

This is because you need to install a program called a ‘driver’. Usually
you can find the driver on a CD that was delivered alongside your
tablet, or on the website of the manufacturer. Go install it, and while
you wait, we’ll go into the details of what it is!

Running on your computer is a basic system doing all the tricky bits of
running a computer for you. This is the operating system, or OS. Most
people use an operating system called Windows, but people on an Apple
device have an operating system called macOS, and some people, including
many of the developers use a system called Linux.

The base principle of all of these systems is the same though. You would
like to run programs like Krita, called software, on your computer, and
you want Krita to be able to communicate with the hardware, like your
drawing tablet. But to have those two communicate can be really
difficult – so the operating system, works as a glue between the two.

Whenever you start Krita, Krita will first make connections with the
operating system, so it can ask it for a lot of these things: It would
like to display things, and use the memory, and so on. Most importantly,
it would like to get information from the tablet!

[image: ../_images/Krita_tablet_drivermissing.png]
But it can’t! Turns out your operating system doesn’t know much about
tablets. That’s what drivers are for. Installing a driver gives the
operating system enough information, so the OS can provide Krita with the
right information about the tablet. The hardware manufacturer’s job is
to write a proper driver for each operating system.

경고

Because drivers modify the operating system a little, you will always need to restart your computer when installing or uninstalling a driver, so don’t forget to do this! Conversely, because Krita isn’t a driver, you don’t need to even uninstall it to reset the configuration, just rename or delete the configuration file.

Where it can go wrong: Windows

Krita automatically connects to your tablet if the drivers are
installed. When things go wrong, usually the problem isn’t with Krita.

Surface Pro tablets need two drivers

Certain tablets using n-trig, like the Surface Pro, have two types of
drivers. One is native, n-trig and the other one is called WinTab.
Since 3.3, Krita can use Windows Ink style drivers, just go to
Settings ‣ Configure Krita… ‣ Tablet Settings and
toggle the Windows 8+ Pointer Input (Windows Ink) there. You
don’t need to install the WinTab drivers anymore for n-trig based pens.

Windows 10 updates

Sometimes a Windows 10 update can mess up tablet drivers. In that case,
reinstalling the drivers should work.

Wacom Tablets

There are three known problems with Wacom tablets and Windows.

The first is that if you have customized the driver settings, then sometimes,
often after a driver update, but that is not necessary, the driver breaks.
Resetting the driver to the default settings and then loading your settings
from a backup will solve this problem.

The second is that for some reason it might be necessary to change the display
priority order. You might have to make your Cintiq screen your primary screen,
or, on the other hand, make it the secondary screen. Double check in the Wacom
settings utility that the tablet in the Cintiq is associated with the Cintiq
screen.

The third is that if you have a display tablet like a Cintiq and a Wacom ExpressKeys remote, and you have disabled Windows Ink in the calibration page of the stylus settings dialog, so you have the full set of WinTab features, the Cintiq needs to be the first item in Wacom’s desktop application list. Otherwise, you will have an offset between stylus and mouse that will get worse the more displays there are to the left of the Cintiq display.

Broken Drivers

Tablet drivers need to be made by the manufacturer. Sometimes, with
really cheap tablets, the hardware is fine, but the driver is badly
written, which means that the driver just doesn’t work well. We cannot
do anything about this, sadly. You will have to send a complaint to the
manufacturer for this, or buy a better tablet with better quality
drivers.

Conflicting Drivers

On Windows, you can only have a single WinTab-style driver installed at
a time. So be sure to uninstall the previous driver before installing
the one that comes with the tablet you want to use. Other operating
systems are a bit better about this, but even Linux, where the drivers
are often preinstalled, can’t run two tablets with different drivers at
once.

Interfering software

Sometimes, there’s software that tries to make a security layer between
Krita and the operating system. Sandboxie is an example of this.
However, Krita cannot always connect to certain parts of the operating
system while sandboxed, so it will often break in programs like
Sandboxie. Similarly, certain mouse software, like Razer utilities can
also affect whether Krita can talk to the operating system, converting
tablet information to mouse information. This type of software should be
configured to leave Krita alone, or be uninstalled.

The following software has been reported to interfere with tablet events
to Krita:

	Sandboxie

	Razer mouse utilities

	AMD Catalyst TM “game mode” (this broke the right click for someone)

Flicks (Wait circle showing up and then calling the popup palette)

If you have a situation where trying to draw keeps bringing up the
pop-up palette on Windows, then the problem might be flicks. These are a
type of gesture, a bit of Windows functionality that allows you to make
a motion to serve as a keyboard shortcut. Windows automatically turns
these on when you install tablet drivers, because the people who made
this part of Windows forgot that people also draw with computers. So you
will need to turn it off in the Windows flicks configuration.

Wacom Double Click Sensitivity (Straight starts of lines)

If you experience an issue where the start of the stroke is straight,
and have a Wacom tablet, it could be caused by the Wacom driver
double-click detection.

To fix this, go to the Wacom settings utility and lower the double click
sensitivity.

Loading and Saving Brushes

In the real world, when painting or drawing, you don’t just use one tool. You use pencils, erasers, paintbrushes, different types of paint, inks, crayons, etc. All these have different ways of making marks.

In a digital program like Krita you have something similar. We call this a brush engine. And much like how cars have different engines that give different feels when driving, or how pencils make distinctly different marks than roller ball pens, different brush engines have totally different feels.

The brush engines have a lot of different settings as well. So, you can save those settings into presets.

Unlike Photoshop, Krita makes a difference between brush-tips and brush-presets. Tips are only a stamp of sorts, while the preset uses a tip and many other settings to create the full brush.

The Brush settings drop-down

To start, the Brush Settings Editor panel can be accessed in the toolbar, between the Choose brush preset button on the right and the Fill Patterns button on the left. Alternately, you can use the F5 key to open it.

When you open Brush Settings Editor panel you will see something like this:

Tour of the brush settings drop-down

[image: ../_images/Krita_5_0_Brush_Settings_Layout.svg]The brush settings drop-down is divided into six areas,

Section A – General Information

This contains the Preset Icon, Live Brush Preview, the Preset Name, the Engine name, and several buttons for saving, renaming, and reloading.

Krita’s brush settings are stored into the metadata of a 200×200 PNG (the KPP file), where the image in the PNG file becomes the preset icon. This icon is used everywhere in Krita, and is useful for differentiating brushes in ways that the live preview cannot.

The live preview shows a stroke of the current brush as a little s-curve wiggle, with the pressure being non-existent on the left, and increasing to full pressure as it goes to the right. It can thus show the effect of the Pressure, Drawing Angle, Distance, Fade and Fuzzy Dab sensors, but none of the others. For some brush engines it cannot show anything. For the color smudge, filter brush and clone tool, it shows an alternating line pattern because these brush engines use the pixels already on canvas to change their effect.

After the preset name, there’s a button for renaming the brush. This will save the brush as a new brush and deactivate the previous brush.

엔진

The engine of a brush is the underlying programming that generates the stroke from a brush. What that means is that different brush engines have different options and different results. You can see this as the difference between using crayons, pencils and inks, but because computers are math devices, most of our brush engines produce different things in a more mathematical way.

For most artists the mathematical nature doesn’t matter as much as the different textures and marks each brush engine, and each brush engine has its own distinct flavor and use, and can be further customized by modifying the options.

다시 불러오는 중

If you change a preset, an icon will appear behind the engine name. This is the Reload the brush preset button. You can use it to revert to the original brush settings.

Saving a preset

On the right, there’s Save New Brush Preset… and Overwrite Brush buttons.

	새 브러시 사전 설정 저장…
	Will take the current preset and all its changes and save it as a new preset. If no change was made, you will be making a copy of the current preset.

	브러시 덮어쓰기
	This will only enable if there are any changes. Pressing this will override the current preset with the new settings, keeping the name and the icon intact. It will always make a timestamped back up in the resources folder.

Save new preset will call up the following window, with a mini scratch pad, and all sorts of options to change the preset icon:

[image: ../_images/Krita_4_0_Save_New_Brush_Preset_Dialog.png]
The image on the left is a mini scratch pad, you can draw on it with the current brush, allowing small modifications on the fly.

	브러시 이름:
	The Name of your brush. This is also used for the KPP file. If there’s already a brush with that name, it will effectively overwrite it.

	Load Existing Thumbnail
	This will load the existing thumbnail inside the preset.

	Load Scratch Pad Thumbnail
	This will load the dashed area from the big scratch pad (Section C) into the thumbnail area.

	이미지 불러오기
	With this you can choose an image from disk to load as a thumbnail.

	아이콘 라이브러리에서 불러오기
	This opens up the icon library.

	Clear Thumbnail
	This will make the mini scratch pad white.

The Icon Library

To make making presets icons faster, Krita got an icon library.

[image: ../_images/Krita_4_0_Preset_Icon_Library_Dialog.png]
It allows you to select tool icons, and an optional small emblem. When you press OK it will load the resulting combination into the mini scratch pad, and you can draw in the stroke.

If you go to your resources folder, there’s a folder there called preset_icons, and in this folder there are tool_icons and emblem_icons. You can add semi-transparent PNGs here and Krita will load those into the icon library as well, so you can customize your icons even more!

At the top right of the icon library, there are three sliders. They allow you to adjust the tool icon. The top two are the same Hue and Saturation as in HSL adjustment, and the lowest slider is a super simple levels filter. This is done this way because the levels filter allows maintaining the darkest shadows and brightest highlights on a tool icon,
making it much better for quick adjustments.

If you’re done with everything, you can press Save in the Save New Brush Preset dialog and Krita will save the new brush.

Section B – The Preset Chooser

The preset chooser is much the same as the preset docker and the preset drop-down on the F6 key. It’s unique in that it allows you to filter by engine and this is also where you can create brushes for an engine from scratch.

It is by default collapsed, so you will need to press the arrow at the top left of the brush engine to show it.

The top drop-down is set to “all” by default, which means it shows all engines. It then shows a tag section where you can select the tags, the preset list and the search bar.

Underneath that there’s a plus icon, which when pressed gives you the full list of Krita’s engines. Selecting an engine from the list will show the brushes for that engine.

The trashcan icon does the same as it does in the preset docker: delete, or rather, deactivate a preset, so it won’t show up in the list.

Section C – The Scratch pad

When you tweak your brushes, you want to be able to check what each setting does. That’s why, to the right of the settings drop-down, there is a scratch pad.

It is by default collapsed, so you will have to press the arrow at the top right of the brush settings to show it.

When saving a new preset, you can choose to get the icon from the scratch pad, this will load the dash area into the mini scratch pad of the Save New Brush Preset dialog.

The scratch pad has five buttons underneath it. These are in order for:

	영역을 브러시 사전 설정 아이콘으로 채우기

	영역을 현재 이미지로 채우기

	Fill area with gradient (useful for smudge brushes)

	영역을 배경색으로 채우기

	영역을 흰색으로 초기화

Section D – The Options List

The options, as stated above, are different per brush engine. These represent the different parameters, toggles and knobs that you can turn to make a brush preset unique. For a couple of options, the main things to change are sliders and checkboxes, but for a lot of them, they use curves instead.

Some options can be toggled, as noted by the little checkboxes next to them, but others, like flow and opacity are so fundamental to how the brush works, that they are always on.

The little padlock icon next to the options is for locking the brush. This has its own page.

Section E – Option Configuration Widget

Where section D is the list of options, section E is the widget where you can change things.

Using sensor curves

One of the big important things that make art unique to the artist who created it is the style of the strokes. Strokes are different because they differ in speed, rotation, direction, and the amount of pressure put onto the stylus. Because these are so important, we would want to customize how these values are understood in detail. The best way to do this is to use curves.

Curves show up with the size widget for example. With an inking brush, we want to have size mapped to pressure. Just toggling the size option in the option list will do that.

However, different people have different wrists and thus will press differently on their stylus. Someone who presses softly tends to find it easy to make thin strokes, but very difficult to make thick strokes. Conversely, someone who presses hard on their stylus naturally will have a hard time making thin strokes, but easily makes thick ones.

Such a situation can be improved by using the curves to map pressure to output thinner lines or thicker ones.

The brush settings curves even have quick curve buttons for these at the top. Someone who has a hard time making small strokes should try the second to last concave button, while someone who has a hard time making thick strokes should try the third button, the S shape.

Underneath the curve widget there are two more options:

	곡선을 모든 설정에 공유
	This is for the list of sensors. Toggling this will make all the sensors use the same curve. Unchecked, all checked sensors will have separate curves.

	곡선 계산 모드:
	This indicates how the multiple values of the sensor curves are used. The curves always go from 0 to 1.0, so if one curve outputs 0.5 and the other 0.7, then…

	Multiply
	Will multiply the two values, 0.5*0.7 = 0.35.

	Addition
	Will add the two to a maximum of 1.0, so 0.5+0.7 = 1.2, which is then capped at 1.0.

	최대
	Will compare the two and pick the largest. So in the case of 0.5 and 0.7, the result is 0.7.

	최소
	Will compare the two and pick the smallest. So in the case of 0.5 and 0.7, the result is 0.5.

	Difference
	Will subtract the smallest value from the largest, so 0.7-0.5 = 0.2.

It’s maybe better to see with the following example:

[image: ../_images/Krita_4_0_brush_curve_calculation_mode.png]
The first two are regular, the rest with different multiplication types.

	Is a brush with size set to the distance sensor.

	Is a brush with the size set to the fade sensor.

	The size is calculated from the fade and distance sensors multiplied.

	The size is calculated from the fade and distance sensors added to
each other. Notice how thick it is.

	The size takes the maximum value from the values of the fade and
distance sensors.

	The size takes the minimum value from the values of the fade and
distance sensors.

	The size is calculated by having the largest of the values subtracted
with the smallest of the values.

Section F – Miscellaneous options

	지우개 스위치 크기
	This switches the brush to a separately stored size when using the E key.

	지우개 스위치 불투명도
	Same as above, but then with Eraser opacity.

	Temporarily save tweaks to preset
	This enables dirty presets. Dirty presets store the tweaks you make as long as this session of Krita is active. After that, they revert to default. Dirtied presets can be recognized by the icon in the top-left of the preset.

[image: ../_images/Krita_4_0_dirty_preset_icon.png]

The icon encircled in red in the top left of the third, fourth and fifth presets in first row indicate it is “Dirty”, meaning there are tweaks made to the preset.

	Instant preview
	This allows you to toggle instant preview on the brush. The Instant Preview has a super-secret feature: when you press the instant preview label, and then right click it, it will show a threshold slider. This slider determines at what brush size instant preview is activated for the brush. This is useful because small brushes can be slower with instant preview, so the threshold ensures it only activates when necessary.

The On-canvas brush settings

There is a On-Canvas Brush Editor. If you open up the pop-up palette, there should be an icon on the bottom-right. Press that to show the on-canvas brush settings. You will see several sliders here, to quickly make small changes.

At the top it shows the currently active preset. Next to that is a settings button, click that to get a list of settings that can be shown and organized for the given brush engine. You can use the up and down arrows to order their position, and then left and right arrows to add or remove from the list. You can also drag and drop.

Making a Brush Preset

Now, let’s make a simple brush to test the waters with:

Getting a default for the brush engine.

First, open the settings with the F5 key.

Then, press the arrow on the upper left to open the preset chooser. There, press the “+” icon to get a list of engines. For this brush we’re going to make a pixel brush.

Example: Making an inking brush

	Draw on the scratch pad to see what the current brush looks like. If done correctly, you should have a 5px wide brush that has pressure set to opacity.

	Let us turn off the opacity first. Click on the opacity option in the right-hand list. The settings should now be changed to a big curve. This is the sensor curve.

	Uncheck the Enable Pen Settings checkbox.

	Test on the scratch pad… there still seems to be something affecting opacity. This is due to the flow option.

	Select the Flow option from the list on the right hand. Flow is like Opacity, except that Flow is per dab, and opacity is per stroke.

	Uncheck the Enable Pen Settings checkbox here as well. Test again.

	Now you should be getting somewhere towards an inking brush. It is still too small however, and kinda grainy looking. Click Brush Tip in the brush engine options.

	Here, the diameter is the size of the brush-tip. You can touch the slider change the size, or right-click it and type in a value. Set it to 25 and test again. It should be much better.

	Now to make the brush feel a bit softer, turn down the fade parameter to about 0.9. This’ll give the brush mask a softer edge.

	If you test again, you’ll notice the fade doesn’t seem to have much effect. This has to do with the spacing of the dabs: The closer they are together, the harder the line is. By default, this is 0.1, which is a bit low. If you set it to 10 and test, you’ll see what kind of effect spacing has. The Auto checkbox changes the way the spacing is calculated, and Auto Spacing with a value of 0.8 is the best value for inking brushes. Don’t forget that you can use right-click to type in a value.

	Now, when you test, the fade seems to have a normal effect… except on the really small sizes, which look jagged. To get rid of that, check the anti-aliasing check box. If you test again, the lines should be much nicer now.

Saving the new Brush

When you’re satisfied, go to the upper left and select Save New Brush Preset… button.

You will get the save preset dialog. Name the brush something like “My Preset”. Then, select Load from Icon Library to get the icon library. Choose a nice tool icon and press OK.

The icon will be loaded into the mini scratch pad on the left. Now doodle a nice stroke next to it. If you feel you messed up, just go back to the icon library to load a new icon.

Finally, press Save, and your brush should be done.

You can further modify your inking brush by…

	Changing the amount of pressure you need to put on a brush to make it full size.
	To do this, select the size option, and press the pressure sensor from the list next to the curve. The curve should look like a straight line. Now if you want a brush that gets big with little pressure, tick on the curve to make a point, and drag the point to the upper-left. The more the point is to the upper-left, the more extreme the effect. If you want instead a brush that you have to press really hard on to get to full size, drag the dot to the lower-right. Such a brush is useful for fine details. Don’t forget to save the changes to your brush when done.

	Making the fine lines look even softer by using the flow option.
	To do this, select the flow option, and turn back on the Enable Pen Settings check box. Now if you test this, it is indeed a bit softer, but maybe a bit too much. Click on the curve to make a dot, and drag that dot to the top-left, half-way the horizontal of the first square of the grid. Now, if you test, the thin lines are much softer, but the hard your press, the harder the brush becomes.

Sharing Brushes

Okay, so you’ve made a new brush and want to share it. There are several ways to share a brush preset.

The recommended way to share brushes and presets is by using the Resource Bundle system. We have detailed instructions on how to use them on the resource management page.

However, there are various old-fashioned ways of sharing brushes that can be useful when importing and loading very old packs:

Sharing a single preset

There are three types of resources a single preset can take:

	A paintoppreset file: This is the preset proper, with the icon and the curves stored inside.

	A Brush file: This is the brush tip. When using masked brushes, there are two of these.

	A Pattern file: this is when you are using textures.

So when you have a brush that uses unique predefined tips for either brush tip or masked brush, or unique textures you will need to share those resources as well with the other person.

To find those resources, go to Settings ‣ Manage Resources… ‣ Open Resource Folder.

There, the preset file will be inside paintoppresets, the brush tips inside brushes and the texture inside patterns.

Importing a single KPP file.

Now, if you want to use the single preset, you should go to the preset chooser on the F6 key and press the folder icon there. This will give a file dialog. Navigate to the KPP file and open it to import it.

If there are brush tips and patterns coming with the file, do the same with pattern via the pattern docker, and for the brush-tip go to the settings drop-down (F5) and then go to the brush-tip option. There, select predefined brush, and then the import button to call up the file dialog.

You can also use the import button in Settings ‣ Manage Resources….

Sharing via ZIP (old-fashioned)

Sharing via ZIP should be replaced with resource bundles, but older brush packs are stored in ZIP files.

Using a ZIP with the relevant files.

	Go to Settings ‣ Manage Resources… ‣ Open Resource Folder to open the resource folder.

	Then, open up the ZIP file.

	Copy the brushes, paintoppresets and patterns folders from the ZIP file to the resource folder. You should get a prompt to merge the folders, agree to this.

	Restart Krita.

	Enjoy your brushes!

On-Canvas Brush Editor

Krita’s brush editor is, as you may know, on the F5 key. However, sometimes you just want to modify a single parameter quickly. Perhaps even in canvas-only mode. The on canvas brush editor or brush HUD allows you to do this. It’s accessible from the pop-up palette, by ticking the lower-right arrow button.

[image: ../_images/On_canvas_brush_editor.png]
You can change the amount of visible settings and their order by clicking the settings icon next to the brush name.

[image: ../_images/On_canvas_brush_editor_2.png]
On the left are all unused settings, on the right are all used settings. You use the > and < buttons to move a setting between the two columns. The Up and Down buttons allow you to adjust the order of the used settings, for when you think flow is more important than size.

[image: ../_images/On_canvas_brush_editor_3.png]
These set-ups are per brush engine, so different 브러시 엔진 can have different configurations.

Mirror Tools

Draw on one side of a mirror line while the Mirror Tool copies the results to the other side. The Mirror Tools are accessed along the toolbar. You can move the location of the mirror line by grabbing the handle.

[image: ../_images/Mirror-tool.png]
Mirror Tools give a similar result to the 다중 브러시 도구, but unlike the Multibrush which only traces brush strokes like the 자유형 브러시 도구, the Mirror Tools can be used with any other tool that traces strokes, such as the Straight Line Tool and the 베지어 곡선 도구, and even with the Multibrush Tool.

	수평 거울 도구
	Mirror the results along the horizontal axis.

	수직 거울 도구
	Mirror the results along the vertical axis.

There are additional options for each tool. You can access these by the clicking the drop-down arrow located on the right of each tool.

	Hide Mirror X/Y Line (toggle) – Locks the mirror axis and hides the axis line.

	Lock X/Y Line (toggle) – hides the move icon on the axis line.

	Move to Canvas Center X/Y – Moves the axis line to the center of the canvas.

Mirroring along a rotated line

The Mirror Tool can only mirror along a perfectly vertical or horizontal line. To mirror along a line that is at a rotated angle, use the 다중 브러시 도구 and its various parameters, it has more advanced options besides basic symmetry.

Painting with Assistants

The assistant system allows you to have a little help while drawing straight lines or circles.

They can function as a preview shape, or you can snap onto them with the freehand brush tool. In the tool options of free hand brush, you can toggle Snap to Assistants to turn on snapping.

[image: Krita의 소실점 도우미 사용 예시입니다.]

Krita의 소실점 도우미 사용 예시입니다.

The following assistants are available in Krita:

형식

There are several types in Krita. You can select a type of assistant via the tool options docker.

Ellipse

An assistant for drawing ellipses and circles.

This assistant consists of three points: the first two are the axis of the ellipse, and the last one is to determine its width.

	동심원
	The same an ellipse, but allows for making ellipses that are concentric to each other.

If you press the Shift key while holding the first two handles, they will snap
to perfectly horizontal or vertical lines. Press the Shift key while holding the
third handle, and it’ll snap to a perfect circle.

Perspective Ellipse

Alternative assistant for drawing ellipses. It can be used either simply, to draw an ellipse defined by a tetragon which the ellipse is tangential to, or in a perspective as an ellipse representing the perspective transformation of a circle.

[image: ../_images/Assistants_ellipse_in_perspective.png]
The assistant consists of four points, which are the corners for the tetragon defining the ellipse.

The X-like marks show the locations of the vanishing points for the perspective.

There are two sets of lines inside the ellipse: one, solid, are the lines connecting points where the ellipse touches the tetragon. They are the axis of the circle in perspective. The dotted lines represent the current, actual axis of the final ellipse.

Perspective

This ruler allows you to draw and manipulate grids on the canvas that can serve as perspective guides for your painting. A grid can be added to your canvas by first clicking the tool in the toolbar and then clicking four points on the canvas which will serve as the four corners of your grid.

[image: ../_images/Perspectivegrid.png]
This grid can be used with the ‘perspective’ sensor, which can influence brushes.

The grid can be manipulated by pulling on any of its four corners. The grid can be extended by clicking and dragging a midpoint of one of its edges. This will allow you to expand the grid at other angles. This process can be repeated on any subsequent grid or grid section.

If you press the Shift key while holding any of the corner handles, they’ll snap to one of the other corner handles, in sets. You can delete any grid by clicking on the cancel button at its center. This tool can be used to build reference for complex scenes.

눈금자

There are three assistants in this group:

	눈금자
	Helps create a straight line between two points.

	무한 눈금자
	Extrapolates a straight line beyond the two visible points on the canvas.

	평행 눈금자
	This ruler allows you to draw a line parallel to the line between the two points anywhere on the canvas.

If you press the Shift key while holding the first two handles, they will snap to perfectly horizontal or vertical lines.

버전 5.1에 추가: Of these, the Ruler assistant also has extra options to add markers:

	Subdivisions
	This adds notches to the length of the assistant, evenly spread over the assistant.

	Minor Subdivisions
	This adds extra smaller notches between the Subdivisions.

Spline

This assistant allows you to position and adjust four points to create a cubic bézier curve. You can then draw along the curve, snapping your brush stroke directly to the curve line. Perfect curves every time!

If you press the Shift key while holding the first two handles, they will snap to perfectly horizontal or vertical lines. Press the Shift key while holding the third or fourth handle, they will snap relative to the handle they are attached to.

소실점

This assistant allows you to create a vanishing point, typically used for a horizon line. A preview line is drawn and all your snapped lines are drawn to this line.

It is one point, with four helper points to align it to previously created perspective lines.

They are made and manipulated with the 도우미 도구.

If you press the Shift key while holding the center handle, they will snap to perfectly horizontal or vertical lines depending on the position of where it previously was.

버전 4.1에서 변경: The vanishing point assistant also shows several general lines.

When you’ve just created, or when you’ve just moved a vanishing point assistant, it will be selected. This means you can modify the amount of lines shown in the tool options of the 도우미 도구.

어안 렌즈 점

Like the vanishing point assistant, this assistant is per a set of parallel lines in a 3d space. So to use it effectively, use two, where the second is at a 90 degrees angle of the first, and add a vanishing point to the center of both. Or combine one with a parallel ruler and a vanishing point, or even one with two vanishing points. The possibilities are quite large.

This assistant will not just give feedback/snapping between the vanishing points, but also give feedback to the relative left and right of the assistant. This is so you can use it in edge-cases like panoramas with relative ease.

If you press the Shift key while holding the first two handles, they will snap to perfectly horizontal or vertical lines. Press the Shift key while holding the third handle, and it’ll snap to a perfect circle.

2점 원근법

버전 5.0에 추가.

This assistant simplifies the setup of a two point perspective by combining the functions of the 소실점 assistant and the parallel vertical 눈금자 into one single assistant. Additionally, it displays accurate square grid planes of the configured perspective, which can help you visually tune the intensity of the perspective distortion.

It requires 3 points to achieve this: the first 2 of which are the vanishing points, while the third point is used to determine the center of vision, which affects how the grid is displayed. In two point perspective the center of vision is a point on the horizon line, so the assistant displays a small notch to indicate its location. Generally, the center of vision is also where the main focus of an illustration is.

	밀도
	An extra option in the tool options, this controls how dense the grid is.

	Enable Vertical Ruler
	This allows you to disable the vertical ruler, so that the assistant is only two vanishing points and a grid.

[image: ../_images/Assistants_2_pointperspective_03.png]

In the above image, a two point perspective with an area limiter is enough to draw an indoor area. The assistant is colored blue here.

Tips

You can hold specific key combinations while moving a vanishing point to activate the following behaviours:

	Alt
	The vanishing point will only move along the horizon line

	Ctrl
	The grid will rotate along with the vanishing point on the horizon line. This allows you to easily draw several two-point objects that belong in the same scene at various angles to each other.

	Ctrl+Shift
	Both vanishing points move to change the visual size of the grid’s field of view.

튜토리얼

Check out this in depth discussion and tutorial on
https://www.youtube.com/watch?v=OhEv2pw3EuI

Setting up Krita for technical drawing-like perspectives

So now that you’ve seen the wide range of drawing assistants that Krita offers, here is an example of how using these assistants you can set up Krita for technical drawing.

This tutorial below should give you an idea of how to set up the assistants for specific types of technical views.

If you want to instead do the true projection, check out the projection category.

정사형

Orthographic is a mode where you try to look at something from the left or the front. Typically, you try to keep everything in exact scale with each other, unlike perspective deformation.

The key assistant you want to use here is the Parallel Ruler. You can set these up horizontally or vertically, so you always have access to a Grid.

Axonometric

All of these are set up using three Parallel Rulers.

[image: ../_images/Assistants_oblique.png]

	Oblique
	For oblique, set two parallel rulers to horizontal and vertical, and one to an angle, representing depth.

[image: ../_images/Assistants_dimetric.png]

	Dimetric & Isometric
	Isometric perspective has technically all three rulers set up at 120° from each other. Except when it’s game isometric, then it’s a type of dimetric projection where the diagonal values are a 116.565° from the main. The latter can be easily set up by snapping the assistants to a grid.

[image: ../_images/Assistants_trimetric.png]

	Trimetric
	Is when all the angles are slightly different. Often looks like a slightly angled isometric.

Linear Perspective

[image: ../_images/Assistants_1_point_perspective.png]

	1 Point Perspective
	A 1 point perspective is set up using 1 vanishing point, and two crossing perpendicular parallel rulers.

[image: ../_images/Assistants_2_point_perspective.png]

	2점 원근법
	A 2 point perspective is set up using 2 vanishing point and 1 vertical parallel ruler. Often, putting the vanishing points outside the frame a little can decrease the strength of it. You can also use a 2점 원근법 Ruler to set this one up very quickly.

[image: ../_images/Assistants_2_pointperspective_02.png]
[image: ../_images/Assistants_3_point_perspective.png]

	3 Point Perspective
	A 3 point perspective is set up using 3 vanishing point rulers.

Logic of the vanishing point

There’s a little secret that perspective tutorials don’t always tell you, and that’s that a vanishing point is the point where any two parallel lines meet. This means that a 1 point perspective and 2 point perspective are virtually the same.

We can prove this via a little experiment. That good old problem: drawing a rail-road.

[image: ../_images/Assistants_vanishing_point_logic_01.png]
You are probably familiar with the problem: How to determine where the next beam is going to be, as perspective projection will make them look closer together.

Typically, the solution is to draw a line in the middle and then draw lines diagonally across. After all, those lines are parallel, meaning that the exact same distance is used.

[image: ../_images/Assistants_vanishing_point_logic_02.png]
But because they are parallel, we can use a vanishing point assistant instead, and we use the alignment handles to align it to the diagonal of the beam, and to the horizontal (here marked with red).

That diagonal can then in turn be used to determine the position of the beams:

[image: ../_images/Assistants_vanishing_point_logic_03.png]
Because any given set of lines has a vanishing point (outside the ones flat on the view-plane), there can be an infinite amount of vanishing points in a linear perspective. Therefore, Krita allows you to set vanishing points yourself instead of forcing you to only use a few.

Fish Eye perspective

Fish eye perspective works much the same as the linear perspective, the big difference being that in a fish-eye perspective, any parallel set of lines has two vanishing points, each for one side.

So, to set them up, the easiest way is one horizontal, one vertical, on the same spot, and one vanishing point assistant in the middle.

[image: ../_images/Fish-eye.gif]
But, you can also make one horizontal one that is just as big as the other horizontal one, and put it halfway:

[image: ../_images/Assistants_fish-eye_2_02.png]

Working with Images

Computers work with files and as a painting program, Krita works with
images as the type of file it creates and manipulates.

What do Images Contain?

If you have a text document, it of course contains letters, strung in
the right order, so the computer loads them as coherent sentences.

Raster Data

This is the main data on the paint layers you make. So these are the
strokes with the paint brush and look pixelated up close. A multi-layer
file will contain several of such layers, that get overlaid on top of
each other so make the final image.

A single layer file will usually only contain raster data.

Vector Data

These are mathematical operations that tell the computer to draw pixels
on a spot. This makes them much more scalable, because you just tell the
operation to make the coordinates 4 times bigger to scale it up. Due to
this vector data is much more editable, lighter, but at the same time
it’s also much more CPU intensive.

Operation Data

Stuff like the filter layers, that tells Krita to change the colors of a
layer, but also transparency masks, group layer and transformation masks
are saved to multi-layer files. Being able to load these depend on the
software that initially made the file. So Krita can load and save
groups, transparency masks and layer effects from PSD, but not load or
save transform masks.

Metadata

Metadata is information like the creation date, author, description and
also information like DPI.

이미지 크기

The image size is the dimension and resolution of the canvas. Image size
has direct effect file size of the Krita document. The more pixels that
need to be remembered and the higher the bit depth of the color, the
heavier the resulting file will be.

DPI/PPI

DPI stands for Dots per Inch, PPI stands for Pixels per
Inch. In printing industry, suppose if your printer prints at 300
DPI. It means it is actually putting 300 dots of colors in an area
equal to an Inch. This means the number of pixels your artwork has in a
relative area of an inch.

DPI is the concern of the printer, and artists while creating
artwork should keep PPI in mind. According to the PPI you have
set, the printers can decide how large your image should be on a piece
of paper.

Some standards:

	72 PPI
	This is the default PPI of monitors as assumed by all programs. It
is not fully correct, as most monitors these days have 125 PPI or
even 300 PPI for the retina devices. Nonetheless, when making an
image for computer consumption, this is the default.

	120 PPI
	This is often used as a standard for low-quality posters.

	300 PPI
	This is the minimum you should use for quality prints.

	600 PPI
	The quality used for line art for comics.

Color depth

We went over color depth in the Color Management page. What you need to
understand is that Krita has image color spaces, and layer color spaces,
the latter which can save memory if used right. For example, having a
line art layer in grayscale can half the memory costs.

Image color space vs layer color space vs conversion.

Because there’s a difference between image color space and layer color space, you can change only the image color space in Image ‣ Properties… which will leave the layers alone. But if you want to change the color space of the file including all the layers you can do it by going to Image ‣ Convert Image Color Space… this will convert all the layers color space as well.

Author and Description

[image: ../_images/document_information_screen.png]
Krita will automatically save who created the image into your image’s
metadata. Along with the other data such as time and date of creation
and modification, Krita also shows editing time of a document in the
document information dialog, useful for professional illustrators,
speed-painters to keep track of the time they worked on artwork for
billing purposes. It detects when you haven’t performed actions for a
while, and has a precision of ±60 seconds. You can empty it in the
document info dialog and of course by unzipping you .kra file and
editing the metadata there.

These things can be edited in File ‣ Document Information, and for the author’s information Settings ‣ Configure Krita… ‣ Author. Profiles can be switched under Settings ‣ Active Author Profile.

Setting the canvas background color

You can set the canvas background color via Image ‣ Image Background
Color and Transparency… menu item. This allows you to turn the background color
non-transparent and to change the color. This is also useful for certain file
formats which force a background color instead of transparency. PNG and
JPG export use this color as the default color to fill in transparency
if you do not want to export transparency.

If you come in from a program like Paint Tool SAI, then using this
option, or using As canvas color radio button at Background:
section in the new file options, will allow you to work in a slightly more comfortable
environment, where transparency isn’t depicted with checkered boxes.

Basic transforms

There are some basic transforms available in the Image menu.

	Shear Image…
	This will allow you to skew the whole image and its layers.

	회전
	This show a submenu that will allow you to rotate the image and all its layers quickly.

	Mirror Image Horizontally/Vertically
	This will allow you to mirror the whole image with all its layers.

But there are more options than that…

Cropping and resizing the canvas

You can crop and image with the
자르기 도구, to cut away extra space and improve the composition.

Trimming

Using Image ‣ Trim to Current Layer, Krita resizes the
image to the dimensions of the layer selected. Useful for when you paste
a too large image into the layer and want to resize the canvas to the extent
of this layer.

Image ‣ Trim to Selection is a faster cousin to the crop
tool. This helps us to resize the canvas to the dimension of any active selection.
This is especially useful with right-clicking the layer on the layer stack and
choosing Select Opaque. Image ‣ Trim to Selection
will then crop the canvas to the selection bounding box.

Image ‣ Trim to Image Size is actually for layers, and will trim all
layers to the size of the image, making your files lighter by getting
rid of invisible data.

Resizing the canvas

You can also resize the canvas via Image ‣ Resize Canvas… (or
the Ctrl + Alt + C shortcut). The dialog box is shown below.

[image: ../_images/Resize_Canvas.png]
In this, Constrain proportions checkbox will make sure the height and width stay
in proportion to each other as you change them. Offset indicates
where the new canvas space is added around the current image. You
basically decide where the current image goes (if you press the
left-button, it’ll go to the center left, and the new canvas space will
be added to the right of the image).

Another way to resize the canvas according to the need while drawing is
when you scroll away from the end of the canvas, you can see a strip with
an arrow appear. Clicking this will extend the canvas in that direction.
You can see the arrow marked in red in the example below:

[image: ../_images/Infinite-canvas.png]

Resizing the image

Scale Image to New Size… allows you to resize the whole image. Also,
importantly, this is where you can change the resolution or upres your
image. So for instance, if you were initially working at 72 PPI to block
in large shapes and colors, images, etc… And now you want to really get
in and do some detail work at 300 or 400 PPI this is where you would make
the change.

Like all other dialogs where a chain link appears, when the chain is
linked the aspect ratio is maintained. To disconnect the chain, just click
on the link and the two halves will separate.

[image: ../_images/Scale_Image_to_New_Size.png]

Separating Images

[image: ../_images/Separate_Image.png]
This powerful image manipulation feature lets you separate an image into
its different components or channels.

This is useful for people working in print, or people manipulating game
textures. There’s no combine functionality, but what you can do, if
using colored output, is to set two of the channels to the addition
혼합 모드.

For grayscale images in the RGB space, you can use the Copy Red, Copy
Green and Copy Blue blending modes, with using the red one for the red
channel image, etc.

Saving, Exporting and Opening Files

When Krita creates or opens a file, it has a copy of the file in memory,
that it edits. This is part of the way how computers work: They make a
copy of their file in the RAM. Thus, when saving, Krita takes its copy
and copies it over the existing file. There’s a couple of tricks you can
do with saving.

	저장
	Krita saves the current image in its memory to a defined place on
the hard-drive. If the image hadn’t been saved before, Krita will
ask you where to save it.

	다른 이름으로 저장…
	Make a copy of your current file by saving it with a different name.
Krita will switch to the newly made file as its active document.

	열기…
	Open a saved file. Fairly straightforward.

	Export…
	Save a file to a new location without actively opening it. Useful
for when you are working on a layered file, but only need to save a
flattened version of it to a certain location.

	Open Existing Document as Untitled Document…
	This is a bit of an odd one, but it opens a file, and forgets where
you saved it to, so that when pressing ‘save’ it asks you where to
save it. This is also called ‘import’ in other programs.

	Create Copy from Current Image
	Makes a new copy of the current image. Similar to Open
Existing Document as Untitled Document…, but then with already
opened files.

	증분 버전 저장
	Saves the current image as filename_XXX.kra and switches the
current document to it.

	증분 백업 저장
	Copies and renames the last saved version of your file to a backup file and saves your document under the original name.

참고

Since Krita’s file format is compressed data file, in case of a corrupt or broken file you can open it with archive managers and extract the contents of the layers. This will help you to recover as much as possible data from the file. On Windows, you will need to rename it to filename.zip to open it.

파일 저장, 자동 저장, 백업

Krita는 작업물을 최대한 저장하려고 합니다. 불의의 사고로 인한 데이터 손실을 방지하려면 Krita의 저장, 자동 저장, 백업 기능이 어떻게 작동하는지 알아 두는 것이 좋습니다.

저장

Krita는 사용자가 명령하지 않으면 이미지를 저장하지 않습니다. 작업물을 저장하지 않으면 손실되며 되돌릴 수 없습니다. Krita에서는 이미지를 다양한 형식으로 저장할 수 있습니다. 이미지로 계속 작업하려면 모든 기능을 지원하는 Krita의 고유 형식인 .kra 형식으로 저장하는 것을 추천합니다.

또한 다른 앱이나 웹 또는 지면으로 출판할 때 사용할 수 있도록 작업물을 다른 형식으로 내보낼 수도 있습니다. Krita는 .kra가 아닌 다른 형식으로 저장할 때 작업물의 손실되는 부분 경고 메시지를 표시하며 .kra 파일로도 저장할지 물어봅니다.

작업물을 저장할 때 컴퓨터의 어떤 위치에 저장할지 물어 볼 것입니다. 기본값으로 모든 운영체제에서 사용자 고유 폴더의 사진 폴더 아래에 저장됩니다.

다른 이름으로 저장… 항목을 사용하면 이미지를 다른 이름으로 저장합니다. 원래 이름으로 되어 있었던 원본 파일은 지워지지 않습니다. 이후에 저장 명령을 내리면 여기에서 지정한 파일에 계속 저장합니다.

내보내기… 항목을 사용하면 새로운 파일 이름으로 새 파일을 만듭니다. 열어 둔 파일은 옛 이름을 유지하며, 다음에 저장하면 열어 둔 파일에 계속 저장합니다.

저장, 다른 이름으로 저장…, 내보내기… 명령은 임의의 파일 형식을 지정할 수 있습니다.

같이 보기

웹용으로 저장

자동 저장

자동 저장 기능은 잠시 동안 작업을 했지만 직접 저장하지 않았을 때 Krita에서 작업물을 자동으로 저장합니다. 자동 저장 파일은 기본적으로 파일 관리자에서 숨겨져 있습니다. Krita 4.2 이상 버전을 사용한다면 자동 저장 파일이 파일 관리자에 표시되도록 설정할 수 있습니다. 기본값으로 Krita에서는 15분마다 파일을 자동으로 저장합니다. 설정 메뉴(리눅스, Windows) 또는 앱 메뉴(macOS)의 Krita 설정 대화 상자의 일반 설정 페이지의 파일 탭에서 설정할 수 있습니다.

저장하지 않고 Krita를 끝내면 저장하지 않은 작업이 손실되며 복구할 수 없습니다. Krita를 정상적으로 끝내면 자동 저장 파일도 삭제됩니다.

[image: ../_images/file_config_page.png]
두 가지 경우가 있습니다:

	작업물을 전혀 저장하지 않았을 때

	먼저 작업물을 저장해 두었을 때

저장되지 않은 파일 자동 저장

아직 작업물을 저장하지 않았다면 Krita는 이름 없는 자동 저장 파일을 만듭니다.

When you’re using Linux or macOS, the AutoSave file will be a hidden file in your home directory. If you’re using Windows, the AutoSave file will be a file in your user’s %TEMP% folder. In Krita 4.2 and up, you can configure Krita to make the AutoSave files visible by default.

숨김 자동 저장 파일의 이름은 다음과 같습니다: .krita-12549-document_1-autosave.kra.

Krita에서 파일을 저장하기 전에 충돌했다면 다음에 Krita를 다시 시작했을 때 파일 복구 대화 상자를 표시합니다. 해당 대화 상자에서 파일을 복원하거나 삭제할 수 있습니다.

[image: ../_images/autosave_unnamed_restore.png]
Windows 환경에서 Krita가 충돌했고 %TEMP% 폴더의 내용이 삭제되었다면 작업물은 손실됩니다. Windows는 기본적으로 %TEMP% 폴더의 내용을 지우지 않지만 설정에서 해당 기능을 활성화할 수 있습니다. 디스크 정리나 CCleaner와 같은 앱에서도 %TEMP% 폴더의 내용을 삭제할 수 있습니다. 다시 한 번 강조하지만, Krita가 충돌했고, 작업물을 저장하지 않았고, %TEMP 폴더의 내용을 지우는 앱을 사용했다면 작업물은 손실됩니다.

Krita가 충돌하지 않았으며 작업물을 저장하지 않고 Krita를 닫았다면 Krita는 자동 저장 파일을 삭제합니다. 작업물은 손실되며 복구할 수 없습니다.

작업물을 저장하고 계속 진행했거나, Krita를 끝낼 때 작업물을 저장했다면 자동 저장 파일을 삭제합니다.

저장된 파일 자동 저장

이미 작업물을 저장했다면, Krita는 이름이 지정된 자동 저장 파일을 생성합니다.

숨김 자동 저장 파일의 이름은 다음과 같습니다: myimage.kra-autosave.kra.

이름이 지정된 자동 저장 파일은 기본적으로 숨김 파일입니다. 해당 파일은 원본 파일이 있는 폴더에 생성됩니다.

Krita가 충돌한 후 다시 시작하여 원본 파일을 열려고 하면, 다음과 같이 자동 저장 파일을 열 것인지 여부를 묻는 메시지가 나타납니다:

[image: ../_images/autosave_named_restore.png]
“아니요”를 선택하면 자동 저장 파일이 삭제됩니다. 파일을 마지막으로 저장한 이후 수행된 작업은 손실되며 복구할 수 없습니다.

“예”를 선택하면 자동 저장 파일이 열린 다음 삭제됩니다. 열린 파일의 이름은 원래 파일 이름으로 변경됩니다. 파일은 수정됨으로 표시되며 Krita를 끝낼 때 저장 여부를 물어 봅니다. 만약 이 파일을 저장하지 않으면 작업물은 영구적으로 손실되며 복구할 수 없습니다.

다른 이름으로 저장… 항목을 사용하면 이미지를 다른 이름으로 저장합니다. 원래 이름으로 되어 있었던 원본 파일과 원본 파일의 자동 저장 파일은 지워지지 않습니다. 이후에 저장 명령을 내리면 여기에서 지정한 파일에 계속 저장합니다. 자동 저장 파일도 새로운 파일 이름을 따라갑니다.

내보내기… 항목을 사용하면 새로운 파일 이름으로 새 파일을 만듭니다. 열어 둔 파일은 옛 이름을 유지하며, 자동 저장 파일은 내보내기… 항목에서 지정한 새로운 이름이 아닌 마지막으로 저장한 파일 이름을 따라갑니다.

백업 파일

백업 파일이 세 가지 있습니다

	일반 백업 파일: 디스크에서 연 파일을 저장할 때 생성됨

	증분 백업 파일: 작업물은 현재 파일 이름으로 저장하며, 기존에 디스크에 있었던 파일을 번호를 매겨서 백업

	증분 버전 파일: 기존 파일은 디스크에 남겨 두고 작업물을 새로운 버전 번호로 저장.

일반 백업 파일

파일을 열고, 변경하고, 저장하거나 파일을 처음 저장한 후 새 파일을 저장하면 Krita에서 파일의 백업을 생성합니다.

백업 기능은 설정 메뉴(리눅스, Windows) 또는 앱 메뉴(macOS)에 있는 Krita 설정 대화 상자의 일반 설정 페이지의 파일 탭에서 비활성화할 수 있습니다. 기본값으로 백업 파일을 저장합니다.

[image: ../_images/file_config_page.png]
기본값으로 백업 파일은 원본 파일과 같은 폴더에 있습니다. 사용자 폴더 또는 %TEMP% 폴더에 백업 파일을 저장하도록 선택할 수도 있습니다. 그러나 서로 다른 폴더에 있는 이름이 같은 파일을 편집할 때 백업이 서로 덮어쓰기 때문에 안전하지 않습니다.

기본값으로 백업 파일을 일반 파일과 구별하려고 ~ 문자를 접미사로 사용합니다. Windows를 사용한다면 Windows 탐색기에서 “파일 확장명 표시” 옵션을 활성화해야 파일 확장자를 볼 수 있습니다.

[image: ../_images/file_and_backup_file.png]
백업 파일을 열려면 파일 관리자에서 백업 파일의 이름을 변경하십시오. 파일 확장자가 .kra인지 확인하십시오.

파일을 저장할 때마다 ~ 접미사가 없는 마지막 버전은 ~ 접미사가 있는 버전으로 복사됩니다. 원본 파일의 내용은 손실되며 해당 버전을 복원할 수 없습니다.

증분 백업 파일

증분 백업 파일은 일반 백업 파일과 비슷합니다. 파일을 저장하기 직전에 마지막으로 저장한 상태를 다른 파일로 복사합니다. 그 대신 백업 파일을 덮어쓰지 않고 백업 파일에 번호를 매깁니다.

[image: ../_images/save_incremental_backup.png]
그림을 그리는 동안 작업을 단계별로 저장하려면 선택하십시오. 대신 더 많은 디스크 공간을 차지합니다.

혼동하지 마십시오: Krita에서는 작업물의 현재 상태를 마지막 증분 파일로 저장하지 않습니다. 마지막으로 저장된 파일을 백업 파일로 복사하고 현재 작업물 이미지를 원래 파일 이름으로 저장합니다.

증분 버전 파일

증분 버전은 증분 백업과 비슷하게 작동하지만 원본 파일은 그대로 둡니다. 대신 새 파일을 저장할 때 파일 번호를 매깁니다:

[image: ../_images/save_incremental_version.png]

Templates

[image: ../_images/Krita_New_File_Template_A.png]
Templates are just .kra files which are saved in a special location, so it can be pulled up by Krita quickly. This is like the Open Existing Document as Untitled Document… but then with a nicer place in the UI.

You can make your own template file from any .kra file, by using File ‣ Create Template from Image… menu item. This will add your current document as a new template, including all its properties along with the layers and layer contents.

We have the following defaults:

애니메이션 템플릿

These templates are used to make Japanese-style animation. They are designed on the assumption that they will be used in co-production, so you can customize the things like layer folders in these according to scale and details of your works. These are available in English and Japanese language.

	애니메이션-일본어-En

	Animation-Japanese-Jp

만화 템플릿

These templates are specifically designed for you to just get started with drawing comics. The comic template relies on a system of vectors and clones of those vector layers which automatically reflect any changes made to the vector layers. In between these two, you can draw your picture, and not fear them drawing over the panel. Use Inherit Alpha to clip the drawing by the panel.

	European Bande Desinée Template.
	This one is reminiscent of the system used by for example TinTin or Spirou et Fantasio. These panels focus on wide images, and horizontal cuts.

	US-style comics Template.
	This one is reminiscent of old DC and Marvel Comics, such as Batman or Captain America. Nine images for quick story progression.

	Manga Template.
	This one is based on Japanese comics, and focuses on a thin vertical gutter and a thick horizontal gutter, ensuring that the reader finished the previous row before heading to the next.

	Waffle Iron Grid
	12 little panels at your disposal.

디자인 템플릿

These are templates for design and have various defaults with proper PPI at your disposal:

	Cinema 16:10

	Cinema 2.93:1

	Presentation A3-landscape

	Presentation A4 portrait

	Screen 4:3

	웹 디자인

DSLR templates

These have some default size for photos:

	Canon 55D

	Canon 5DMK3

	Nikon D3000

	Nikon D5000

	Nikon D7000

텍스처 템플릿

These are for making 3D textures, and are between 1024, to 4092.

Introduction to Layers and Masks

Krita supports layers which help to better control parts and elements of your painting.

Think of an artwork or collage made with various stacks of papers with some papers cut such that they show the paper beneath them while some hide what’s beneath them. If you want to replace an element in the artwork, you replace that piece of paper instead of drawing the entire thing. In Krita instead of papers we use Layers. Layers are part of the document which may or may not be transparent, they may be smaller or bigger than the document itself, they can arrange one above other, named and grouped.

Layers can give better control over your artwork for example you can re-color an entire artwork just by working on the separate color layer and thereby not destroying the line art which will reside above this color layer.

You can edit individual layers, you can even add special effects to them, like Layer styles, blending modes, transparency, filters and transforms. Krita takes all these layers in its layer stack, including the special effects and combines or composites together a final image. This is just one of the many digital image manipulation tricks that Krita has up its sleeve!

Usually, when you put one paint layer on top of another, the upper paint layer will be fully visible, while the layer behind it will either be obscured, occluded or only partially visible.

Managing layers

Some artists draw with limited number of layers, but some prefer to have different elements of the artwork on separate layer. Krita has some good layer management features which make the layer management task easy.

You can group layers and organize the elements of your artwork.

The layer order can be changed or layers can be moved in and out of a group in the layer stack by simply holding them and dragging and dropping. Layers can also be copied across documents while in the subwindow mode, by dragging and dropping from one document to another.

These features save time and also help artists in maintaining the file with a layer stack which will be easy to understand for others who work on the same file. In addition to these layers and groups can both be labeled and filtered by colors, thus helping the artists to visually differentiate them.

To assign a color label to your layer or layer group you have to [image: mouseright] on the layer and choose one of the given colors from the context menu. To remove an already existing color label you can click on the ‘x’ marked box in the context menu.

[image: ../_images/Layer-color-filters.svg]Once you assign color labels to your layers, you can then filter layers having similar color label by clicking on one or more colors in the list from the drop-down situated in the top-right corner of the layer docker.

[image: ../_images/Layer-color-filters-menu.svg]
버전 5.0에 추가: You can also use this dropdown to filter the layers by layer name.

Types of Layers

[image: ../_images/Krita-types-of-layers.svg]The image above shows the various types of layers in 레이어. Each layer type has a different purpose for example all the vector elements can be only placed on a vector layer and similarly normal raster elements are mostly on the paint layer, 레이어와 마스크 page contains more information about these types layers.

Now Let us see how these layers are composited in Krita.

How are layers composited in Krita?

In Krita, the visible layers form a composite image which is shown on the canvas. The order in which Krita composites the layers is from bottom to top, much like the stack of papers we discussed above. As we continue adding layers, the image we see changes, according to the properties of the newly added layers on top.

Group Layers composite separately from the other layers in the stack, except when pass through mode is activated. The layers inside a group form a composite image first and then this composite is taken into consideration while the layer stack is composited to form a whole image. If the pass through mode is activated by pressing the icon similar to bricked wall, the layers within the group are considered as if they are outside that particular group in the layer stack, however, the visibility of the layers in a group depends on the visibility of the group.

[image: ../_images/Passthrough-mode_.png]
[image: ../_images/Layer-composite.png]
The groups in a PSD file saved from Photoshop have pass-through mode on by default unless they are specifically set with other blending modes.

Inherit Alpha or Clipping layers

There is a clipping feature in Krita called inherit alpha. It is denoted by an alpha icon in the layer stack.

[image: ../_images/Inherit-alpha-02.png]
It can be somewhat hard to figure out how the inherit alpha feature works in Krita for the first time. Once you click on the inherit alpha icon on the layer stack, the pixels of the layer you are painting on are confined to the combined pixel area of all the layers below it. That means if you have the default white background layer as first layer, clicking on the inherit alpha icon and painting on any layer above will seem to have no effect as the entire canvas is filled with white. Hence, it is advised to put the base layer that you want the pixels to clip in a group layer. As mentioned above, group layers are composited separately, hence the layer which is the lowest layer in a group becomes the bounding layer and the content of the layers above this layer clips to it if inherit alpha is enabled.

[image: ../_images/Inherit-alpha-krita.jpg]
[image: ../_images/Krita-tutorial2-I.1-2.png]
You can also enable alpha inheritance to a group layer.

Masks and Filters

Krita supports non-destructive editing of the content of the layer. Non-destructive editing means editing or changing a layer or image without actually changing the original source image permanently, the changes are just added as filters or masks over the original image while keeping it intact, this helps a lot when your workflow requires constant back and forth. You can go back to original image with a click of a button. Just hide the filter or mask you have your initial image.

You can add various filters to a layer with Filter mask, or add Filter layer which will affect the whole image. Layers can also be transformed non-destructively with the transformation masks, and even have portions temporarily hidden with a Transparent Mask. Non-destructive effects like these are very useful when you change your mind later, or need to make a set of variations of a given image.

참고

You can merge all visible layers by selecting everything first Layer ‣ Select ‣ Visible Layers. Then Combine them all by merging Layer ‣ Merge with Layer Below.

These filters and masks are accessible through the right-click menu (as shown in the image below) and the Plus icon on the layer docker.

[image: ../_images/Layer-right-click.svg]You can also add a filter as a mask from filter dialog itself, by
clicking on the Create Filter Mask button.

[image: ../_images/Filtermask-button.png]
All the filters and masks can also be applied over a group too, thus making it easy to non-destructively edit multiple layers at once. In the category Layers and masks you can read more about the individual types of layers and masks.

Layer Docker has more information about the shortcuts and other layer management workflows.

선택

Selections allow you to pick a specific area of your artwork to change. This is useful when you want to move a section of the painting, transform it, or paint on it without affecting the other sections. There are many selection tools available that select in different ways. Once an area is selected, most tools will stay inside that area. On that area you can draw or use gradients to quickly get colored and/or shaded shapes with hard edges. The selections in Krita are not limited to the canvas boundary, so you can also select portions of the painting that are beyond the canvas boundary.

Creating Selections

The most common selection tools all exist at the bottom of the toolbox. Each tool selects things slightly differently. The links for each tool go into a more detailed description of how to use it.

	사각형 선택 도구

	[image: toolselectrect]

	Select the shape of a square.

	타원형 선택 도구

	[image: toolselectellipse]

	Select the shape of a circle.

	다각형 선택 도구

	[image: toolselectpolygon]

	Click where you want each point of the Polygon to be. Double click to end your polygon and finalize your selection area. Use the Shift + Z shortcut to undo last point.

	자유형 선택 도구

	[image: toolselectfreehand]

	freehand/Lasso tool is used for a rough selection by drawing the selection outline freehand on the canvas.

	비슷한 색상 선택 도구

	[image: toolselectsimilar]

	Similar Color Selection Tool.

	인접 선택 도구

	[image: toolselectcontiguous]

	Contiguous or “Magic Wand” selects a field of color. Adjust the Fuzziness to allow more changes in the field of color, by default limited to the current layer.

	경로 선택 도구

	[image: toolselectpath]

	Path select an area based on a vector path, click to get sharp corners or drag to get flowing lines and close the path with the Enter key or connecting back to the first point.

	자석 선택 도구

	[image: toolselectmagnetic]

	Magnetic selection makes a free hand selection where the selection snaps to sharp contrasts in the image.

참고

You can also use the transform tools on your selection, a great way to try different proportions on parts of your image.

Editing Selections

The tool options for each selection tool gives you the ability to modify
your selection.

	Action

	Modifier

	설명

	Replace

	Ctrl

	Replace the current selection.

	교차

	Shift + Alt

	Get the overlapping section of both selections.

	Add

	Shift

	Add the new selection to the current selection.

	Subtract

	Alt

	Subtract the selection from the current selection.

	대칭 차이

	–

	Make a selection where both the new and current
do not overlap.

You can change this in Tools Settings.

If you hover over a selection with a selection tool and no selection is activated, you can move it. To quickly go into transform mode, [image: mouseright] and select Edit Selection.

Removing Selections

If you want to delete the entire selection, the easiest way is to deselect everything. Select ‣ Deselect. Shortcut Ctrl + Shift + A.
When you have one of the selection tool active, and the mode of selection is in intersect, replace or symmetric difference then you can also deselect by just [image: mouseleft] anywhere on the canvas.

Display Modes

In the bottom left-hand corner of the status bar there is a button to toggle how the selection is displayed. The two display modes are the following: (Marching) Ants and Mask. The red color with Mask can be changed in the preferences. You can edit the color under Settings ‣ Configure Krita… ‣ Display ‣ Selection Overlay. If there is no selection,
this button will not do anything.

[image: ../_images/Ants-displayMode.jpg]
Ants display mode (default) is best if you want to see the areas that are not selected.

[image: ../_images/Mask-displayMode.jpg]
Mask display mode is good if you are interested in seeing the various transparency levels for your selection. For example, when you have a selection with very soft edges due using feathering.

버전 4.2에서 변경: Mask mode is activated as well when a selection mask is the active layer so you can see the different selection levels.

Global Selection Mask (Painting a Selection)

The global Selection Mask is your selection that appears on the layers docker. By default, this is hidden, so you will need to make it visible via Select ‣ Show Global Selection Mask.

[image: ../_images/Global-selection-mask.png]
Once the global Selection Mask is shown, you will need to create a selection. The benefit of using this is that you can paint your
selection using any of the normal painting tools, including the transform and move. The information is saved as grayscale.

You can enter the global selection mask mode quickly from the selection tools by doing [image: mouseright] and select Edit Selection.

Selection from layer transparency

You can create a selection based on a layer’s transparency by right-clicking on the layer in the layer docker and selecting Select Opaque from the context menu.

버전 4.2에 추가: You can also do this for adding, subtracting and intersecting by going to Select ‣ Select Opaque, where you can find specific actions for each.

If you want to quickly select parts of layers, you can hold the Ctrl + [image: mouseleft] shortcut on the layer thumbnail. To add a selection do Ctrl + Shift + [image: mouseleft], to remove Ctrl + Alt + [image: mouseleft] and to intersect Ctrl + Shift + Alt + [image: mouseleft]. This works with any mask that has pixel or vector data (so everything but transform masks).

Pixel and Vector Selection Types

Vector selections allow you to modify your selection with vector anchor tools. Pixel selections allow you to modify selections with pixel information. They both have their benefits and disadvantages. You can convert one type of selection to another.

[image: ../_images/Vector-pixel-selections.jpg]
When creating a selection, you can select what type of selection you want from the Mode in the selection tool options: Pixel or Vector. By default this will be Vector.

Vector selections can be modified as any other vector shape with the Shape Selection Tool, if you try to paint on a vector selection mask it will be converted into a pixel selection. You can also convert vector shapes to selection. In turn, vector selections can be made from vector shapes, and vector shapes can be converted to vector selections using the options in the Selection menu. Krita will add a new vector layer for this shape.

One of the most common reasons to use vector selections is that they give you the ability to move and transform a selection without the kind of resize artifacts you get with a pixel selection. You can also use the Shape Edit Tool to change the anchor points in the selection, allowing you to precisely adjust bezier curves or add corners to rectangular selections.

If you started with a pixel selection, you can still convert it to a
vector selection to get these benefits. Go to Select ‣ Convert to Vector Selection.

참고

If you have multiple levels of transparency when you convert a selection to vector, you will lose the semi-transparent values.

Common Shortcuts while Using Selections

	Copy – Ctrl + C or Ctrl + Ins

	Paste – Ctrl + V or Shift + Ins

	Cut – Ctrl + X, Shift + Del

	Copy From All Layers – Ctrl + Shift + C

	Copy Selection to New Layer – Ctrl + Alt + J

	Cut Selection to New Layer – Ctrl + Shift + J

	Display or hide selection with Ctrl + H

	Select Opaque – Ctrl + [image: mouseleft] on layer thumbnail.

	Select Opaque (Add) – Ctrl + Shift + [image: mouseleft] on layer thumbnail.

	Select Opaque (Subtract) – Ctrl + Alt + [image: mouseleft] on layer thumbnail.

	Select Opaque (Intersect) – Ctrl + Shift + Alt + [image: mouseleft] on layer thumbnail.

Python 스크립팅

이 장에서는 Python 스크립팅에 대해서 설명합니다.

목차:

	Managing Python plugins
	How to install a Python plugin

	How to get to the plugin?

	How to enable and disable a plugin?

	Introduction to Python Scripting
	What is Python Scripting?

	기술 정보

	How to make a Krita Python plugin
	Getting Krita to recognize your plugin

	Creating an extension

	Creating configurable keyboard shortcuts

	Creating a docker

	PyQt Signals and Slots

	A note on unit tests

	Conclusion

Managing Python plugins

How to install a Python plugin

조심

Custom Python plugins are made by users of Krita and the Krita team does not guarantee that they work, that they are useful or that they are safe. Note that a Python plugin can do everything that Krita can do, which means for example access to your files. Krita team isn’t responsible for any damage you might suffer from the plugin, and you install it on your own risk.

Using Python plugin importer

참고

This method doesn’t always import action files (responsible for shortcuts) correctly.

You need to ensure that you have the plugin in a *.zip file. Inside the zip file there should be a file pluginname.desktop and a folder pluginname (instead of pluginname there should be an actual unique name of the plugin).

Go to Tools ‣ Scripts ‣ Import Python Plugin…, find the *.zip file and press OK. Restart Krita.

Go to Configure Krita ‣ Python Plugins Manager, find the plugin and enable it. Restart Krita.

Now the plugin should be available.

수동으로

If the plugin is inside a *.zip archive, you need to extract it first.

Go to Settings ‣ Manage Resources ‣ Open Resource Folder. Put file pluginname.desktop and folder pluginname (instead of pluginname there should be an actual unique name of the plugin) inside the pykrita folder. Put file pluginname.action into the actions folder. Restart Krita.

Now the plugin should be available.

How to get to the plugin?

Plugins in Krita are either dockers or extensions.

If it’s an extension, it will be available in the menu Tools ‣ Scripts.

When it’s a docker, you can find it in Settings ‣ Dockers.

If the plugin has any shortcuts, and you imported the action file properly, you can change the shortcuts in Configure Krita ‣ Keyboard Shortcuts.

How to enable and disable a plugin?

You can enable and disable all plugins (no matter if they’re pre-installed or custom) in Configure Krita ‣ Python Plugins Manager.

Introduction to Python Scripting

버전 4.0에 추가.

When we offered python scripting as one of Kickstarter Stretchgoals we could implement next to vectors and text, it won the backer vote by a landslide. Some people even only picked python and nothing else. So what exactly is python scripting?

What is Python Scripting?

Python is a scripting language, that can be used to automate tasks. What python scripting in Krita means is that we added an API to krita, which is a bit of programming that allows python to access to parts of Krita. With this we can make dockers, perform menial tasks on a lot of different files and even write our own exporters. People who work with computer graphics, like VFX and video game artists use python a lot to make things like sprite sheets, automate parts of export and more.

It is outside the scope of this manual to teach you python itself. However, as python is an extremely popular programming language and great for beginners, there’s tons of learning material around that can be quickly found with a simple ‘learn python’ internet search.

This manual will instead focus on how to use python to automate and extend Krita. For that we’ll first start with the basics: How to run Python commands in the scripter.

How to Enable the Scripter Plugin

The scripter plugin is not necessary to use python, but it is very useful for testing and playing around with python. It is a python console, written in python, which can be used to write small scripts and execute them on the fly.

To open the scripter, navigate to Tools ‣ Scripts ‣ Scripter. If you don’t see it listed, go to Settings ‣ Configure Krita… ‣ Python Plugin Manager and toggle “Scripter” in the list to enable it. If you don’t see the scripter plugin, make sure you are using an up-to-date version of Krita.

The scripter will pop up with a text editor window on top and an output window below. Input the following in the text area:

print("hello world")

Press the big play button or press the Ctrl + R shortcut to run the script. Then, below, in the output area the following should show up:

==== Warning: Script not saved! ====
hello world

Now we have a console that can run functions like print() from the Python environment - but how do we use it to manage Krita?

Running basic Krita commands

To allow Python to communicate with Krita, we will use the Krita module. At the top of every script, we will write from krita import *.

This allows us to talk to Krita through Krita.instance(). Let’s try to double our coding abilities with Python.

from krita import *

Krita.instance().action('python_scripter').trigger()

You should see a second scripter window open. Pretty neat! Here is a slightly more advanced example.

from krita import *

d = Krita.instance().createDocument(512, 512, "Python test document", "RGBA", "U8", "", 120.0)
Krita.instance().activeWindow().addView(d)

This will open up a new document. Clearly Python gives you quite a lot of control to automate Krita. Over time we expect the community to write all kinds of scripts that you can use simply by pasting them in the scripter.

But what if you want to write new commands for yourself? The best place to start is very simple: search for examples written by other people! You can save a lot of time if someone else has written code that you can base your work on. It’s also worth looking through the python plugins, which are located in /share/krita/pykrita. There’s also a step by step guide for How to make a Krita Python plugin here in the manual.

But it’s likely that you need more information. For that, we will need see what’s hidden behind the asterisk when you import * from Krita. To learn what Krita functions that are available and how to use them, you will want to go for Krita API reference documentation.

Krita’s API

	LibKis API Overview [https://api.kde.org/krita/html/index.html]

	Krita class documentation [https://api.kde.org/krita/html/annotated.html]

Those pages may look like a lot of jargon at first. This is because Krita’s API documentation comes from the underlying C++ language that Krita is written in. The magic happens because of a Python tool called SIP, which makes it possible for python speak in C++ and talk to Krita. The end result is that when we import krita and call functions, we’re actually using the C++ methods listed in that documentation.

Let’s see how this stuff works in more detail. Let’s take a look at the second link, the Krita class reference [https://api.kde.org/krita/html/classKrita.html#aa55507903d088013ced2df8c74f28a63]. There we can see all the functions available to the Krita instance. If you type dir(Krita.instance()) in Python, it should match this page very closely - you can view the documentation of the functions createDocument(), activeWindow(), and action() which we used above.

One of the more confusing things is seeing all the C++ classes that Krita uses, including the Qt classes that start with Q. But here is the beauty of SIP: it tries to make the translation from these classes into Python as simple and straightforward as possible. For example, you can see that the function filters() returns a QStringList. However, SIP converts those QStringLists into regular python list of strings!

from krita import *

print(Krita.instance().filters())

Outputs as:

['asc-cdl', 'autocontrast', 'blur', 'burn', 'colorbalance', 'colortoalpha', 'colortransfer',
'desaturate', 'dodge', 'edge detection', 'emboss', 'emboss all directions', 'emboss horizontal and vertical',
'emboss horizontal only', 'emboss laplascian', 'emboss vertical only', 'gaussian blur', 'gaussiannoisereducer',
'gradientmap', 'halftone', 'height to normal', 'hsvadjustment', 'indexcolors', 'invert', 'lens blur', 'levels',
'maximize', 'mean removal', 'minimize', 'motion blur', 'noise', 'normalize', 'oilpaint', 'perchannel', 'phongbumpmap',
'pixelize', 'posterize', 'raindrops', 'randompick', 'roundcorners', 'sharpen', 'smalltiles', 'threshold', 'unsharp',
'wave', 'waveletnoisereducer']

However, sometimes the conversion doesn’t go quite as smoothly.

from krita import *

print(Krita.instance().documents())

gives something like this:

[<PyKrita.krita.Document object at 0x7f7294630b88>,
<PyKrita.krita.Document object at 0x7f72946309d8>,
<PyKrita.krita.Document object at 0x7f7294630c18>]

It is a list of something, sure, but how to use it? If we go back to the Krita apidocs page and look at the function, documents() we’ll see there’s actually a clickable link on the ‘Document’ class. If you follow that link [https://api.kde.org/krita/html/classDocument.html], you’ll see that the document has a function called name() which returns the name of the document, and functions width() and height() which return the dimensions. So if we wanted to generate an info report about the documents in Krita, we could write a script like this:

from krita import *

for doc in Krita.instance().documents():
 print(doc.name())
 print(" "+str(doc.width())+"x"+str(doc.height()))

We get an output like:

==== Warning: Script not saved! ====
Unnamed
 2480x3508
sketch21
 3508x2480
Blue morning
 1600x900

Hopefully this will give you an idea of how to navigate the API docs now.

Krita’s API has many more classes, you can get to them by going to the top-left class list, or just clicking their names to get to their API docs. The functions print() or dir() are your friends here as well. This line will print out a list of all the actions in Krita – you could swap in one of these commands instead of ‘python_scripter’ in the example above.

[print([a.objectName(), a.text()]) for a in Krita.instance().actions()]

The Python module inspect was designed for this sort of task. Here’s a useful function to print info about a class to the console.

import inspect
def getInfo(target):
 [print(item) for item in inspect.getmembers(target) if not item[0].startswith('_')]

getInfo(Krita.instance())

Finally, in addition to the LibKis documentation, the Qt documentation, since Krita uses PyQt to expose nearly all of the Qt API to Python. You can build entire windows with buttons and forms this way, using the very same tools that Krita is using! You can read the Qt documentation [https://doc.qt.io/] and the PyQt documentation [https://www.riverbankcomputing.com/static/Docs/PyQt5/] for more info about this, and also definitely study the included plugins as well to see how they work.

기술 정보

Python Scripting on Windows

To get Python scripting working on Windows 7/8/8.1, you will need to install the Universal C Runtime from Microsoft’s website [https://www.microsoft.com/en-us/download/details.aspx?id=48234]. (Windows 10 already comes with it.)

Python 2 and 3

By default, Krita is compiled for python 3.

However, it is possible to compile it with python 2. To do so, you will need to add the following to the cmake configuration line:

-DENABLE_PYTHON_2=ON

How to make a Krita Python plugin

You might have some neat scripts you have written in the Scripter Python runner, but maybe you want to do more with it and run it automatically for instance. Wrapping your script in a plugin can give you much more flexibility and power than running scripts from the Scripter editor.

Okay, so even if you know python really well, there are some little details to getting Krita to recognize a python plugin. So this page will give an overview how to create the various types of python script unique to Krita.

These mini-tutorials are written for people with a basic understanding of python, and in such a way to encourage experimentation instead of plainly copy and pasting code, so read the text carefully.

Getting Krita to recognize your plugin

A script in Krita has two components – the script directory (holding your script’s Python files) and a “.desktop” file that Krita uses to load and register your script. For Krita to load your script both of these must put be in the pykrita subdirectory of your Krita resources folder (See Resource Management for the paths per operating system). To find your resources folder start Krita and click the Settings ‣ Manage Resources… menu item. This will open a dialog box. Click the Open Resources Folder button. This should open a file manager on your system at your Krita resources folder. See the API [https://api.kde.org/krita/html/index.html] docs under “Auto starting scripts”. If there is no pykrita subfolder in the Krita resources directory use your file manager to create one.

Scripts are identified by a file that ends in a .desktop extension that contain information about the script itself.

Therefore, for each proper plugin you will need to create a folder, and a desktop file.

The desktop file should look as follows:

[Desktop Entry]
Type=Service
ServiceTypes=Krita/PythonPlugin
X-KDE-Library=myplugin
X-Python-2-Compatible=false
X-Krita-Manual=myPluginManual.html
Name=My Own Plugin
Comment=Our very own plugin.

	Type
	This should always be service.

	ServiceTypes
	This should always be Krita/PythonPlugin for python plugins.

	X-KDE-Library
	This should be the name of the plugin folder you just created.

	X-Python-2-Compatible
	Whether it is python 2 compatible. If Krita was built with python 2 instead of 3 (-DENABLE_PYTHON_2=ON in the cmake configuration), then this plugin will not show up in the list.

	X-Krita-Manual
	An Optional Value that will point to the manual item. This is shown in the Python Plugin manager. If it’s an HTML file it’ll be shown as rich text [https://doc.qt.io/qt-5/richtext-html-subset.html], if not, it’ll be shown as plain text.

	이름
	The name that will show up in the Python Plugin Manager.

	Comment
	The description that will show up in the Python Plugin Manager.

Krita python plugins need to be python modules, so make sure there’s an __init__.py script, containing something like…

from .myplugin import *

Where .myplugin is the name of the main file of your plugin. If you restart Krita, it now should show this in the Python Plugin Manager in the settings, but it will be grayed out, because there’s no myplugin.py. If you hover over disabled plugins, you can see the error with them.

참고

You need to explicitly enable your plugin. Go to the Settings menu, open the Configure Krita dialog and go to the Python Plugin Manager page and enable your plugin.

요약

In summary, if you want to create a script called myplugin:

	
	in your Krita resources/pykrita directory create
	
	a folder called myplugin

	a file called myplugin.desktop

	
	in the myplugin folder create
	
	a file called __init__.py

	a file called myplugin.py

	in the __init__.py file put this code:

from .myplugin import *

	in the desktop file put this code:

[Desktop Entry]
Type=Service
ServiceTypes=Krita/PythonPlugin
X-KDE-Library=myplugin
X-Python-2-Compatible=false
Name=My Own Plugin
Comment=Our very own plugin.

	write your script in the myplugin/myplugin.py file.

Creating an extension

Extensions [https://api.kde.org/krita/html/classExtension.html] are relatively simple python scripts that run on Krita start. They are made by extending the Extension class, and the most barebones extension looks like this:

from krita import *

class MyExtension(Extension):

 def __init__(self, parent):
 # This is initialising the parent, always important when subclassing.
 super().__init__(parent)

 def setup(self):
 pass

 def createActions(self, window):
 pass

And add the extension to Krita's list of extensions:
Krita.instance().addExtension(MyExtension(Krita.instance()))

This code of course doesn’t do anything. Typically, in createActions we add actions to Krita, so we can access our script from the Tools menu.

First, let’s create an action [https://api.kde.org/krita/html/classAction.html]. We can do that easily with Window.createAction() [https://api.kde.org/krita/html/classWindow.html#a72ec58e53844076c1461966c34a9115c]. Krita will call createActions for every Window that is created and pass the right window object that we have to use.

So…

def createActions(self, window):
 action = window.createAction("myAction", "My Script", "tools/scripts")

	“myAction”
	This should be replaced with a unique ID that Krita will use to find the action.

	“My Script”
	This is what will be visible in the Tools Menu.

If you now restart Krita, you will have an action called “My Script”. It still doesn’t do anything, because we haven’t connected it to a script.

So, let’s make a simple export document script. Add the following to the extension class, make sure it is above where you add the extension to Krita:

def exportDocument(self):
 # Get the document:
 doc = Krita.instance().activeDocument()
 # Saving a non-existent document causes crashes, so lets check for that first.
 if doc is not None:
 # This calls up the save dialog. The save dialog returns a tuple.
 fileName = QFileDialog.getSaveFileName()[0]
 # And export the document to the fileName location.
 # InfoObject is a dictionary with specific export options, but when we make an empty one Krita will use the export defaults.
 doc.exportImage(fileName, InfoObject())

And add the import for QFileDialog above with the imports:

from krita import *
from PyQt5.QtWidgets import QFileDialog

Then, to connect the action to the new export document:

def createActions(self, window):
 action = window.createAction("myAction", "My Script")
 action.triggered.connect(self.exportDocument)

This is an example of a signal/slot connection [https://doc.qt.io/qt-5/signalsandslots.html], which Qt applications like Krita use a lot. We’ll go over how to make our own signals and slots a bit later.

Restart Krita and your new action ought to now export the document.

Creating configurable keyboard shortcuts

Now, your new action doesn’t show up in Settings ‣ Configure Krita ‣ Keyboard Shortcuts.

Krita, for various reasons, only adds actions to the Shortcut Settings when they are present in an .action file. The action file to get our action to be added to the shortcuts should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<ActionCollection version="2" name="Scripts">
 <Actions category="Scripts">
 <text>My Scripts</text>

 <Action name="myAction">
 <icon></icon>
 <text>My Script</text>
 <whatsThis></whatsThis>
 <toolTip></toolTip>
 <iconText></iconText>
 <activationFlags>10000</activationFlags>
 <activationConditions>0</activationConditions>
 <shortcut>ctrl+alt+shift+p</shortcut>
 <isCheckable>false</isCheckable>
 <statusTip></statusTip>
 </Action>
 </Actions>
</ActionCollection>

	<text>My Scripts</text>
	This will create a sub-category under scripts called “My Scripts” to add your shortcuts to.

	name
	This should be the unique ID you made for your action when creating it in the setup of the extension.

	icon
	The name of a possible icon. These will only show up on KDE plasma, because Gnome and Windows users complained they look ugly.

	text
	The text that it will show in the shortcut editor.

	whatsThis
	The text it will show when a Qt application specifically calls for ‘what is this’, which is a help action.

	toolTip
	The tool tip, this will show up on hover-over.

	iconText
	The text it will show when displayed in a toolbar. So for example, “Resize Image to New Size” could be shortened to “Resize Image” to save space, so we’d put that in here.

	activationFlags
	This determines when an action is disabled or not.

	activationConditions
	This determines activation conditions (e.g. activate only when selection is editable). See the code [https://invent.kde.org/graphics/krita/-/blob/master/libs/ui/kis_action.h#L41] for examples.

	shortcut
	Default shortcut.

	isCheckable
	Whether it is a checkbox or not.

	statusTip
	The status tip that is displayed on a status bar.

Save this file as myplugin.action where myplugin is the name of your plugin. The action file should be saved, not in the pykrita resources folder, but rather in a resources folder named “actions”. (So, share/pykrita is where the python plugins and desktop files go, and share/actions is where the action files go) Restart Krita. The shortcut should now show up in the shortcut action list.

Creating a docker

Creating a custom docker [https://api.kde.org/krita/html/classDockWidget.html] is much like creating an extension. Dockers are in some ways a little easier, but they also require more use of widgets. This is the barebones docker code:

from PyQt5.QtWidgets import *
from krita import *

class MyDocker(DockWidget):

 def __init__(self):
 super().__init__()
 self.setWindowTitle("My Docker")

 def canvasChanged(self, canvas):
 pass

Krita.instance().addDockWidgetFactory(DockWidgetFactory("myDocker", DockWidgetFactoryBase.DockRight, MyDocker))

The window title is how it will appear in the docker list in Krita. canvasChanged always needs to be present, but you don’t have to do anything with it, so hence just ‘pass’.

For the addDockWidgetFactory…

	“myDocker”
	Replace this with a unique ID for your docker that Krita uses to keep track of it.

	DockWidgetFactoryBase.DockRight
	The location. These can be DockTornOff, DockTop, DockBottom, DockRight, DockLeft, or DockMinimized

	MyDocker
	Replace this with the class name of the docker you want to add.

So, if we add our export document function we created in the extension section to this docker code, how do we allow the user to activate it? First, we’ll need to do some Qt GUI coding: Let’s add a button!

By default, Krita uses PyQt, but its documentation is pretty bad, mostly because the regular Qt documentation is really good, and you’ll often find that the PyQt documentation of a class, say, QWidget [https://www.riverbankcomputing.com/static/Docs/PyQt5/api/qtwidgets/qwidget.html] is like a weird copy of the regular Qt documentation [https://doc.qt.io/qt-5/qwidget.html] for that class.

Anyway, what we need to do first is that we need to create a QWidget, it’s not very complicated, under setWindowTitle, add:

mainWidget = QWidget(self)
self.setWidget(mainWidget)

Then, we create a button:

buttonExportDocument = QPushButton("Export Document", mainWidget)

Now, to connect the button to our function, we’ll need to look at the signals in the documentation. QPushButton [https://doc.qt.io/qt-5/qpushbutton.html] has no unique signals of its own, but it does say it inherits 4 signals from QAbstractButton [https://doc.qt.io/qt-5/qabstractbutton.html#signals], which means that we can use those too. In our case, we want clicked.

buttonExportDocument.clicked.connect(self.exportDocument)

If we now restart Krita, we’ll have a new docker and in that docker there’s a button. Clicking on the button will call up the export function.

However, the button looks aligned a bit oddly. That’s because our mainWidget has no layout. Let’s quickly do that:

mainWidget.setLayout(QVBoxLayout())
mainWidget.layout().addWidget(buttonExportDocument)

Qt has several layouts [https://doc.qt.io/qt-5/qlayout.html], but the QHBoxLayout and the QVBoxLayout [https://doc.qt.io/qt-5/qboxlayout.html] are the easiest to use, they just arrange widgets horizontally or vertically.

Restart Krita and the button should now be laid out nicely.

PyQt Signals and Slots

We’ve already been using PyQt signals and slots already, but there are times when you want to create your own signals and slots.
As PyQt’s documentation is pretty difficult to understand [https://www.riverbankcomputing.com/static/Docs/PyQt5/signals_slots.html], and the way how signals and slots are created is very different from C++ Qt, we’re explaining it here:

All python functions you make in PyQt can be understood as slots, meaning that they can be connected to signals like Action.triggered or QPushButton.clicked. However, QCheckBox has a signal for toggled, which sends a boolean. How do we get our function to accept that boolean?

First, make sure you have the right import for making custom slots:

from PyQt5.QtCore import pyqtSlot

(If there’s from PyQt5.QtCore import * already in the list of imports, then you won’t have to do this, of course.)

Then, you need to add a PyQt slot definition before your function:

@pyqtSlot(bool)
def myFunction(self, enabled):
 enabledString = "disabled"
 if (enabled == True):
 enabledString = "enabled"
 print("The checkbox is"+enabledString)

Then, when you have created your checkbox, you can do something like myCheckbox.toggled.connect(self.myFunction).

Similarly, to make your own PyQt signals, you do the following:

signal name is added to the member variables of the class
signal_name = pyqtSignal(bool, name='signalName')

def emitMySignal(self):
 # And this is how you trigger the signal to be emitted.
 self.signal_name.emit(True)

And use the right import:

from PyQt5.QtCore import pyqtSignal

To emit or create slots for objects that aren’t standard python objects, you only have to put their names between quotation marks.

A note on unit tests

If you want to write unit tests for your plugin, have a look at the mock krita module [https://github.com/rbreu/krita-python-mock].

Conclusion

Okay, so that covers all the Krita specific details for creating python plugins. It doesn’t handle how to parse the pixel data, or best practices with documents, but if you have a little bit of experience with python you should be able to start creating your own plugins.

As always, read the code carefully and read the API docs for python, Krita and Qt carefully to see what is possible, and you’ll get pretty far.

Tag Management

Tags are how you organize common types of resources. They can be used with brushes, gradients, patterns, and even brush tips. You can select them from a drop-down menu above the resources. Selecting a tag will filter all the resources by that tag. Selecting the tag of All will show all resources. Krita comes installed with a few default tags. You can create and edit your own as well. The tags are managed similarly across the different types of resources.

You can use tags together with the Pop-up Palette for increased productivity.

[image: ../_images/Tag_Management.png]

참고

You can select different brush tags in the pop-up palette. This can be a quick way to access your favorite brushes.

This page has a few common things you can do with tags. For more information about tags, check the 태그 section on the resource management page.

Adding a New Tag for a Brush

By pressing the + next to the tag selection, you will get an option to add a tag. Type in the name you want and press the Enter key. You will need to go back to the All tag to start assigning brushes.

Assigning an Existing Tag to a Brush

Right-click on a brush in the Brush Presets Docker. You will get an option to assign a tag to the brush.

Changing a Tag’s Name

Select the existing tag that you want to have changed from the drop-down. Press the + icon next to the tag. You will get an option to rename it. Press the Enter key to confirm. All the existing brushes will remain in the newly named tag.

Deleting a Tag

Select the existing tag that you want to have removed from the drop-down. Press the + icon next to the tag. You will get an option to remove it.

소프트 프루핑

When we make an image in Krita, and print that out with a printer, the image tends to look different. The colors are darker, or less dark than expected, maybe the reds are more aggressive, maybe contrast is lost. For simple documents, this isn’t much of a problem, but for professional prints, this can be very sad, as it can change the look and feel of an image drastically.

The reason this happens is simply because the printer uses a different color model (CMYK) and it has often access to a lower range of colors (called a gamut).

A naive person would suggest the following solution: do your work within the CMYK color model! But there are three problems with that:

	Painting in a CMYK space doesn’t guarantee that the colors will be the same on your printer. For each combination of Ink, Paper and Printing device, the resulting gamut of colors you can use is different, which means that each of these could have a different profile associated with them.

	Furthermore, even if you have the profile and are working in the exact color space that your printer can output, the CMYK color space is very irregular, meaning that the color maths isn’t as nice as in other spaces. Blending modes are different in CMYK as well.

	Finally, working in that specific CMYK space means that the image is stuck to that space. If you are preparing your work for different a CMYK profile, due to the paper, printer or ink being different, you might have a bigger gamut with more bright colors that you would like to take advantage of.

So ideally, you would do the image in RGB, and use all your favorite RGB tools, and let the computer do a conversion to a given CMYK space on the fly, just for preview. This is possible, and is what we call ‘’Soft Proofing’’.

[image: ../_images/Softproofing_regularsoftproof.png]

On the left, the original, on the right, a view where soft proofing is turned on. The difference is subtle due to the lack of really bright colors, but the soft proofed version is slightly less blueish in the whites of the flowers and slightly less saturated in the greens of the leaves.

You can toggle soft proofing on any image using the Ctrl + Y shortcut. Unlike other programs, this is per-view, so that you can look at your image non-proofed and proofed, side by side. The settings are also per image, and saved into the .kra file. You can set the proofing options in Image ‣ Image Properties ‣ Soft Proofing.

There you can set the following options:

	Profile, Depth, Space
	Of these, only the profile is really important. This will serve as the profile you are proofing to. In a professional print workflow, this profile should be determined by the printing house.

	Intent
	Set the proofing Intent. It uses the same intents as the intents mentioned in the color managed workflow.

[image: ../_images/Softproofing_adaptationstate.png]

Left: Soft proofed image with Adaptation state slider set to max. Right: Soft proofed image with Adaptation State set to minimum.

	Adaptation State
	A feature which allows you to set whether Absolute Colorimetric will make the white in the image screen-white during proofing (the slider set to max), or whether it will use the white point of the profile (the slider set to minimum). Often CMYK profiles have a different white as the screen, or amongst one another due to the paper color being different.

	흑색 점 보정
	Set the black point compensation. Turning this off will crunch the shadow values to the minimum the screen and the proofing profile can handle, while turning this on will scale the black to the screen-range, showing you the full range of grays in the image.

	Gamut Warning
	Set the color of the out-of-gamut warning.

You can set the defaults that Krita uses in Settings ‣ Configure Krita… ‣ Color Management.

To configure this properly, it’s recommended to make a test image to print (and that is printed by a properly set-up printer) and compare against, and then approximate in the proofing options how the image looks compared to the real-life copy you have made.

Out of Gamut Warning

The out of gamut warning, or gamut alarm, is an extra option on top of Soft-Proofing: It allows you to see which colors are being clipped, by replacing the resulting color with the set alarm color.

This can be useful to determine where certain contrasts are being lost, and to allow you to change it slowly to a less contrasted image.

[image: ../_images/Softproofing_gamutwarnings.png]

Left: View with original image, Right: View with soft proofing and gamut warnings turned on. Krita will save the gamut warning color alongside the proofing options into the KRA file, so pick a color that you think will stand out for your current image.

You can activate Gamut Warnings with the Ctrl + Shift + Y shortcut, but it needs soft proofing activated to work fully.

참고

Soft Proofing doesn’t work properly in floating-point spaces, and attempting to force it will cause incorrect gamut alarms. It is therefore disabled.

경고

Gamut Warnings sometimes give odd warnings for linear profiles in the shadows. This is a bug in LittleCMS, see here [https://ninedegreesbelow.com/bug-reports/soft-proofing-problems.html] for more info.

Vector Graphics

Krita 4.0 has had a massive rewrite of the vector tools. So here’s a page explaining the vector tools:

What are vector graphics?

Krita is primarily a raster graphics editing tool, which means that most of the editing changes the values of the pixels on the raster that makes up the image.

[image: ../_images/Pixels-brushstroke.png]
Vector graphics on the other hand use mathematics to describe a shape. Because it uses a formula, vector graphics can be resized to any size.

On one hand, this makes vector graphics great for logos and banners. On the other hand, raster graphics are much easier to edit, so vectors tend to be the domain of deliberate design, using a lot of precision.

Tools for making shapes

You can start making vector graphics by first making a vector layer (press the arrow button next to the + in the layer docker to get extra layer types). Then, all the usual drawing tools outside the Freehand, Dynamic and the Multibrush tool can be used to draw shapes.

The Path and Polyline tool are the tools you used most often on a vector layer, as they allow you to make the most dynamic of shapes.

On the other hand, the Ellipse and Rectangle tools allow you to draw special shapes, which then can be edited to make special pie shapes, or for easy rounded rectangles.

The calligraphy and text tool also make special vectors. The calligraphy tool is for producing strokes that are similar to brush strokes, while the text tool makes a text object that can be edited afterwards.

All of these will use the current brush size to determine stroke thickness, as well as the current foreground and background color.

There is one last way to make vectors: the Vector Image tool. It allows you to add shapes that have been defined in an SVG file as symbols. Unlike the other tools, these have their own fill and stroke.

Arranging Shapes

A vector layer has its own hierarchy of shapes, much like how the whole image has a hierarchy of layers. So shapes can be in front of one another. This can be modified with the arrange docker, or with the Select Shapes tool.

The arrange docker also allows you to group and ungroup shapes. It also allows you to precisely align shapes, for example, have them aligned to the center, or have an even spacing between all the shapes.

Editing shapes

Editing of vector shapes is done with the Select Shapes tool and the Edit Shapes tool.

The Select Shapes tool can be used to select vector shapes, to group them (via [image: mouseright]), ungroup them, to use booleans to combine or subtract shapes from one another (via [image: mouseright]), to move them up and down, or to do quick transforms.

채우기

You can change the fill of a shape by selecting it and changing the active foreground color.

You can also change it by going into the tool options of the Select Shapes tool and going to the Fill tab.

Vector shapes can be filled with a solid color, a gradient or a pattern.

Stroke

Strokes can be filled with the same things as fills.

However, they can also be further changed. For example, you can add dashes and markers to the line.

좌표

Shapes can be moved with the Select Shapes tool, and in the tool options you can specify the exact coordinates.

Editing nodes and special parameters

If you have a shape selected, you can double-click it to get to the appropriate tool to edit it. Usually this is the Edit Shape tool, but for text this is the Text tool.

In the Edit Shape tool, you can move around nodes on the canvas for regular paths. For special paths, like the ellipse and the rectangle, you can move nodes and edit the specific parameters in the Tool Options docker.

Working together with other programs

One of the big things Krita 4.0 brought was moving from ODG to SVG. What this means is that Krita saves as SVG inside KRA files, and that means Krita can open SVG just fine. This is important as SVG is the most popular vector format.

Inkscape

You can copy and paste vectors from Krita to Inkscape, or from Inkscape to Krita. Only the SVG 1.1 features are supported, with exception of smaller features like the mesh gradients.

Snapping

In Krita 3.0, we now have functionality for Grids and Guides, but of course, this functionality is by itself not that interesting without snapping.

Snapping is the ability to have Krita automatically align a selection or shape to the grids and guides, document center and document edges. For Vector layers, this goes even a step further, and we can let you snap to bounding boxes, intersections, extrapolated lines and more.

All of these can be toggled using the snap pop-up menu which is assigned to Shift + S shortcut.

Now, let us go over what each option means:

	Grids
	This will snap the cursor to the current grid, as configured in the grid docker. This doesn’t need the grid to be visible. Grids are saved per document, making this useful for aligning your art work to grids, as is the case for game sprites and grid-based designs.

	픽셀
	This allows to snap to every pixel under the cursor. Similar to Grid Snapping but with a grid having spacing = 1px and offset = 0px.

	안내선
	This allows you to snap to guides, which can be dragged out from the ruler. Guides do not need to be visible for this, and are saved per document. This is useful for comic panels and similar print-layouts, though we recommend Scribus for more intensive work.

[image: ../_images/Snap-orthogonal.png]

	Orthogonal (Vector Only)
	This allows you to snap to a horizontal or vertical line from existing vector objects’ nodes (Unless dealing with resizing the height or width only, in which case you can drag the cursor over the path). This is useful for aligning object horizontally or vertically, like with comic panels.

[image: ../_images/Snap-node.png]

	Node (Vector Only)
	This snaps a vector node or an object to the nodes of another path.

[image: ../_images/Snap-extension.png]

	Extension (Vector Only)
	When we draw an open path, the last nodes on either side can be mathematically extended. This option allows you to snap to that. The direction of the node depends on its side handles in path editing mode.

[image: ../_images/Snap-intersection.png]

	Intersection (Vector Only)
	This allows you to snap to an intersection of two vectors.

	Bounding box (Vector Only)
	This allows you to snap to the bounding box of a vector shape.

	Image bounds
	Allows you to snap to the vertical and horizontal borders of an image.

	Image center
	Allows you to snap to the horizontal and vertical center of an image.

The snap works for the following tools:

	직선

	Rectangle

	Ellipse

	폴리선

	Path

	자유형 경로

	다각형

	그라디언트

	Shape Handling tool

	The Text-tool

	Assistant editing tools

	The move tool (note that it snaps to the cursor position and not the bounding box of the layer, selection or whatever you are trying to move)

	The Transform tool

	Rectangle select

	Elliptical select

	Polygonal select

	Path select

	Guides themselves can be snapped to grids and vectors

Snapping doesn’t have a sensitivity yet, and by default is set to 10 screen pixels.

Krita 애니메이션

Thanks to the 2015 Kickstarter, Krita has animation. In specific, Krita has frame-by-frame raster animation.

애니메이션 기능을 사용하는 가장 쉬운 방법은 작업 공간을 애니메이션으로 변경하는 것입니다. 이렇게 하면 애니메이션 도커와 작업 도구가 나타납니다.

작업 흐름

In traditional animation workflow, what you do is that you make Keyframes, which contain the important poses, and then draw frames in between (tweening in highly sophisticated animator’s jargon).

이 작업 흐름을 구현하는 다음 중요한 도커 세 가지가 있습니다:

	The Animation Timeline Docker. View and control all the frames in your animation. The timeline docker also contains functions to manage your layers. The layers that are created in the timeline docker also appear on the normal Layer docker.

	어니언 스킨 도커. 이 도커는 어니언 스킨의 모양을 조절하여 이전 프레임을 보는 데 유용합니다.

	The Animation Curves Docker. This docker allows you to do minor tweening for animation curves.

	The Storyboard Docker. This docker helps you create and keep track of storyboards.

Furthermore, especially when you want to do a big animation, that is, any animation longer than 3 seconds, you will need to think about how you are going to approach this. Krita is specialized in frame by frame animation, and because of this Krita keeps all the frames in memory. This means that animation files will eat up all of your computer’s working memory (RAM). If you don’t know what working memory is, you probably have too little to do a long sequence in Krita. Therefore, you need to take a page from professional animation and do some planning!

[image: ../_images/Storyboard_thumbnailonly_view.png]

The storyboard docker can help you plan out the shots of a scene.

Typically, most animation projects start with a script or at the very least an outline of actions that will happen. You can do this in any kind of text editor you like. The next step is to create a storyboard. They are sketches of the basic composition of each scene, with some extra notes on what is going to move, like camera movement, character movement, notes on audio, notes on color. These seem closer to a comic than an animation, but the key difference between the two is that in comics the composition is made to help the reader move their eyes over the page, while in animation the viewer’s eyes will stay in relatively the same spot, so consecutive storyboard frames will have their most important elements in relatively the same place. If that seems a little abstract, don’t worry. You can make a story board by using the animation functions, but the key here is that you use as little frames as possible. Export the story board using the render animation option.

Then, the next step is to make an Animatic. An animatic is basically the storyboard, but then animated. You are best off doing this in a video editor like Kdenlive [http://kdenlive.org/], OpenShot [https://www.openshot.org/], Olive [https://olivevideoeditor.org/index.php], or even Windows Movie Maker. If you want to put everything together into one big animation you will need to learn how to use such a program to begin with, as Krita doesn’t have extensive video and audio montage functions.

Doing the animatic will allow you to see how the animation can be subdivided into small clips. If you are just starting out, you are best off limiting yourself to 12 frames per second. Then, a 10-second clip would be 120 frames. Try to figure out if you can subdivide your animation idea into clips of 10 seconds or shorter. You can import the story board frames associated with a specific clip by going to File ‣ Import Animation Frames. From there, slowly start building up your animation. During the sketching phase it may also help to work on a low resolution, like 800×450 pixels. High resolution only starts mattering when you are doing line art, after all. And it will be hard to get to that point if you don’t even have a rough outline.

Always keep an eye on the memory consumption. You can see the memory consumption in the status bar, by clicking the resolution label. This label should also have a little progress bar that shows how much memory Krita is using at this moment. Don’t let the memory bar get full: it will lead to Krita slowing down, and sometimes it might even mean Krita won’t be able to export the animation on your specific machine. You can reduce memory consumption by:

	Merging together layers. Yes, you cannot afford to have a layer for every single change. Often, the fewer layers, the better.

	In some cases by going to Image ‣ Crop Layers to Image Size, this will crop all layers to remove sections that are outside the canvas.

	Sometimes, certain layers don’t need to be full color, especially if they’re just black and white. You can then go to Layers ‣ Convert ‣ Convert Layer Color Space and convert the layer to a grayscale one. This will half the amount of RAM this specific layer will take up.

	Working smaller. Even if you imagined yourself animating in the 4K resolution, you might need to accept your computer just cannot handle this. Try going a step lower, on animations, even a 20% reduction can make a huge difference in memory consumption, while not being a huge difference in resolution.

Also watch out that other programs on your computer aren’t hogging all the RAM. Web browsers and chat programs tend to be the biggest culprits here, especially if you are streaming music or videos. If you are hurting for memory, see if you can get these functions to work on a separate device like a phone instead.

Another thing you will want to do is make a ton of backups. Every time you hit an important section with an animation, like you finished the line art, or you did a pretty tricky section, you will want to use File ‣ Incremental Backup to make a separate copy of the current file to continue working in. This way, if the animation file gets corrupt, which could happen due to a power outage, or a cat jumping on the keyboard, you will still have a snapshot of the last important section. Other backup techniques, like copying the files to a cloud service, or to a backup hard drive are also very recommended.

팁

And while we’re at it, whenever you’ve hit a milestone, don’t forget to take a break as well! Doing big projects like animations take a lot of effort and concentration, so taking breaks is important to recharge yourself.

When you are done, you will want to use Render Animation again. Now either export a frame sequence or a small video file, and then compose all the frame sequences and video files together in the video editor. Then you can render it to WebM, and upload it to your favorite video hosting website.

This may all seem a little complicated, but if your computer doesn’t have a lot of resources, you have got to be resourceful yourself!

Introduction to animation: How to make a walk cycle

The best way to get to understand all these different parts is to actually use them. Walk cycles are considered the most basic form of a full animation, because of all the different parts involved with them. Therefore, going over how one makes a walk cycle should serve as a good introduction.

설정

First, we make a new file. On the first tab, we type in a nice ratio like 1280×1024, set the dpi to 72 (we’re making this for screens after all) and title the document ‘walk cycle’.

In the second tab, we choose a nice background color, and set the background to canvas-color. This means that Krita will automatically fill in any transparent bits with the background color. You can change this in Image ‣ Image Properties. This is very useful for animation, as the layer you do animation on must be semi-transparent to get onion skinning working.

참고

Krita에는 새 문서 만들기 화면 등에 다양한 메타데이터 기능이 있습니다. 제목을 입력하면 저장할 때 자동으로 제안하며, 설명은 데이터베이스에서 사용하거나 개인적인 주석을 남길 수 있습니다. 개인 단위로 작업할 때에는 일부 사용자만 사용하지만, 큰 그룹으로 작업할 때에는 유용할 수 있습니다.

그 다음 만들기 단추를 누르십시오!

Then, to get all the necessary tools for animation, select the animation workspace in Window ‣ Workspace ‣ Animation

그럼 다음과 같이 나타납니다:

[image: ../_images/Introduction_to_animation_01.png]

The animation workspace adds the Animation Timeline Docker at the bottom.

애니메이팅

Make sure there’s two transparent layers setup in the layer docker. You can add a new layer by pressing the + or by pressing ins. Let’s name the bottom one ‘environment’ and the top walkcycle by double-clicking their names in the layer docker.

[image: Layout of the layer stack.]

Use the Straight Line Tool to draw a single horizontal line. This is the ground.

[image: Our simple environment, consisting of a single horizon.]
Then, select the walkcycle layer and draw a head and torso (you can use any brush for this).

[image: A head and torso.]
Now, selecting a new frame will not make a new frame automatically. Krita doesn’t actually see the walkcycle layer as an animated layer at all!

We can make it an animated layer by adding a frame to the timeline. A frame in the timeline to get a context menu. Select Create Duplicate Frame ([image: duplicateframe]).

주의

빈 프레임 만들기를 선택하면 레이어의 모든 내용을 삭제하고 새 빈 프레임이 나타납니다. 하지만 지금은 이미지를 보존해야 하기 때문에 복제 프레임 만들기를 선택해야 합니다.

[image: Location of the onion skin icon.]
You can see it has become an animated layer because of the onion skin icon ([image: onionon]) showing up in the timeline docker.

Use the Create Duplicate Frame button to copy the first frame onto the second. Then, use the 이동 도구 (switch to it using the T shortcut) with the Shift + ↑ shortcut to move the frame contents up.

We can see the difference by turning on the onion skinning (press the [image: onionoff], so it becomes [image: onionon]):

[image: Onion skin is turned on.]

[image: The current frame in black and the silhouette of the previous frame in red.]

이전 프레임이 빨간색으로 표시됩니다.

경고

Krita는 흰색을 투명도가 아니라 색상으로 인식하기 때문에 작업 중인 애니메이션 레이어에 그림이 없는 부분의 색상값은 투명해야 합니다. 색상을 알파로 필터를 사용해 이런 상황을 수정할 수는 있지만 이런 상황 자체를 만들지 않는 게 가장 좋습니다.

[image: Current frame is black and silhouette of the future frame is green.]

이후 프레임들은 녹색으로 표시되며 어니언 스킨 도커에서 이 두 색상을 설정할 수 있습니다.

Now, we’re going to draw the two extremes of the walk cycle. These are the pose where both legs are as far apart as possible, and the pose where one leg is full stretched and the other pulled in, ready to take the next step.

[image: ../_images/Introduction_to_animation_09.png]

The above image shows our two extremes: legs far apart, and one leg straight while the other is bent, as it’s taking a step. This also shows the power of onion skins, as we can see both extremes at once.
Notice also how the legs have been made semi-transparent. This isn’t necessary with a stick figure, but useful in this case when we start copying.

Let’s copy these two. You can do this by doing [image: mouseright] on the frame, and then selecting Copy Keyframes. Then select the new position in the time line, [image: mouseright] again, and Paste Keyframes.

자, 그러면…

	프레임 0을 프레임 2에 복사합니다.

	프레임 1을 프레임 3에 복사합니다.

	Erase the semi transparent lines to make it obvious which leg is in front of the other. In 0 and 1, we have the closer leg to the right, then bend, and in 2 and 3, we have the further leg to the right and then bend.

[image: ../_images/Introduction_to_animation_10.png]

	In the animation settings, set the frame-rate to 4

[image: ../_images/Introduction_to_animation_11.png]

	드래그하여 타임라인 도커의 모든 프레임을 선택합니다.

[image: ../_images/Introduction_to_animation_12.png]

	Press play in the header.

	첫 애니메이션을 즐기세요!

[image: ../_images/animation_walkcycle_2021_4_frames.gif]

Expanding upon your rough walk cycle

[image: ../_images/Introduction_to_animation_13.png]
You can quickly make some space by the Alt + drag shortcut on any frame. This’ll move that frame and all others after it
in one go. More efficient for us, however, is to select all frames, [image: mouseright] them, and then select Hold frames ‣ Insert Hold Frame, which will insert an empty space or Hold Frame in between each Keyframe.

Make new frames in between each keyframe, and try to interpolate, or inbetween each frame you add.

참고

A lot has been written about how to inbetween properly, and it’s one of the areas where animators express their own style the clearest. As such, we won’t cover inbetweening itself here. We recommend you do a search for inbetweening tutorials on the internet. We also recommend animation analyses to get an idea of how intricate this subject is.

For this particular example, I prefer to start by finding the position of the heel in a frame, then draw the rest of the foot, then the knees, and then the rest of the legs.

[image: ../_images/Introduction_to_animation_14.png]
[image: ../_images/Introduction_to_animation_13.png]
You’ll find that the more frames you add, the more difficult it becomes to keep track of the animation. There are two things you can do here. The first is to color label frames, you can do [image: mouseright] on the keyframes, and select any of the colors on the bottom.

[image: ../_images/Introduction_to_animation_13b.png]

In this example, the extremes are blue, the first inbetweens green and the less important inbetweens in yellow and orange.

Another thing you can do is to adjust the onion skins.

You can modify the onion skin by using the Onion Skin Docker, where you can change how many frames are visible at once, by toggling them on the top row. The bottom row is for controlling transparency, while below there you can modify the colors and intensity of the coloring.

[image: ../_images/Introduction_to_animation_15.png]

[image: ../_images/Introduction_to_animation_14b.png]

Here we’ve turned off all onion skinned frames except the next and previous ones.

여러 레이어로 애니메이션 만들기

Okay, our walk cycle is missing some hands, let’s add them on a separate
layer. So we make a new layer, and name it hands and…

[image: ../_images/Introduction_to_animation_16.png]
Our walk cycle is gone from the timeline docker! This is a feature
actually. A full animation can have so many little parts that an
animator might want to remove the layers they’re not working on from the timeline docker.

버전 4.3.0에 추가: Krita 4.3.0 이상 버전에서는 기본값으로 모든 레이어를 타임라인에 고정합니다.

To show a layer whether it’s active or not, you can “pin” it to the
timeline by clicking the [image: pintimeline] icon while having the layer you want pinned selected in the layer docker. We recommend pinning any layers that you’re currently animating on.

[image: ../_images/Introduction_to_animation_17.png]
[image: ../_images/Introduction_to_animation_18.png]

내보내기

When you are done, select File ‣ Render Animation. To render to a video file, you’ll need a program called FFmpeg. To learn more, please read 애니메이션 렌더.

Enjoy your walk cycle!

[image: ../_images/Introduction_to_animation_walkcycle_02.gif]

Animating with transform masks

버전 5.0에 추가.

If you want to move your walk cycle, you may use Transform Masks to move the frames from left to right without editing the pixels themselves.

First, open up the Animation Curves Docker if it has not been opened yet, under Settings ‣ Dockers ‣ Animation Curves.

Then, group the layers that you want to transform, in our example, these are the hands and the walkcycle layers. [image: mouseright] the group, Add ‣ Transform mask.

Then, go into the animation docker, select the first frame, and select Adds keyframe to control scalar property ([image: scalaradd]). In the Timeline Docker, Scalar Frames will be marked with a diamond.

Now select the 변형 도구, press the screen and move the group to the start point. Press Enter to confirm. Select the last frame in the docker, and then press the screen again, now move everything to the end point. Press Zoom view to fit channel range to view the whole frame.

Now, when you press play, you will see the layer contents move. However, it is probably moving too fast. There are two things to reduce that problem: The first is to copy and paste the walk cycle frames, so it repeats 3-4 times, then move the scalar frame to the last frame.

[image: ../_images/Introduction_to_animation_19.png]
[image: ../_images/introduction_to_animation_walkcycle_03_simple_tween.gif]
This still doesn’t sync the walk cycle directly to the speed it’s moving at. The best method, if a little laborious, is to go to the first frame where one of the feet touches the ground, and then mark that section (for example, using guides), then, in subsequent frames, use the Transform Tool on each frame to move it so that the foot stays in the same place as long as it’s touching the ground. Do the same for the next bit where a foot touches the ground, and the next, and so on.

[image: ../_images/Introduction_to_animation_20a.png]

Each place where a foot touches the ground is marked using vertical guides, which allows us to adjust each frame, so the foot stays in place.

[image: ../_images/Introduction_to_animation_20b.png]

[image: ../_images/Introduction_to_animation_20c.png]

The animation curve docker after adjusting each frame to be in the right spot. Krita can do curve interpolation (so you can create an ease-in and ease-out type curves), but for a situation like this, per-frame adjustment is quicker.

After having done all that, you will end up with a smoothly moving walk cycle:

[image: ../_images/introduction_to_animation_walkcycle_03_adjusted_tween.gif]

더 보기

	Animation Timeline Docker

	Onion Skin Docker

	Animation Curves Docker

	Storyboard Docker

	Import Animation

	Audio for Animation

	애니메이션 렌더

	Japanese Animation Template

Japanese Animation Template

This template is used to make Japanese-style animation. It is designed
on the assumption that it was used in co-production, so please customize
its things like layer folders according to scale and details of your
works.

Basic structure of its layers

Layers are organized so that your work will start from lower layers go
to higher layers, except for coloring layers.

[image: ../_images/Layer_Organization.png]

Its layer contents

from the bottom

	Layout Paper
	These layers are a form of layout paper. Anime tap holes are prepared on separate layers in case you have to print it out and continue your drawing traditionally.

	Layout (Background)
	These layers will contain background scenery or layouts which are scanned from a traditional drawing. If you don’t use them, you can remove them.

	Key drafts
	These layers are used to draw layouts digitally.

	키
	Where you add some details to the layouts and arrange them to draw “keys” of animation.

	Inbetweening
	Where you add inbetweens to keys for the process of coloring, and remove unnecessary details to finalize keys (To be accurate, I finish finalization of keys before beginning to add inbetweens).

	Coloring (under Inbetweening)
	Where you fill areas with colors according to specification of inbetweens.

	Time Sheet and Composition sheet
	This contains a time sheet and composition sheet. Please rotate them before using.

	Color set
	This contains colors used to draw main and auxiliary line art and fill highlight or shadows. You can add them to your palette.

Basic steps to make animation

Key draft –> assign them into Time sheet (or adjust them on Timeline, then assign them into Time sheet) –> adjust them on Timeline –> add frames to draw drafts for inbetweening if you need them –> Start drawing Keys

[image: ../_images/Keys_drafts.png]
You can add layers and add them to timeline.

[image: ../_images/Add_Timeline_1.png]
[image: ../_images/Add_Timeline_2.png]
This is due difference between 24 drawing per second, which is used in Full Animation, and 12 drawing per second and 8 drawings per second, which are used in Limited Animation, on the Timeline docker.

[image: ../_images/24_12_and_8_drawing_per_sec.png]
This is correspondence between Timeline and Time sheet. “Black” layer is to draw main line art which are used ordinary line art, “Red” layer is to draw red auxiliary line art which are used to specify highlights, “Blue” layer is to draw blue auxiliary line art which are used to specify shadows, and “Shadow” layer is to draw light green auxiliary line art which are used to specify darker shadows. However, probably you have to increase or decrease these layers according to your work.

[image: ../_images/Time_sheet_1.png]
Finished keys, you will begin to draw the inbetweens. If you feel Krita is becoming slow, I recommend you to merge key drafts and keys, as well as to remove any unnecessary layers.

After finalizing keys and cleaning up unnecessary layers, add inbetweens, using Time sheet and inbetween drafts as reference.

This is its correspondence with Time sheet.

[image: ../_images/Inbetweening.png]
Once the vector functionality of Krita becomes better, I recommend you to use vector to finalize inbetweening.

If you do the colors in Krita, please use Coloring group layer. If you do
colors in other software, I recommend to export frames as .TGA files.

해상도

I made this template in 300 dpi because we have to print them to use them in traditional works which still fill an important role in Japanese Anime Studio. However, if you stick to digital, 150-120 dpi is enough to make animation. So you can decrease its resolution according to your need.

Originally written by Saisho Kazuki, Japanese professional animator, and translated by Tokiedian, KDE contributor.

색역 마스크

버전 4.2에 추가.

Gamut masking is an approach to color formalized by James Gurney, based on the idea that any color scheme can be expressed as shapes cut out from the color wheel.

It originates in the world of traditional painting, as a form of planning and premixing palettes. However, it translates well into digital art, enabling you to explore and analyze color, plan color schemes and guide your color choices.

How does it work?

You draw one or multiple shapes on top of the color wheel. You limit your color choices to colors inside the shapes. By leaving colors out, you establish a relationship between the colors, thus creating harmony.

Gamut masking is available in both the Advanced and Artistic Color Selectors.

더 보기

	Color Wheel Masking, Part 1 by James Gurney [https://gurneyjourney.blogspot.com/2008/01/color-wheel-masking-part-1.html]

	The Shapes of Color Schemes by James Gurney [https://gurneyjourney.blogspot.com/2008/02/shapes-of-color-schemes.html]

	Gamut Masking Demonstration by James Gurney (YouTube) [https://youtu.be/qfE4E5goEIc]

Selecting a gamut mask

For selecting and managing gamut masks open the Gamut Masks Docker: Settings ‣ Dockers ‣ Gamut Masks.

[image: ../_images/Krita_Gamut_Mask_Docker.png]

Gamut Masks docker

In this docker you can choose from several classic gamut masks, like the ‘Atmospheric Triad’, ‘Complementary’, or ‘Dominant Hue With Accent’. You can also duplicate those masks and make changes to them (3,4), or create new masks from scratch (2).

Clicking the thumbnail icon (1) of the mask applies it to the color selectors.

더 보기

	Gamut Masks Docker

In the color selector

You can rotate an existing mask directly in the color selector, by dragging the rotation slider on top of the selector (2).

The mask can be toggled off and on again by the toggle mask button in the top left corner (1).

[image: ../_images/GamutMasks_Selectors.png]

Advanced and Artistic color selectors with a gamut mask

더 보기

	Artistic Color Selector Docker

	고급 색상 선택기

Editing/creating a custom gamut mask

팁

To rotate a mask around the center point use the rotation slider in the color selector.

If you choose to create a new mask, edit, or duplicate selected mask, the mask template documents open as a new view (1).

There you can create new shapes and modify the mask with standard vector tools (Vector Graphics). Please note, that the mask is intended to be composed of basic vector shapes. Although interesting results might arise from using advanced vector drawing techniques, not all features are guaranteed to work properly (e.g. grouping, vector text, etc.).

경고

Transformations done through the transform tool or layer transform cannot be saved in a gamut mask. The thumbnail image reflects the changes, but the individual mask shapes do not.

You can Preview the mask in the color selector (4). If you are satisfied with your changes, Save the mask (5). Cancel (3) will close the editing view without saving your changes.

[image: ../_images/Krita_Gamut_Mask_Docker_2.png]

Editing a gamut mask

Importing and exporting

Gamut masks can be imported and exported in bundles in the Resource Manager. See Resource Management for more information.

일반적 개념

Krita에 한정된 것이 아닌 일반적인 미술과 기술 개념을 알아봅니다.

목차:

	Colors
	Bit Depth

	Color Managed Workflow

	Mixing Colors

	Color Models

	Color Space Size

	Gamma and Linear

	Profiling and Calibration

	Scene Linear Painting

	Viewing Conditions

	파일 형식
	압축

	Metadata

	Openness

	Contents

	Perspective Projection
	정사형

	Oblique

	Axonometric

	Perspective Projection

	Practical

	Conclusion and afterthoughts

Colors

Okay, so… Let’s talk colors!

Colors are pretty, and they’re also pretty fundamental to painting. When painting, we want to be able to access and manipulate colors easily to do fun stuff like mixing them together or matching them to create visual harmony or contrast. We also want to be able to quickly find our favorite shades of red or favorite tints of blue without thinking or working too hard. All of this becomes even more important the more colors we have access to!

Naturally, the first thing we do is organize the colors, usually based on what we see in nature. For example, we tend to order hues in the order that they appear in a rainbow, and we think about brightness of values as a tonal range from white to black. Of course, nature itself is tied to physics, and the order of hues and the concept of brightness has everything to do with the wavelength and energy of light as it bounces around and eventually enters our eyes.

[image: ../_images/Krita_color_mixing_natural_order.png]
In the case of traditional media, we order the colors (hues) by how they result from mixes of other colors, starting with the subtractive primary colors: cyan, magenta, yellow. Mixing each primary color with each other reveals three secondary colors: violet, orange, and green. Mixing between those colors creates tertiary colors, and so on - the variations of hues between each named color are practically limitless! Thinking of colors in this way creates a circle of hues that artists call “the color wheel”! Each one of these hues can be made lighter (tint) or darker (shade) by mixing with white or black, respectively, and any color can be made less saturated (more gray or muted) by mixing with another color on the opposite side of the color wheel.

[image: ../_images/Krita_color_mixing_traditional_order.png]
In the digital world of computers color is treated similarly, and we order colors by the way the screen generates them; each pixel of color on our screen is produced by combining super tiny red, green, and blue lights of varying intensities. Unlike mixing paint, where light intensity is subtracted by pigment and mixing all the colors together produces a muddy brown or gray, mixing lights is additive - no light at all is obviously black, and mixing all of the colored lights produces white. As such, we can make a list of possible primary color intensities:

[image: ../_images/percentages_red.svg]Shown above is a table of different intensities of red light. Our screens can certainly create a lot of shades of red, but we only start to see the power of pixels when we add in the other primary colors, green and blue, and show the colors of light that are produced when they are added together! For example, here’s a table showing various mixes of red and green:

[image: ../_images/percentages_red_green.svg]But that’s just red and green, what about blue? I guess we can make even more tables to show what happens when different amounts of blue are added into the mix:

[image: ../_images/percentages_red_green_blue.svg]This way of ordering colors is probably familiar to you if you have used some programs for making internet applications, like Flash. In fact, if we had made 6 samples instead of 5 per “channel” (that is, per each primary color), we’d have gotten the 216 websafe colors [https://websafecolors.info/color-chart]!

Showing the colors in a bunch of tables just feels wrong, though, doesn’t it? That’s because, while our tables are 2D, as we are mixing three primary colors, color can be thought of as 3D! It’s a bit odd the first time you think about it this way, but you can actually stack these tables based on the amount of blue and they become a cube!

[image: ../_images/Rgbcolorcube_2.png]
This cube is not filled with water, or sand, or even concrete, but colors! Colors are pretty abstract, and we typically talk about cubes and other 3D objects that represent abstract ideas as spaces, hence we call this cube a color space. Because this particular cube uses red, green, and blue as its axes, we say that our cube is in the RGB color model.

There are many more color models. For example, if we were to balance our cube on the black corner, the white corner would be right under our finger at the very top of the cube. And as geometry and maths would have it, if we were to cut the cube in half as we balanced it, the line from the white point at the top to the black point at the bottom would be the grayscale.

[image: ../_images/Rgbcolorcube_HSI.png]
When you think about a strip of grays running through the middle of the cube, as we move farther away from that grayscale towards the outer edges of the cube the colors would begin to become more saturated (colorful and vivid). The circle of colors around that middle axis of gray would then define the hue, with a different color in each direction.

This is the basic idea of the HSV, HSL, HSI, and HSY color models. This particular model is called HSI (hue, saturation, and intensity), because it maps each unique color to the intensity of the primary colored lights that mix to create them.

There are other color models, like L*a*b*, where we look at the corresponding gray value of a color first, and then try to describe it, not it terms of hue and saturation, but by how red, green, blue, and yellow it is. Because our brains cannot really comprehend a color that is both green and red, or yellow and blue, this makes them good polar opposites in a sliding scale. We call this a perceptual model, as it is based on how we see color instead of how the color is generated.

Color models describe color spaces, which, in turn, are all sorts of sizes and shapes as well. Krita allows you to do operations in different models and spaces, and we call this functionality “Color Management”.

Color Management is necessary for CMYK (subtractive) support, but outside of that, not many drawing or painting programs offer the feature, as some developers believe that artists have no need for such functionality. What a pity! Especially because Color Management allows for far more cool tricks than just basic CMYK support, and the ability to manipulate colors like a computer can is perhaps digital painting’s most unique quality!

As Krita is giving almost unprecedented control of color, this unfortunately means that there are little to no articles out there on how to use color management for artists or painters. And so, we made this category and hope to fill it up with relatively short articles explaining color-related concepts in a light-hearted and visual manner.

We recommend going over the color managed workflow page next - even if you don’t plan on using it, it will help make sense out of the many features related to colors and Color Management. Other than that, each article should stand on its own and can be taken in at your own direction and pace!

주제:

	Bit Depth

	Color Managed Workflow

	Mixing Colors

	Color Models

	Color Space Size

	Gamma and Linear

	Profiling and Calibration

	Scene Linear Painting

	Viewing Conditions

Bit Depth

Bit depth basically refers to the amount of working memory per pixel you reserve for an image.

Like how having a A2 paper in real life can allow for much more detail in the end drawing, it does take up more of your desk than a simple A4 paper.

However, this does not just refer to the size of the image, but also how much precision you need per color.

To illustrate this, I’ll briefly talk about something that is not even available in Krita:

Indexed Color

In older programs, the computer would have per image, a palette that contains a number for each color. The palette size is defined in bits, because the computer can only store data in bit-sizes.

[image: ../../_images/Kiki_lowbit.png]

	1bit
	Only two colors in total, usually black and white.

	4bit (16 colors)
	16 colors in total, these are famous as many early games were presented in this color palette.

	8bit
	256 colors in total. 8bit images are commonly used in games to save on memory for textures and sprites.

However, this is not available in Krita. Krita instead works with channels, and counts how many colors per channel you need (described in terms of ‘’bits per channel’’). This is called ‘real color’.

Real Color

[image: ../../_images/Rgbcolorcube_3.png]

1, 2, and 3bit per channel don’t actually exist in any graphics application out there, however, by imagining them, we can imagine how each bit affects the precision: Usually, each bit subdivides each section in the color cube meaning precision becomes a power of 2 bigger than the previous cube.

	4bit per channel (not supported by Krita)
	Also known as Hi-Color, or 16bit color total. A bit of an old system, and not used outside of specific displays.

	8bit per channel
	Also known as “True Color”, “Millions of colors” or “24bit/32bit”. The standard for many screens, and the lowest bit-depth Krita can handle.

	16bit per channel
	One step up from 8bit, 16bit per channel allows for colors that can’t be displayed by the screen. However, due to this, you are more likely to have smoother gradients. Sometimes known as “Deep Color”. This color depth type doesn’t have negative values possible, so it is 16bit precision, meaning that you have 65536 values per channel.

	16bit float
	Similar to 16bit, but with more range and less precision. Where 16bit only allows coordinates like [1, 4, 3], 16bit float has coordinates like [0.15, 0.70, 0.3759], with [1.0,1.0,1.0] representing white. Because of the differences between floating point and integer type variables, and because Scene-referred imaging allows for negative values, you have about 10-11bits of precision per channel in 16 bit floating point compared to 16 bit in 16 bit int (this is 2048 values per channel in the 0-1 range). Required for HDR/Scene referred images, and often known as ‘half floating point’.

	32bit float
	Similar to 16bit float but with even higher precision. The native color depth of OpenColor IO, and thus faster than 16bit float in HDR images, if not heavier. Because of the nature of floating point type variables, 32bit float is roughly equal to 23-24 bits of precision per channel (16777216 values per channel in the 0-1 range), but with a much wider range (it can go far above 1), necessary for HDR/Scene-referred values. It is also known as ‘single floating point’.

This is important if you have a working color space that is larger than your device space: At the least, if you do not want color banding.

And while you can attempt to create all your images a 32bit float, this will quickly take up your RAM. Therefore, it’s important to consider which bit depth you will use for what kind of image.

Color Managed Workflow

You may have heard that Krita has something called color-management. Or maybe you just wondered what all these ‘color model’ and ‘color profile’ things you can find in the menus mean. Color management is pretty useful for people who work in digital imaging professionally, and hopefully this page will explain why.

Basic Info

If you’ve never worked with color management before, and have no clue what it is, then know that you’ve probably been working in the 8bit RGB color space with the sRGB profile. This means you can choose for sRGB built-in or sRGB-elle-v2-srgbtrc.icc. With the new color space browser this profile is marked with (default) when using 8bit.

We’ll go into what these terms mean in the theory, but if you’re here only for trying to figure out which is the default, you now know it. Maybe, after reading this, you may feel like changing the default, to get new and interesting results from filters, blending modes, or just the color smudge brush.

What is the problem?

To explain the point of color management, you’d first need to learn which problem color management tries to solve.

Let us imagine a kinder garden:

The class of 28 children is subdivided in groups of 7. Each group has its own table.

The teacher gives them a painting assignment: They need to paint a red triangle, a blue square, a green circle and put a yellow border around the three.
The kids are very experienced with painting already, so the teacher can confidently leave the smarter ones to their own devices, and spent more time on those who need help.

The following results come from painting:

Even though all groups had the same assignment, each group’s result looks different.

[image: ../../_images/Krita_2_9_colormanagement_group1.png]

Group 1 had vermillion red, citron yellow and ultramarine blue to their disposal. This means their triangle looks nice and red, but their circle’s green is muddy. This is because ultramarine is too dark of a blue to create nice greens with.

[image: ../../_images/Krita_2_9_colormanagement_group2.png]

Group 2 had magenta red, citron yellow and cerulean blue. Magenta is a type of red that is closer to pink, opposed to vermillion, which is closer to orange. However, their green looks nice because cerulean is a much lighter blue.

[image: ../../_images/Krita_2_9_colormanagement_group3.png]

Group 3 had vermillion red, citron yellow, emerald green and cerulean blue. They didn’t mix their green, and thus ended up with a purer color.

[image: ../../_images/Krita_2_9_colormanagement_group4.png]

Finally, group 4 has vermillion red, citron yellow and cerulean blue. Their colors probably look like what you imagined.

Now, these are kindergarteners, so this isn’t the largest problem in the world. However, imagine that something like this happened at a printing company? Imagine four printers printing the same magazine with wildly different results? That would be disastrous!

For this purpose, we invented color management.

What is color management?

Color management is, dryly put, a set of systems that tries to have the same color translate properly between color devices.

It usually works by attempting to convert a color to the reference color space XYZ. XYZ is a coordinate system that has a spot for all colors that the average human eye can see.

From XYZ it can then be translated back into another device space, such as RGB (for screens), or CMYK (for printers).

Krita has two systems dedicated to color management. On the one hand, we have lcms2, which deal with ICC profiles, and on the other, we have OCIO, which deal with LUT color management.

To give a crude estimate, ICC profiles deal with keeping colors consistent over many interpretations of devices (screens, printers) by using a reference space, and OCIO deals with manipulating the interpretation of said colors.

Within both we can identify the following color spaces:

	Device spaces
	Device spaces are those describing your monitor, and have to be made using a little device that is called “colorimeter”. This device, in combination with the right software, measures the strongest red, green and blue your screen can produce, as well as the white, black and gray it produces. Using these and several other measurements it creates an ICC profile unique to your screen. You set these in Krita’s color management tab.
By default we assume sRGB for screens, but it’s very likely that your screen isn’t exactly fitting sRGB, especially if you have a high quality screen, where it may be a bigger space instead. Device spaces are also why you should first consult with your printer what profile they expect. Many printing houses have their own device profiles for their printers, or may prefer doing color conversion themselves.
You can read more about colorimeter usage here.

	Working spaces
	These are delivered alongside Krita for ICC, and downloadable from the OCIO website for OCIO. Working spaces are particularly nice to do color calculations in, which programs like Krita do often. It’s therefore recommended to have a working space profile for your image.

	Aesthetic or Look spaces
	These are special spaces that have been deformed to give a certain look to an image. Krita doesn’t deliver Look profiles for ICC, nor does it yet support Look spaces for OCIO.

Color managed workflow

Knowing this about these spaces of course doesn’t give you an idea of how to use them, but it does make it easier to explain how to use them. So let us look at a typical color management workflow:

[image: ../../_images/Krita-colormanaged-workflow_text.svg]
A typical example of a color managed workflow. We have input from scanners and cameras, which we convert to a working space that can be used between different editing software, and is converted to an output space for viewing on screen or printing.

In a traditional color managed workflow, we usually think in terms of real world colors being converted to computer colors and the other way around. So, for example photos from a camera or scanned in images. If you have a device space of such a device, we first assign said device space to the image, and then convert it to a working space.

We then do all our editing in the working space, and use the working space to communicate between editing programs. In Krita’s case, due to it having two color management systems, we use ICC profiles between programs like Gimp 2.9+, Inkscape, digiKam and Scribus, and OCIO configuration between Blender and Natron.

You also store your working files in the working space, just like how you have the layers unmerged in the working file, or have it at a very high resolution.

Sometimes, we apply aesthetic or ‘look’ spaces to an image as part of the editing process. This is rather advanced, and probably not something to worry about in Krita’s case.

Then, when we’re done editing, we try to convert to an output space, which is another device space. This can be CMYK for printers or a special screen RGB profile. When you are dealing with professional printing houses, it is best to ask them about this step. They have a lot of experience with doing the best conversion, and may prefer to do the conversion from your working space to the device space of their printers.

Another form of output is the way your screen displays the color. Unlike regular output, this one is done all the time during editing: After all, you need to be able to see what you are doing, but your screen is still a device with a device space, so it does distort how the image looks. In this manner, you can see your screen as a set of binoculars you have to look through to see your image at all.

Therefore, without a profiled monitor, you actually don’t know what the actual colors you are working with are like, because the computer doesn’t know the relevant properties of your screen. So if you profiled your monitor, give Krita the profile in the settings, and select the sRGB space to draw in, you are for the first time seeing the actual colors of the sRGB space.

So what does this mean?

[image: ../../_images/Krita-colormanaged-workflow_krita_text.svg]
When we paint from scratch, we can see our screen profile as the input space, because we use it to determine what colors to pick. This somewhat simplifies the workflow, but makes the screen profile and viewing conditions more important.

Now, photographers and people who do a tricky discipline of VFX called ‘color grading’ will go completely mad over trying to get the colors they put in to come out 100% correctly, and will even count in factors like the time of day and the color they painted their walls. For example, if the wall behind your computer is pure red, your eyes will adjust to be less sensitive to red, which means that the colors they pick in the program could come out redder. We call these the viewing conditions.

Thankfully, artists have to worry a slight bit less about this. As illustrations are fully handmade, we are able to identify the important bits and make appropriate contrasts between colors. This means that even if our images turn out to be slightly redder than intended, it is less likely the whole image is ruined. If we look back at the kindergarten example above, we still understand what the image was supposed to look like, despite there being different colors on each image. Furthermore, because the colors in illustrations are deliberately picked, we can correct them more easily on a later date. Yet, at the same time, it is of course a big drag to do this, and we might have had much more flexibility had we taken viewing conditions under consideration.

That said, for artists it is also very useful to understand the working spaces. Different working spaces give different results with filters and mixing, and only some working spaces can be used for advanced technology like HDR.

Similarly, Krita, as a program intended to make images from scratch, doesn’t really worry about assigning workspaces after having made the image. But because you are using the screen as a binocular to look at your image, and to pick colors, you can see your screen’s device space as an input space to the image. Hence why profiling your monitor and giving the profile to Krita in the settings can help with preparing your work for print and future ventures in the long run.

Overall, it is kinda useful to keep things like viewing conditions in the back of your mind. Many professional artists use a mid-gray color as their default canvas background because they find they create much more dynamic images due to having improved their viewing conditions. It is also why a lot of graphics programs, including Krita, come with a dark theme nowadays. (Though, of course this might also be because dark themes can be considered cool, who knows.)

ICC profiles

An ICC profile is a set of coordinates describing the extremities of the device space within XYZ, and it is the color management data you use to communicate your working space to printers and applications that are designed for the print industry, such as Gimp, Scribus, Photoshop, Illustrator, Inkscape, digiKam, RawTheraphee, etc. You have two types of ICC profiles:

	Matrix Shaper profiles
	These are delivered alongside Krita. Matrix shaper profiles are made by setting parameters and interpolating between these to get the exact size of the color space. Due to this, Krita’s color space browser can give you a lot of information on these profiles. Such profiles are also preferable as working space.

[image: ../../_images/Kiki_matrix_profile.png]

Matrix shaper profiles have a few parameters that describe the color space which are then interpolated between, this requires a lot of maths.

	cLUT profiles
	These are fairly rare, and primarily used to describe printer profiles, such as CMYK. cLUT, or Color Look-up Table profiles store far more data than Matrix shaper profiles, so they can hold data of little particularities caused by, for example, unexpected results from mixing pigments. This is a far more organic approach to describing a color space, hence why a lot of programs that don’t care for color management much don’t support these.

[image: ../../_images/Kiki_cLUTprofiles.png]

cLUT profiles work by holding tables of each color in a color space and their respective coordinates in a reference space. For CMYK this is typically L*A*B* and for the rest XYZ. These tables are tricky to make, which means these profiles are a lot rarer.

The interesting thing about ICC profiles is that your working space can be larger than your device space. This is generally not bad. However, when converting, you do end up with the question of how to translate the working space values.

	Perceptual
	This just squishes the values of the working space into the space it’s converted to. It’s a nice method to see all possible values in this, but not so good if you want accurate color reproduction. Use this if you want to see all colors in an image, or want to express all possible contrasts. Doesn’t work with Matrix Shaper profiles, defaults to relative colorimetric.

	절대적 색도계
	The opposite to Perceptual, Absolute colorimetric will attempt to retain all the correct colors at whatever cost, which may result in awful looking colors. Recommended only for reproduction work. Doesn’t work with Matrix Shaper profiles in Krita due to ICC v4 workflow standards.

	Relative Colorimetric
	An in between solution between perceptual and absolute, relative will try to fit whatever colors it can match between color spaces. It does this by aligning the white and black points. It cuts off the rest to their respective borders. This is what all matrix shaper profiles default to during conversion, because the ICC v4 workflow specifies to only use Relative Colorimetric for matrix shaper profiles.

	Saturation
	Does anything to retain colorfulness, even hue will be sacrificed. Used in infographics. Doesn’t work with Matrix Shaper profiles, defaults to relative colorimetric.

ICC profile version is the last thing to keep in mind when dealing with ICC profiles. Krita delivers both Version 2 and Version 4 profiles, with the later giving better results in doing color maths, but the former being more widely supported (as seen below in ‘Interaction with other applications’). This is also why Krita defaults to V2, and we recommend using V2 when you aren’t certain if the other programs you are using support V4.

LUT docker and HDR imaging

[image: ../../_images/LUT_Management_Docker.png]

The LUT 관리 is the second important bit of color management in Krita that is shared between Krita and programs like Blender, Natron and Nuke, and only uses Look Up Tables that are configured via a config file.

You can set the workingspace of the image under input color space, and the display to sRGB or your own LUT if you have added it to the configuration. View in this case is for proofing transforms to a certain display device.

Component, exposure, gamma, whitepoint and blackpoint are knobs which allows you to modify the display filter.

[image: ../../_images/Krita_HDR_1.svg]
As explained before, we can see our monitor as a telescope or binocular into the world of our picture. Which means it distorts our view of the image a little. But we can modify this binocular, or display filter to see our image in a different way. For example, to allow us to see the white in an image that are whiter than the white of our screen. To explain what that means, we need to think about what white is.

For example, white, on our monitor is full red, full green and full blue. But it’s certainly different from white on our paper, or the color of milk, white from the sun, or even the white of our cell-phone displays.

Black similarly, is brighter on a LCD display than a LED one, and incomparable with the black of a carefully sealed room.

This means that there’s potentially blacker blacks than screen black, and white whites than screen white. However, for simplicity’s sake we still assign the black-point and the white-point to certain values. From there, we can determine whether a white is whiter than the white point, or a black blacker than the black-point.

The LUT docker allows us to control this display-filter and modify the distortion. This is useful when we start modifying images that are made with scene referred values, such as HDR photos, or images coming out of a render engine.

[image: ../../_images/Krita_HDR2.svg]
So, for example, we can choose to scale whiter-than-screen-white to our screen-white so we can see the contrasts there.

The point of this is that you can take advantage of more lightness detail in an image. While you can’t see the difference between screen white and whiter-than-screen-white (because your screen can’t show the difference), graphics programs can certainly use it.

A common example is matching the lighting between a 3d model and a real world scene. Others are advanced photo retouching, with much more contrast information available to the user. In painting itself, this allows you to create an image where you can be flippant with the contrast, and allow yourself to go as bright as you’d like.

LUT docker manipulations are per view, so you can create a new view and set it to luminosity. This way you can see the image in both color as well as grayscale and keep a good eye on your values.

Another example is to carefully watch the gradients in a certain section.

Like ICC, the LUT Docker allows you to create a profile of sorts for your device. In this case it’s the ‘LUT’, which stands for ‘Look Up Table’, and which can be added to OCIO by modifying the configuration file. When OCIO is turned on, the configuration in Settings ‣ Configure Krita… ‣ Color Management is turned off, unless you are using the Internal color engine.

In summary

Krita has two modes of color management:

	ICC works in terms of spaces relative to the CIEXYZ space, and requires an ICC profile.

	OCIO works in terms of interpretation, and makes use of LUTs.

	both can be made with a colorimeter.

	If you want to have a properly color managed workflow, you have one made customary for the input device (your screen) and the output devices (your printer, or target screen). For web the output is always sRGB.

	Set up your screen profiles under Settings ‣ Configure Krita… ‣ Color management.

	Do NOT use screen profiles or other device profiles to draw in. Use a working space profile such as any of the ‘elle’ profiles for this, as the color maths will be much more predictable and pleasant. Krita will convert between your screen and working space on the fly, allowing you to pick the correct colors. This turns your screen into binoculars to view the image.

	Use the appropriate color management for the appropriate workflow. If you are working with Blender, you will be better off using OCIO, than ICC. If you are working with Scribus or Photoshop, use ICC.

Krita does a lot of color maths, often concerning the blending of colors. This color maths works best in linear color space, and linear color space requires a bit depth of at the least 16bit to work correctly. The disadvantage is that linear space can be confusing to work in.

If you like painting, have a decent amount of RAM, and are looking to start your baby-steps in taking advantage of Krita’s color management, try upgrading from having all your images in sRGB built-in to sRGB-v2-elle-g10.icc or rec2020-v2-elle-g10.icc at 16bit float. This’ll give you better color blending while opening up the possibility for you to start working in HDR!

참고

Some graphics cards, such as those of the NVidia-brand actually have the best performance under 16bit float, because NVidia cards convert to floating point internally. When it does not need to do that, it speeds up!

참고

No amount of color management in the world can make the image on your screen and the image out of the printer have 100% the same color.

Exporting

When you have finished your image and are ready to export it, you can modify the color space to optimize it:

If you are preparing an image for the web:

	If you use 16bit color depth or higher, convert the image to 8bit color depth. This will make the image much smaller.

	Krita doesn’t have built-in dithering currently, which means that 16 to 8bit conversions can come out a bit banded. But you can simulate it by adding a fill layer with a pattern, set this fill layer to overlay, and to 5% opacity. Then flatten the whole image and convert it to 8bit. The pattern will function as dithering giving a smoother look to gradients.

	If it’s a gray-scale image, convert it to gray-scale.

	If it’s a color image, keep it in the working space profile: Many web browsers these days support color profiles embedded into images. Firefox, for example, will try to convert your image to fit the color profile of the other monitor (if they have one). That way, the image will look almost exactly the same on your screen and on other profiled monitors.

참고

In some versions of Firefox, the colors actually look strange: This is a bug in Firefox, which is because its color management system is incomplete [https://ninedegreesbelow.com/galleries/viewing-photographs-on-the-web.html], save your PNG, JPG or TIFF without an embedded profile to work around this.

If you are preparing for print:

	You hopefully made the picture in a working space profile instead of the actual custom profile of your screen, if not, convert it to something like Adobe RGB, sRGB or Rec. 2020.

	Check with the printer what kind of image they expect. Maybe they expect sRGB color space, or perhaps they have their own profile.

Interaction with other applications

Blender

If you wish to use Krita’s OCIO functionality, and in particular in combination with Blender’s color management, you can try to have it use Blender’s OCIO config.

Blender’s OCIO config is under <Blender-folder>/version number/datafiles/colormanagement.
Set the LUT docker to use the OCIO engine, and select the config from the above path. This will give you Blender’s input and screen spaces, but not the looks, as those aren’t supported in Krita yet.

Windows Photo Viewer

You might encounter some issues when using different applications together. One important thing to note is that the standard Windows Photo Viewer application does not handle modern ICC profiles. Krita uses version 4 profiles; Photo Viewer can only handle version 2 profiles. If you export to JPEG with an embedded profile, Photo Viewer will display your image much too dark.

Example workflows

Here are some example workflows to get a feeling of how your color management workflow may look like.

As mentioned before, input for your screen is set via Settings ‣ Configure Krita… ‣ Color management, or via the LUT docker’s ‘screen space’. Working space is set via new file per document, or in the LUT docker via ‘input space’.

Webcomic

[image: ../../_images/Krita-colormanaged-workflow_webcomic.svg]
	입력
	Your screen profile. (You pick colors via your screen)

	Workingspace
	sRGB (the default screen profile) or any larger profile if you can spare the bit depth and like working in them.

	출력
	sRGB, ICC version 2, sRGB TRC for the internet, and a specialized CMYK profile from the printing house for the printed images.

Use the sRGB-elle-V2-srgbtrc.icc for going between Inkscape, Photoshop, Paint Tool SAI, Illustrator, Gimp, Manga Studio, Paintstorm Studio, MyPaint, Artrage, Scribus, etc. and Krita.

If you are using a larger space via ICC, you will only be able to interchange it between Krita, Photoshop, Illustrator, Gimp 2.9, Manga Studio and Scribus. All others assume sRGB for your space, no matter what, because they don’t have color management.

If you are going between Krita and Blender, Nuke or Natron, use OCIO and set the input space to ‘sRGB’, but make sure to select the sRGB profile for ICC when creating a new file.

For the final for the web, convert the image to sRGB 8bit, ‘srgbtrc’, do not embed the ICC profile. Then, if using PNG, put it through something like ‘pngcrush’ or other PNG optimizers. sRGB in this case is chosen because you can assume the vast majority of your audience hasn’t profiled their screen, nor do they have screens that are advanced enough for the wide gamut stuff. So hence why we convert to the screen default for the internet, sRGB.

인쇄

[image: ../../_images/Krita-colormanaged-workflow_print.svg]
	입력
	Your screen profile. (You pick colors via your screen)

	Workingspace
	sRGB or Rec. 2020 if you can afford the bit-depth being 16bit.

	출력
	Specialized CMYK profile from the printing house for the printed images.

The CMYK profiles are different per printer, and even per paper or ink-type so don’t be presumptuous and ask ahead for them, instead of doing something like trying to paint in any random CMYK profile. As mentioned in the viewing conditions section, you want to keep your options open.

You can set the advanced color selector to transform to a given profile via Settings ‣ Configure Krita… ‣ Color Selector Settings. There, tick Color Selector Uses Different Color Space than Image and select the CMYK profile you are aiming for. This will limit your colors a little bit, but keep all the nice filter and blending options from RGB.

게임

[image: ../../_images/Krita-colormanaged-workflow_games.svg]
	입력
	Your screen profile. (You pick colors via your screen)

	Workingspace
	sRGB or grayscale linear for roughness and specular maps.

	출력
	This one is tricky, but in the end it’ll be sRGB for the regular player.

So this one is tricky. You can use OCIO and ICC between programs, but recommended is to have your images to the engine in sRGB or grayscale. Many physically based renderers these days allow you to set whether an image should be read as a linear or ‘srgbtrc’ image, and this is even vital to have the images being considered properly in the physically based calculations of the game renderer.

While game engines need to have optimized content, and it’s recommended to stay within 8bit, future screens may have higher bit depths, and when renderers will start supporting those, it may be beneficial to develop a workflow where the working-space files are rather unnecessarily big and you run some scripts to optimize them for your current render needs, making updating the game in the future for fancier screens less of a drag.

Normal maps and heightmaps are officially supposed to be defined with a ‘non-color data’ working space, but you’ll find that most engines will not care much for this. Instead, tell the game engine not to do any conversion on the file when importing.

Specular, glossiness, metalness and roughness maps are all based on linear calculations, and when you find that certain material has a metalness of 0.3, this is 30% gray in a linear space. Therefore, make sure to tell the game engine renderer that this is a linear space image (or at the very least, should NOT be converted).

더 보기

	Visualizing the XYZ color space [https://www.youtube.com/watch?v=x0-qoXOCOow].

	Basics of gamma correction [https://www.cambridgeincolour.com/tutorials/gamma-correction.htm].

	Panda3D example of how an image that has gamma encoded without the 3D renderer being notified of it having gamma-encoding can result in too dark images [https://www.panda3d.org/blog/the-new-opengl-features-in-panda3d-1-9/].

	2D examples of the effect of gamma-encoding on color maths [https://ninedegreesbelow.com/photography/linear-gamma-blur-normal-blend.html].

	Basic overview of color management from ArgyllCMS manual [https://www.argyllcms.com/doc/ColorManagement.html].

Mixing Colors

Much like physical media, there are many ways to mix colors together in Krita. Traditional painters and illustrators often use techniques like glazing, scumbling, and hatching to mix colors directly on their canvas, on top of mixing colors together on a palette or even within the hairs of their brush. With a little bit of practice and know-how, and thanks to the variety of powerful tools in Krita, we can mimic all of these mixing techniques in digital painting.

In both traditional and digital painting, mixing techniques can be divided into two major categories: let’s call them “on-canvas” and “off-canvas”.

On-Canvas Mixing

On-canvas mixing techniques are ones where multiple colors are combined directly on the canvas as the artist paints. This takes a few forms, including layering semi-transparent color on top of another color, using texture to change how a color is perceived, or even in the interaction between two areas of wet paint in traditional media. Bottom line: on-canvas mixing happens right on the canvas and is a great tool for artistic exploration and “happy accidents”.

Glazing

[image: ../../_images/Color_gloss.gif]
In traditional painting, glazing is overlaying many different semi-transparent layers to create on-canvas color mixtures. Likewise, in digital painting we can also use glazing to mix colors directly on our canvas. This is one of the most fundamental and commonly used mixing techniques in digital painting.

We first lay down a semi-transparent layer on top of another color that we intend to mix with. Then, we pick the resultant color with the Ctrl + [image: mouseleft] shortcut (this can be configured in the canvas input settings), and paint with that. Depending on our brush’s opacity setting, each time we glaze one color over another we will get a color that is somewhere between those two colors, often leading to a nice mixture.

We can mix even more easily with glazing when we set our brush’s flow to a lower setting. Subtly different than opacity, flow is transparency per dab instead of stroke, and so it gives us softer strokes without giving up control.

Furthermore, we can combine glazing with various blending modes to achieve different, interesting effects. For example, glazing with the multiply blending mode to create nice shadows:

[image: ../../_images/Color_gloss_example_1.png]
Staring with line art and base colors.

[image: ../../_images/Color_gloss_example_2.png]
Using a semi-transparent brush that’s set to multiply, we can add colored layers to suggest shadows and mid-tones. The multiply blending mode will darken and interact with each base color differently.

[image: ../../_images/Color_gloss_example_3.png]
Then, using a brush with low flow (~0.30), we can pick the resulting colors and lay down more layers. Not only does this help you define the different planes and forms that are so crucial for creating a sense of depth and three-dimensionality, it also gives quite a nice, painterly effect!

[image: ../../_images/Color_gloss_example_4.png]
Continue with a lower opacity and flow to create even smoother gradients. Make your edges as sharp or smooth as your subject matter and art style demands!

Smudging

[image: ../../_images/Color_mix.gif]
Smudge mixing is done with the Color Smudge Brush Engine, a special brush engine that allows you to mix your current brush color with the color(s) under the brush. It’s a very powerful type of brush that gives a lovely painterly effect. Performance wise, it’s a bit more demanding and slower than the regular pixel brush.

If you remove all paint from a smudge brush, you get a simple-yet-powerful smudge effect:

[image: ../../_images/Color_smudge.gif]
Different smudge brushes have different effects, so be sure to try them all out!

Scumbling

Scumbling is similar to glazing, except instead of having a semi-opaque layer, we use layers of textured or patterned paint.

[image: ../../_images/Color_scumble2.gif]
Like most painting programs, Krita allows you to pick a 브러시 모양, which can be used to create a textured effect like that of scumbling.

[image: ../../_images/Color_scumble.gif]
Krita’s brush engines also allow you to use 텍스처. This allows you to create interesting and stylized screentone-like effects.

With glazing can get you pretty far when it comes to defining planes and forms, scumbling is the best method to create texture and to break up big pasty flats in your painting.

Off-Canvas Mixing

Off-canvas mixing has basically always been a core tool for artists everywhere; when we think of the stereotypical artist we might imagine someone with a few brushes in one hand and a wooden palette in the other. Whether it’s oils, watercolor, or other traditional media, for the artist to have absolute control over their colors it’s crucial to have some kind of palette, plate, jar, or other off-canvas area to mix colors together. While it’s easy to overlook this in digital painting (where selecting fresh new colors without mixing at all is both easy and free), Krita has a few very useful and unique features for off-canvas mixing.

Color Sampler Blending

버전 4.1에 추가.

Krita, like almost every art and graphics program, has a 색상 표본 추출기 도구 which allows you to very quickly sample a color from any pixel on your canvas. While this tool may seem relatively simple and humble, it is also one of the most important and commonly used tools in the digital artist’s toolbox - perhaps only second to the brush! In fact, the color sampler tool is at the very heart of mixing colors, and is often used in combination with on-canvas techniques like glazing and scumbling to produce smooth blends of color.

And still, there is more to this little tool than meets the eye! Not only can you configure Krita’s color sampler to sample from the average color of a radius of pixels, Krita’s Color Sampler also has a unique blending feature: a powerful and intuitive tool for off-canvas color mixing!

[image: ../../_images/Krita_cpb_mixing.gif]
The Color Sampler Blending feature changes the way that picking colors has traditionally worked for decades; instead of completely replacing your current brush color with the newly sampled color, blending allows you to quickly “soak up” some portion of the sampled color, which is then mixed with your current brush color.

You can use Color Sampler Blending much like a physical paint brush in traditional media. If you were to dip your paint brush into a pool of blue paint, and then immediately dip again into a pool of red paint and paint a stroke across your canvas, the stoke wouldn’t be pure red - it would be some combination of blue and red which would mix to create an intermediate purple color. Which shade of purple would depend on the ratio of paints that mix together within the hairs of your brush, and this is essentially what the Color Sampler’s “blend” option controls: what percentage of sampled color is mixed together with your current brush color!

Not only does Krita’s Color Sampler Blending feel even more like mixing paints, it is also completely off-canvas and independent of opacity, flow, shape, and other brush settings. Furthermore, unlike most on-canvas mixing techniques, Color Sampler Blending works regardless of the location of colors on your canvas - enabling you to mix with colors at any position, on any layer, or even in different documents! Quickly mix lighting colors with local colors, mix the ambient sky color into shadows, create atmospheric depth, mix from a preselected palette of colors in another layer/document, etc.

To use Color Sampler Blending, simply set the “blend” option in the Tool Options Docker while the Color Sampler Tool is active; setting blend to 100% will cause your Color Sampler to work in the traditional way (completely replacing your brush color with the picked color), setting to around 50% will give you a half-way mix between colors, and setting to a lower value will create more subtle shifts in colors each click. Of course, blending affects both your dedicated Color Sampler Tool as well as the Ctrl + [image: mouseleft] shortcut.

참고

Clicking and dragging the Color Sampler around the canvas currently causes it to sample many times as it switches pixels. You can use this trait to quickly soak up more color by “dipping” your color sampler into color and swirling it around. This can be pretty satisfying! However, this also means that some care must be taken to prevent from accidentally picking up more color than you want. It’s pretty easy to click a single pixel only one time using a mouse, but when painting with a drawing tablet and pen it can sometimes be desirable to use a slightly lower blend setting!

The Digital Colors Mixer

Somewhat hidden away in the Dockers menu (Settings ‣ Dockers ‣ Digital Colors Mixer), this can be a useful tool for off-canvas mixing. The Digital Colors Mixer looks a little bit like an audio mixing board that you’d see in a recording studio, but instead of mixing music it mixes colors! It contains 6 independent color mixers that mix your current brush color with any color of your choosing.

[image: ../../_images/Digi_colormixer.png]
By clicking the color buttons below each mixer you can choose a palette of colors to mix with. Above each mixer is a color patch that will produce a color that mixes some amount of your current brush color with the palette color. Colors towards the top of the mixer will deliver subtle changes to your current color, while colors towards the bottom will be much closer to the palette color of that channel.

Other Tips

Outside of making it easier to create smooth gradients, mixing has another benefit: It allows you to create a cohesive piece.

Limiting the number of colors we use and then mixing tends to give a more cohesive palette, as we’re not trying to do too much at once. This cohesive palette in turn means it will become easier to create a certain mood in an image. Sometimes, mixing in a little bit of accent color can also create unexpected results which in turn can be a little discovery for the audience to delight over as they discover the world of your image.

What we can learn from this, is that the next time we select, say, gray, instead of reaching for a random or generic gray from the Advanced Color Selector, consider using one of Krita’s many wonderful mixing tools to create an interesting and fitting gray from hues that are roughly complementary (opposite each other on the hue wheel).

While on-canvas and off-canvas techniques are fundamentally different categories of mixing colors, they are not mutually exclusive. All of the mixing methods in this article have pros and cons; different tools can be useful for different situations, and combining various techniques can be extremely powerful and fun!

Finally, mixing colors will often go far better in a higher bit-depth like 16bit, though it’ll make the image take up much more working memory (RAM). Furthermore, using a linear color space can often give far better mixtures than a gamma-corrected one, though doing sketches and line art is easier to do in a gamma-corrected space.

Color Models

Krita has many different color spaces and models. Following here is a brief explanation of each, and their use-cases.

RGB

Red, Green, Blue.

These are the most efficient primaries for light-based color mixing, like computer screens. Adding Red, Green and Blue light together results in White, and is thus named the additive color wheel.

RGB is used for two purposes:

Images that are meant for viewing on a screen:

	So that could be images for the web, buttons, avatars, or just portfolio images.

	Or for Video games, both sprites and textures are best in RGB there.

	Or for 3d rendering, visual effects and cg animation.

And for the working space. A working space is an RGB gamut that is really large and predictable, meaning it’s good for image manipulation. You use this next to a profiled monitor. This way you can have precise colors while also being able to view them correctly on multiple screens.

Blending modes in RGB

	
	Color 1

	Color 2

	Normal

	Multiply

	Screen

	
	R

	G

	B

	R

	G

	B

	R

	G

	B

	R

	G

	B

	R

	G

	B

	R & G

	1.0

	0.0

	0.0

	0.0

	1.0

	0.0

	0.5

	0.5

	0.0

	0.0

	0.0

	0.0

	1.0

	1.0

	0.0

	회색

	0.5

	0.5

	0.5

	0.5

	0.5

	0.5

	0.5

	0.5

	0.5

	0.25

	0.25

	0.25

	0.75

	0.75

	0.75

RGB models: HSV, HSL, HSI and HSY

These are not included as their own color spaces in Krita. However, they do show up in the blending modes and color selectors, so a brief overview:

	Hue
	The tint of a color, or, whether it’s red, yellow, green, etc. Krita’s Hue is measured in 360 degrees, with 0 being red, 120 being green and 240 being blue.

	Saturation
	How vibrant a color is. Saturation is slightly different between HSV and the others. In HSV it’s a measurement of the difference between two base colors being used and three base colors being used. In the others it’s a measurement of how close a color is to gray, and sometimes this value is called Chroma. Saturation ranges from 0 (gray) to 100 (pure color).

	Value
	Sometimes known as Brightness. Measurement of how much the pixel needs to light up. Also measured from 0 to 100.

	Lightness
	Where a color aligns between white and black. This value is non-linear, and puts all the most saturated possible colors at 50. Ranges from 0 to 100.

	Intensity
	Similar to lightness, except it acknowledges that yellow (1,1,0) is lighter than blue (0,0,1). Ranges from 0 to 100.

	Luma (Y’)
	Similar to lightness and Intensity, except it weights the red, green and blue components based real-life measurements of how much light a color reflects to determine its lightness. Ranges from 0 to 100. Luma is well known for being used in film-color spaces.

Grayscale

This color space only registers gray values.
This is useful, because by only registering gray values, it only needs one channel of information, which in turn means the image becomes much lighter in memory consumption!

This is useful for textures, but also anything else that needs to stay grayscale, like Black and White comics.

	
	Color 1

	Color 2

	Normal

	Multiply

	Screen

	
	G

	G

	G

	G

	G

	회색

	0.5

	0.5

	0.5

	0.25

	0.75

CMYK

Cyan, Magenta, Yellow, Key

This is the color space of printers. Unlike computers, printers have these four colors, and adding them all adds up to black instead of white. This is thus also called a ‘subtractive’ color space.

버전 5.2에서 변경: Krita 5.1 and older had the blending modes apply direct on the channels. Not all software does this, and thus, to make it simpler to work together with other artists, Krita 5.2 by default inverts the channels before applying the blending mode. You can control this in the preferences.

	
	Color 1

	Color 2

	Normal

	Multiply

	Screen

	
	C

	M

	Y

	K

	C

	M

	Y

	K

	C

	M

	Y

	K

	C

	M

	Y

	K

	C

	M

	Y

	K

	R & G

	0.0

	1.0

	1.0

	0.0

	1.0

	0.0

	1.0

	0.0

	0.5

	0.5

	1.0

	0.0

	0.25

	0.25

	1.0

	0.0

	0.75

	0.75

	1.0

	0.0

	회색

	0.0

	0.0

	0.0

	0.5

	0.0

	0.0

	0.0

	0.5

	0.0

	0.0

	0.0

	0.5

	0.0

	0.0

	0.0

	0.25

	0.0

	0.0

	0.0

	0.75

There’s also a difference between ‘colored gray’ and ‘neutral gray’ depending on the profile.

	
	25%

	50%

	75%

	
	C

	M

	Y

	K

	C

	M

	Y

	K

	C

	M

	Y

	K

	Colored Gray

	0.25

	0.25

	0.25

	0.25

	0.5

	0.5

	0.5

	0.5

	0.75

	0.75

	0.75

	0.75

	Neutral Gray

	0.0

	0.0

	0.0

	0.25

	0.0

	0.0

	0.0

	0.5

	0.0

	0.0

	0.0

	0.75

[image: ../../_images/Cmyk_black_differences.png]

In Krita, there’s also the fact that the default color is a perfect black in RGB, which then gets converted to our default CMYK in a funny manner, giving a yellow look to the strokes. Again, another good reason to work in RGB and let the conversion be done by the printing house.

While CMYK has a smaller ‘gamut’ than RGB, however, it’s still recommended to use an RGB working space profile to do your editing in. Afterwards, you can convert it to your printer’s CMYK profile using either perceptual or relative colorimetric intent.
Or you can just give the workspace rgb image to your printer and let them handle the work.

YCrCb

Luminosity, Red-chroma, Blue-chroma

YCrCb stands for:

	Y’/Y
	Luma/Luminosity, thus, the amount of light a color reflects.

	Cr
	Red Chroma. This value measures how red a color is versus how green it is.

	Cb
	Blue Chroma. This value measures how blue a color is versus how yellow it is.

This color space is often used in photography and in (correct) implementations of JPEG. As a human you’re much more sensitive to the lightness of colors, and thus JPEG tries to compress the Cr and Cb channels, and leave the Y channel in full quality.

XYZ

Back in 1931, the CIE (Institute of Color and Light), was studying human color perception.
In doing so, they made the first color spaces, with XYZ being the one best at approximating human vision.

XYZ is used as a baseline reference for all other profiles and models. All color conversions are done in XYZ, and all profiles coordinates match XYZ. An RGB color space where Red is set to 100% X, Green is set to 100% Y and Blue is set to 100% Z, with the gamma correction being linear is in effect the same as an XYZ color space.

L*a*b*

A Color space based on the opposition theory of color vision, L*a*b* splits colors into the luminosity, red-green contrast and blue-yellow contrast:

	L*
	Lightness, similar to luminosity in this case.

	a*
	a* in this case is the measurement of how magenta a color is versus how green it is.

	b*
	b* in this case is a measurement of how yellow a color is versus how blue a color is.

L*a*b* is supposed to be a more comprehensible to use that XYZ. It’s often used as an in between color space in conversion, but even more as the correct color space to do color-balancing in. It’s far easier to adjust the contrast and color tone in L*a*b*.

L*a*b* is technically the same as Photoshop’s LAB. Photoshop specifically uses CIELAB d50.

Filters and blending modes

Maybe you have noticed that blending modes in LAB don’t work like they do in RGB or CMYK. This is because the blending modes work by doing a bit of maths on the color coordinates, and because color coordinates are different per color space, the blending modes look different.

Color Space Size

Using Krita’s color space browser, you can see that there are many different space sizes.

[image: ../../_images/Basiccolormanagement_compare4spaces.png]

How do these affect your image, and why would you use them?

There are three primary reasons to use a large space:

	Even though you can’t see the colors, the computer program does understand them and can do color maths with it.

	For exchanging between programs and devices: most CMYK profiles are a little bigger than our default sRGB in places, while in other places, they are smaller. To get the best conversion, having your image in a space that encompasses both your screen profile as your printer profile.

	For archival purposes. In other words, maybe monitors of the future will have larger amounts of colors they can show (spoiler: they already do), and this allows you to be prepared for that.

Let’s compare the following gradients in different spaces:

[image: ../../_images/Basiccolormanagement_gradientsin4spaces_v2.jpg]
[image: ../../_images/Basiccolormanagement_gradientsin4spaces_nonmanaged.png]
On the left we have an artifact-ridden color managed JPEG file with an ACES sRGBtrc v2 profile attached (or not, if not, then you can see the exact different between the colors more clearly). This should give an approximation of the actual colors. On the right, we have an sRGB PNG that was converted in Krita from the base file.

Each of the gradients is the gradient from the max of a given channel. As you can see, the mid-tone of the ACES color space is much brighter than the mid-tone of the RGB colorspace, and this is because the primaries are further apart.

What this means for us is that when we start mixing or applying filters, Krita can output values higher than visible, but also generate more correct mixes and gradients. In particular, when color correcting, the bigger space can help with giving more precise information.

If you have a display profile that uses a LUT, then you can use perceptual to give an indication of how your image will look.

Bigger spaces do have the downside they require more precision if you do not want to see banding, so make sure to have at the least 16bit per channel when choosing a bigger space.

Gamma and Linear

Now, the situation we talk about when talking theory is what we would call ‘linear’. Each step of brightness is the same value.
Our eyes do not perceive linearly. Rather, we find it more easy to distinguish between darker grays than we do between lighter grays.

As humans are the ones using computers, we have made it so that computers will give more room to darker values in the coordinate system of the image. We call this ‘gamma-encoding’, because it is applying a gamma function to the TRC or transfer function of an image. The TRC in this case being the Tone Response Curve or Tone Reproduction Curve or Transfer function (because color management specialists hate themselves), which tells your computer or printer how much color corresponds to a certain value.

[image: ../../_images/Pepper_tonecurves.png]

One of the most common issues people have with Krita’s color management is the assigning of the right colorspace to the encoded TRC. Above, the center Pepper is the right one, where the encoded and assigned TRC are the same. To the left we have a Pepper encoded in sRGB, but assigned a linear profile, and to the right we have a Pepper encoded with a linear TRC and assigned an sRGB TRC. Image from Pepper & Carrot [https://www.peppercarrot.com/].

The following table shows how there’s a lot of space being used by lighter values in a linear space compared to the default sRGB TRC of our modern computers and other TRCs available in our delivered profiles:

[image: ../../_images/trc_gray_gradients.svg]If you look at linear of Rec. 709 TRCs, you can see there’s quite a jump between the darker shades and the lighter shades, while if we look at the Lab L* TRC or the sRGB TRC, which seem more evenly spaced.
This is due to our eyes’ sensitivity to darker values. This also means that if you do not have enough bit depth, an image in a linear space will look as if it has ugly banding. Hence why, when we make images for viewing on a screen, we always use something like the Lab L*, sRGB or Gamma 2.2 TRCs to encode the image with.

However, this modification to give more space to darker values does lead to wonky color maths when mixing the colors.

We can see this with the following experiment:

[image: ../../_images/Krita_2_9_colormanagement_blending_1.png]

Left: Colored circles blurred in a regular sRGB space. Right: Colored circles blurred in a linear space.

Colored circles, half blurred. In a gamma-corrected environment, this gives an odd black border. In a linear environment, this gives us a nice gradation.

This also counts for Krita’s color smudge brush:

[image: ../../_images/Krita_2_9_colormanagement_blending_2.png]

That’s right, the ‘muddying’ of colors as is a common complaint by digital painters everywhere, is in fact, a gamma-corrected colorspace mucking up your colors. If you had been working in LAB to avoid this, be sure to try out a linear rgb color space.

What is happening under the hood

Imagine we want to mix red and green.

First, we would need the color coordinates of red and green inside our color space’s color model. So, that’d be…

	Color

	Red

	녹색

	Blue

	Red

	1.0

	0.0

	0.0

	녹색

	0.0

	1.0

	0.0

We then average these coordinates over three mixes:

	
	Red

	Mix1

	Mix2

	Mix3

	녹색

	Red

	1.0

	0.75

	0.5

	0.25

	0.0

	녹색

	0.0

	0.25

	0.5

	0.75

	1.0

	Blue

	0.0

	0.0

	0.0

	0.0

	0.0

But to figure out how these colors look on screen, we first put the individual values through the TRC of the color-space we’re working with:

[image: ../../_images/Basicreading3trcsv2.svg]Then we fill in the values into the correct spot. Compare these to the values of the mixture table above!

[image: ../../_images/red_green_mixes_trc.svg]And this is why color mixtures are lighter and softer in linear space. Linear space is more physically correct, but sRGB is more efficient in terms of space, so hence why many images have an sRGB TRC encoded into them.
In case this still doesn’t make sense: sRGB gives largely darker values than linear space for the same coordinates.

So different TRCs give different mixes between colors, in the following example, every set of gradients is in order a mix using linear TRC, a mix using sRGB TRC and a mix using Lab L* TRC.

[image: ../../_images/3trcsresult.png]
So, you might be asking, how do I tick this option? Is it in the settings somewhere? The answer is that we have several ICC profiles that can be used for this kind of work:

	scRGB (linear)

	All ‘elle’-profiles ending in ‘g10’, such as sRGB-elle-v2-g10.icc.

In fact, in all the ‘elle’-profiles, the last number indicates the gamma. 1.0 is linear, higher is gamma-corrected and ‘srgbtrc’ is a special gamma correction for the original sRGB profile.

If you use the color space browser, you can tell the TRC from the ‘estimated gamma’(if it’s 1.0, it’s linear), or from the TRC widget in Krita 3.0, which looks exactly like the curve graphs above.

Even if you do not paint much, but are for example making textures for a videogame or rendering, using a linear space is very beneficial and will speed up the renderer a little, for it won’t have to convert images on its own.

The downside of linear space is of course that white seems very overpowered when mixing with black, because in a linear space, light grays get more room. In the end, while linear space is physically correct, and a boon to work in when you are dealing with physically correct renderers for videogames and raytracing, Krita is a tool and no-one will hunt you down for preferring the dark mixing of the sRGB TRC.

Profiling and Calibration

So to make it simple, a color profile is just a file defining a set of colors inside a pure XYZ color cube.
This “color set” can be used to define different things:

	the colors inside an image

	the colors a device can output

Choosing the right workspace profile to use depends on how much colors you need and on the bit depth you plan to use.
Imagine a line with the whole color spectrum from pure black (0,0,0) to pure blue (0,0,1) in a pure XYZ color cube.
If you divide it choosing steps at a regular interval, you get what is called a linear profile, with a gamma=1 curve represented as a straight line from 0 to 1.
With 8bit/channel bit depth, we have only 256 values to store this whole line.
If we use a linear profile as described above to define those color values, we will miss some important visible color change steps and have a big number of values looking the same (leading to posterization effect).

This is why was created the sRGB profile to fit more different colors in this limited amount of values, in a perceptually regular grading, by applying a custom gamma curve (see picture here: https://en.wikipedia.org/wiki/SRGB) to emulate the standard response curve of old CRT screens.
So sRGB profile is optimized to fit all colors that most common screen can reproduce in those 256 values per R/G/B channels.
Some other profiles like Adobe RGB are optimized to fit more printable colors in this limited range, primarily extending cyan-green hues. Working with such profile can be useful to improve print results, but is dangerous if not used with a properly profiled and/or calibrated good display.
Most common CMYK workspace profile can usually fit all their colors within 8bit/channel depth, but they are all so different and specific that it’s usually better to work with a regular RGB workspace first and then convert the output to the appropriate CMYK profile.

Starting with 16bit/channel, we already have 65536 values instead of 256, so we can use workspace profiles with higher gamut range like Wide-gamut RGB or Pro-photo RGB, or even unlimited gamut like scRGB.

But sRGB being a generic profile (even more as it comes from old CRT specifications…), there are big chances that your monitor have actually a different color response curve, and so color profile.
So when you are using sRGB workspace and have a proper screen profile loaded (see next point), Krita knows that the colors the file contains are within the sRGB color space, and converts those sRGB values to corresponding color values from your monitor profile to display the canvas.

Note that when you export your file and view it in another software, this software has to do two things:

	read the embed profile to know the “good” color values from the file (which most software do nowadays; when they don’t they usually default to sRGB, so in the case described here we’re safe)

	and then convert it to the profile associated to the monitor (which very few software actually does, and just output to sRGB.. so this can explain some viewing differences most of the time).

Krita uses profiles extensively, and comes bundled with many.

The most important one is the one of your own screen. It doesn’t come bundled, and you have to make it with a color profiling device.
In case you don’t have access to such a device, you can’t make use of Krita’s color management as intended. However, Krita does allow the luxury of picking any of the other bundled profiles as working spaces.

Profiling devices

Profiling devices, called Colorimeters, are tiny little cameras of a kind that you connect to your computer via an usb, and then you run a profiling software (often delivered alongside of the device).

참고

If you don’t have software packaged with your colorimeter, or are unhappy with the results, we recommend ArgyllCMS [https://www.argyllcms.com/].

The little camera then measures what the brightest red, green, blue, white and black are like on your screen using a predefined white as base. It also measures how gray the color gray is.

It then puts all this information into an ICC profile, which can be used by the computer to correct your colors.

It’s recommended not to change the “calibration” (contrast, brightness, you know the menu) of your screen after profiling. Doing so makes the profile useless, as the qualities of the screen change significantly while calibrating.

To make your screen display more accurate colors, you can do one or two things:
profile your screen or calibrate and profile it.

Just profiling your screen means measuring the colors of your monitor with its native settings and put those values in a color profile, which can be used by color-managed application to adapt source colors to the screen for optimal result.
Calibrating and profiling means the same except that first you try to calibrate the screen colors to match a certain standard setting like sRGB or other more specific profiles.
Calibrating is done first with hardware controls (lightness, contrast, gamma curves), and then with software that creates a vcgt (video card gamma table) to load in the GPU.

So when or why should you do just one or both?

Profiling only:

	With a good monitor
	You can get most of the sRGB colors and lot of extra colors not inside sRGB. So this can be good to have more visible colors.

	With a bad monitor
	You will get just a subset of actual sRGB, and miss lot of details, or even have hue shifts. Trying to calibrate it before profiling can help to get closer to full-sRGB colors.

Calibration+profiling:

	Bad monitors
	As explained just before.

	Multi-monitor setup
	When using several monitors, and specially in mirror mode where both monitor have the same content, you can’t have this content color-managed for both screen profiles. In such case, calibrating both screens to match sRGB profile (or another standard for high-end monitors if they both support it) can be a good solution.

	Soft-proofing
	When you need to match an exact rendering context for soft-proofing, calibrating can help getting closer to the expected result. Though switching through several monitor calibration and profiles should be done extremely carefully.

Scene Linear Painting

Previously referred to as HDR painting and Scene Referred painting, Scene Linear Painting is doing digital painting in a peculiar type of colorspace. It is painting in a color space that is…

	Linear - there’s no gamma encoding, or tone-mapping or whatever going on with the pixels you manipulate. (This is different from the pixels you see, but we’ll get to that later)

	Floating Point - So 16bit or 32bit floating point per channel.

These are the two important characteristics. The colorspace has a few more properties than this, such as the white point, or more importantly, the colorants that make up the gamut. But here’s the thing, those two could be anything, as long as the space is linear and the color depth is floating point.

So, Scene Linear is not a single one colorspace, but a TYPE of colorspace. You can have a scene linear space that uses the sRGB/Rec. 709 colorants, or one that uses adobeRGB, or maybe one that uses Rec. 2020, as long as it is linear and in a floating point bit depth.

참고

If you want to create images for display on an HDR canvas, you will need to select the Rec. 2020 space profile with a linear gamma. The default profile in Krita for that is Rec2020-elle-V4-g10.icc.

These two factors are for one reason: To make black and white arbitrary values. This might seem a bit weird. But when you are dealing with light-sources, you are dealing with a massive range of contrasts, and will have to decide afterwards which white and black you’d like to have. This is what the scene means in scene-linear, the relevant values are unique per scene, like a real world scene: a flower field lit by moonlight, a city in twilight or a sunny beach. You want to be able to put the right emphasis on the most important contrasting values, and being able to choose what is white and what is black is a very powerful tool here. After all, humans in the real world can see much more when they get used to the dark, or to the sun, so why not apply that to how we make our images?

This is also why it needs to be Linear. Gamma and Tone-mapped color spaces are already choosing which contrast is the most important to you. But for that, they too need to choose what is white or black. Linear doesn’t make such assumptions, so much better for when you want to choose yourself. You will eventually want to stick your image through some tone-mapping or gamma correction, but only at the end after you have applied filters and mixed colors!

In fact, there’s always a non-destructive sort of transform going on while you are working on your image which includes the tone-mapping. This is called a display or view transform, and they provide a sort of set of binoculars into the world of your image. Without it, your computer cannot show these colors properly; it doesn’t know how to interpret it properly, often making the image too dark. Providing such a transform and allowing you to configure it is the prime function of color management.

Between different view and display transforms, there’s also a difference in types. Some are really naive, others are more sophisticated, and some need to be used in a certain manner to work properly. The ICC color management can only give a certain type of view transforms, while OCIO color management in the LUT docker can give much more complex transforms easily configurable and custom settings that can be shared between programs.

[image: ../../_images/Krita_scenelinear_cat_01.png]

Above, an example of the more naive transform provided by going from scene-linear sRGB to regular sRGB, and to the right a more sophisticated transform coming from the filmic blender OCIO configuration. Look at the difference between the paws. Image by Wolthera van Hövell tot Westerflier, License: CC-BY-SA

Conversely, transforming and interpreting your image’s colors is the only thing OCIO can do, and it can do it with really complex transforms, really fast. It doesn’t understand what your image’s color space is originally, doesn’t understand what CMYK is, and there’s also no such thing as a OCIO color profile. Therefore you will need to switch to an ICC workflow if you wish to prepare for print.

Yes, but what is the point?

The point is making things easier in the long run:

	It is easier to keep saturated non-muddy colors in a linear space.

	The high bit depth makes it easier to get smoother color mixes.

	Filters are more powerful and give nicer results in this space. It is far more easy to get nice blurring and bokeh results.

	Simple Blending Modes like Multiply or Addition are suddenly black magic. This is because Scene-Linear is the closest you can get to the physical (as in, physics, not material) model of color where multiplying colors with one another is one of the main ways to calculate the effect of light.

	Combining painting with other image results such as photography and physically based rendering is much easier as they too work in such a type of colorspace. So you could use such images as a reference with little qualms, or make textures that play nice with such a renderer.

So the advantages are prettier colors, cooler filter results, more control and easier interchange with other methods.

Okay, but why isn’t this all the rage then?

Simply put, because while it’s easier in the long run, you will also have to drop tools and change habits…

In particular, there are many tools in a digital painter’s toolbox that have hard-coded assumptions about black and white.

A very simple but massive problem is one with inversion. Inverting colors is done code-wise by taking the color for white and subtracting the color you want to invert from it. It’s used in many blending modes. But often the color white is hardcoded in these filters. There’s currently no application out there that allows you to define the value range that inversion is done with, so inverting is useless. And that also means the filters and blending modes that use it, such as (but not limited to)…

	Screen (invert+multiply+invert)

	Overlay (screens values below midtone-value, in sRGB this would be middle gray)

	Color-dodge (divides the lower color with an inversion of the top one)

	Color-burn (inverts the lower color and then divides it by the top color)

	Hardlight (a different way of doing overlay, including the inversion)

	Softlight (uses several inversions along the way)

Conversely Multiply, Linear Dodge/Addition (they’re the same thing), Subtract, Divide, Darker (only compares colors’ channel values), Lighter (ditto), and Difference are fine to use, as long as the program you use doesn’t do weird clipping there.

Another one is HSL, HSI and HSY algorithms. They too need to assume something about the top value to allow scaling to white. HSV doesn’t have this problem. So it’s best to use an HSV color selector.

For the blending modes that use HSY, there’s always the issue that they tend to be hardcoded to sRGB/Rec. 709 values, but are otherwise fine (and they give actually far more correct results in a linear space). So these are not a good idea to use with wide-gamut colorspaces, and due to the assumption about black and white, not with scene linear painting. The following blending modes use them:

	Color

	광도

	Saturation

	Darker Color (uses luminosity to determine the color)

	Lighter Color (Ditto)

So that is the blending modes. Many filters suffer from similar issues, and in many applications, filters aren’t adjusted to work with arbitrary whites.

Speaking of filters, when using the transform tool, you should also avoid using lanczos3, it’ll give a weird black halo to sharp contrasts in scene-linear. The bilinear interpolation filter will work just fine in this case.

The second big problem is that black doesn’t work quite the same.

If you have mixed pigments before, you will know that black can quite easily overpower the other colors, so you should only add the tiniest amount of it to a mixture. White in contrast gets dirtied quite easily.

In a Scene Linear Color space, this is flipped. White is now more overpowering and black gets washed out super quickly. This relates to the additive nature of digital color theory, that becomes more obvious when working in linear.

This makes sketching a bit different, after all, it’s really difficult to make marks now. To get around this, you can do the following:

	Sketch on a mid-gray background. This is recommended anyway, as it serves as a neutral backdrop. For a linear space, 18% or 22% gray would be a good neutral.

	Make a special brush that is more opaque than the regular sketching brushes you use.

	Or conversely, sketch with white instead.

	For painting, block out the shapes with a big opaque brush before you start doing your mixing.

Overall, this is something that will take a little while getting used to, but you will get used to it soon enough.

Finally, there’s the issue of size.

16 bit float per channel images are big. 32 bit float per channel images are bigger. This means that they will eat RAM and that painting and filtering will be slower. This is something that will fix itself over the years, but not many people have such a high-end PC yet, so it can be a blocker.

So the issues are tools, expectations and size.

In Summary

Scene Linear Painting is painting an image in a color space that is linear and has a floating point bit depth. This does not assume anything about the values of black and white, so you can only use tools that don’t assume anything about the values of black and white. It has the advantage of having nicer filter results and better color mixtures as well as better interoperability with other scene-linear output.

To be able to view such an image you use a view transform, also called a display conversion. Which means that if you wish to finalize your image for the web, you make a copy of the image that goes through a display conversion or view transform that then gets saved to PNG, JPEG or TIFF.

Getting to actual painting

Now we’ve covered the theory, let us look at a workflow for painting scene linear.

Setting up the Canvas

Select either a 16bit or 32bit image. By default Krita will select a linear sRGB profile. If you want to create images for HDR display, you will need to make sure that the profile selected is the Rec2020-elle-V4-g10.icc profile. HDR images are standardised to use the Rec. 2020 gamut, which is much larger than sRGB in size, so this ensures you’ve got access to all the colors.

If you’re working on a non-HDR enabled monitor, you should enable OCIO in the LUT docker.

Keep in mind everything mentioned above. Not all filters and not all blending modes work. This will improve in the future. Other than that, everything else is the same.

Picking really bright colors

Picking regular colors is easy, but how do we pick the really bright colors? There are three ways of getting access to the really bright colors in Krita:

	By lowering the exposure in the LUT docker. This will increase the visible range of colors in the color selectors. You can even hotkey the exposure in the canvas input settings.

	By setting the nits slider in the 작은 색상 선택기 higher than 100.

	Or simply by opening the internal color selector by double clicking the dual color button and typing in values higher than 1 into the input field.

	And finally by picking a really bright color from an image that has such values.

Then paint. It’s recommended to make a bunch of swatches in the corner, at the least, until Krita’s new Palette docker allows you to save the values properly.

Lighting based workflow

So, we have our typical value based workflow, where we only paint the grays of the image so that we can focus on the values of the image. We can do something similar with Scene Linear Painting.

Where with the value based workflow you paint the image as if it were a grayscale of what you intended to paint, with a lighting based workflow you paint as if all the objects are white. The effect of the color of an object can be determined by multiplying its base color with the color of the light. So you could paint objects as if they were white, paint the colors on a separate layer and just use the Multiply blending mode to get the right colors.

[image: ../../_images/Krita_scenelinear_cat_02.png]

The leftmost image is both the lighting based one and the color layer separate, the middle with the two layers multiplied and the right a luminosity based view. This cat is a nice example as it demonstrates why having textures and lighting separate could be interesting.

You can even combine this with a value based workflow by opening a new view and setting the component to luminosity. That way you can see both the grayscale as well as the lighting based version of the image next to one another.

The keen minded will notice that a lighting based workflow kind of resembles the idea of a light pass and a color pass in 3d rendering. And indeed, it is basically the same, so you can use lighting passes from 3d renders here, just save them as EXR and import them as a layer. One of the examples where scene linear painting simplifies combining methods.

Finishing up

When you are done, you will want to apply the view transform you have been using to the image (at the least, if you want to post the end result on the Internet)… This is called LUT baking and not possible yet in Krita. Therefore you will have to save out your image in EXR and open it in either Blender or Natron. Then, in Blender it is enough to just use the same OCIO config, select the right values and save the result as a PNG.

For saving HDR images, check the HDR Display page.

You can even use some of Blender’s or Natron’s filters at this stage, and when working with others, you would save out in EXR so that others can use those.

Viewing Conditions

We mentioned viewing conditions before, but what does this have to do with ‘white points’?

A lot actually, rather, white points describe a type of viewing condition.

So, usually what we mean by viewing conditions is the lighting and decoration of the room that you are viewing the image in. Our eyes try to make sense of both the colors that you are looking at actively (the colors of the image) and the colors you aren’t looking at actively (the colors of the room), which means that both sets of colors affect how the image looks.

[image: ../../_images/Meisje_met_de_parel_viewing.png]

Left: Let’s ruin Vermeer by putting a bright purple background that asks for more attention than the famous painting itself. Center: a much more neutral backdrop that an interior decorator would hate but brings out the colors. Right: The approximate color that this painting is displayed against in real life in the Maurits House, at the least, last time I was there. Original image from wikipedia commons.

This is for example, the reason why museum exhibitioners can get really angry at the interior decorators when the walls of the museum are painted bright red or blue, because this will drastically change the way how the painting’s colors look. (Which, if we are talking about a painter known for their colors like Vermeer, could result in a really bad experience).

[image: ../../_images/Krita_example_metamerism.png]

Lighting is the other component of the viewing condition which can have dramatic effects. Lighting in particular affects the way how all colors look. For example, if you were to paint an image of sunflowers and poppies, print that out, and shine a bright yellow light on it, the sunflowers would become indistinguishable from the white background, and the poppies would look orange. This is called metamerism [https://en.wikipedia.org/wiki/Metamerism_%28color%29], and it’s generally something you want to avoid in your color management pipeline.

An example where metamerism could become a problem is when you start matching colors from different sources together.

[image: ../../_images/White_point_mix_up_ex1_01.svg]
For example, if you are designing a print for a red t-shirt that’s not bright red, but not super grayish red either. And you want to make sure the colors of the print match the color of the t-shirt, so you make a dummy background layer that is approximately that red, as correctly as you can observe it, and paint on layers above that dummy layer. When you are done, you hide this dummy layer and sent the image with a transparent background to the press.

[image: ../../_images/White_point_mixup_ex1_02.png]

But when you get the t-shirt from the printer, you notice that all your colors look off, mismatched, and maybe too yellowish (and when did that T-Shirt become purple?).

This is where white points come in.

You probably observed the t-shirt in a white room where there were incandescent lamps shining, because as a true artist, you started your work in the middle of the night, as that is when the best art is made.
However, incandescent lamps have a black body temperature of roughly 2300-2800K, which makes them give a yellowish light, officially called White Point A.

Your computer screen on the other hand, has a black body temperature of 6500K, also known as D65. Which is a far more blueish color of light than the lamps you are hanging.

What’s worse, Printers print on the basis of using a white point of D50, the color of white paper under direct sunlight.

[image: ../../_images/White_point_mix_up_ex1_03.svg]
So, by eye-balling your t-shirt’s color during the evening, you took its red color as transformed by the yellowish light. Had you made your observation in diffuse sunlight of an overcast (which is also roughly D65), or made it in direct sunlight light and painted your picture with a profile set to D50, the color would have been much closer, and thus your design would not be as yellowish.

[image: ../../_images/White_point_mixup_ex1_03.png]

Applying a white balance filter will sort of match the colors to the tone as in the middle, but you would have had a much better design had you designed against the actual color to begin with.

Now, you could technically quickly fix this by using a white balancing filter, like the ones in G’MIC, but because this error is caught at the end of the production process, you basically limited your use of possible colors when you were designing, which is a pity.

Another example where metamerism messes things up is with screen projections.

We have a presentation where we mark one type of item with red, another with yellow and yet another with purple. On a computer the differences between the colors are very obvious.

[image: ../../_images/Krita_metamerism_presentation.svg]
However, when we start projecting, the lights of the room aren’t dimmed, which means that the tone scale of the colors becomes crunched, and yellow becomes near indistinguishable from white. Furthermore, because the light in the room is slightly yellowish, the purple is transformed into red, making it indistinguishable from the red. Meaning that the graphic is difficult to read.

In both cases, you can use Krita’s color management a little to help you, but mostly, you just need to be ‘’aware’’ of it, as Krita can hardly fix that you are looking at colors at night, or the fact that the presentation hall owner refuses to turn off the lights.

That said, unless you have a display profile that uses LUTs, such as an OCIO LUT or a cLUT ICC profile, white point won’t matter much when choosing a working space, due to weirdness in the ICC v4 workflow which always converts matrix profiles with relative colorimetric, meaning the white points are matched up.

파일 형식

This category is for graphics file-formats. While most file-formats can be looked up on wikipedia, this doesn’t always explain what the format can be used for and what its strengths and weaknesses are.

In this category we try to describe these in a manner that can be read by beginners.

Generally, there are the following features that people pay attention to in regards to file formats:

압축

Compression is how the file-format tries to describe the image with as little data as possible, so that the resulting file is as small as it can get without losing quality.

What we generally see is that formats that are small on disk either lose image quality, or require the computer to spend a lot of time thinking about how the image should look.

Vector file-formats like SVG are a typical example of the latter. They are really small because the technology used to create them is based on mathematics, so it only stores maths-variables and can achieve very high quality. The downside is that the computer needs to spend a lot of time thinking about how it should look, and sometimes different programs have different ways of interpreting the values. Furthermore, vector file-formats imply vector graphics, which is a very different way of working than Krita is specialized in.

Lossy file formats, like JPG or WebP are an example of small on disk, but lowering the quality, and are best used for very particular types of images. Lossy thus means that the file format plays fast and loose with describing your image to reduce filesize.

Non-lossy or lossless formats, like PNG, GIF or BMP are in contrast, much heavier on disk, but much more likely to retain quality.

Then, there’s proper working file formats like Krita’s KRA, Gimp’s XCF, Photoshop’s PSD, but also interchange formats like ORA and EXR. These are the heaviest on the hard-drive and often require special programs to open them up, but on the other hand these are meant to keep your working environment intact, and keep all the layers and guides in them.

Metadata

Metadata is the ability of a file format to contain information outside of the actual image contents. This can be human readable data, like the date of creation, the name of the author, a description of the image, but also computer readable data, like an ICC profile which tells the computer about the qualities of how the colors inside the file should be read.

Openness

This is a bit of an odd quality, but it’s about how easy it to open or recover the file, and how widely it’s supported.

Most internal file formats, like PSD are completely closed, and it’s really difficult for human outsiders to recover the data inside without opening Photoshop. Other examples are camera raw files which have different properties per camera manufacturer.

SVG, as a vector file format, is on the other end of the spectrum, and can be opened with any text-editor and edited.

Most formats are in-between, and thus there’s also a matter of how widely supported the format is. JPG and PNG cannot be read or edited by human eyes, but the vast majority of programs can open them, meaning the owner has easy access to them.

Contents

	*.bmp

	*.csv

	*.exr

	*.gbr

	*.gif

	*.gih

	*.heif and *.avif

	*.jpg

	*.jxl

	*.kpl

	*.kra

	*.ora

	*.pbm, *.pgm, *.ppm

	*.pdf

	*.png

	*.psd

	*.svg

	*.tiff

	*.webp

	Lossy and Lossless Image Compression

*.bmp

.bmp, 비트맵 파일은 가장 간단한 래스터 파일 형식이며, 특허권으로 보호되지 않기 때문에 많은 프로그램에서 다룰 수 있습니다.

그러나 많은 프로그램에서는 BMP 파일을 압축하지 않기 때문에 파일의 크기가 매우 큽니다. 무손실 파일 형식으로 저장해야 한다면 *.png 형식을 추천합니다.

*.csv

.csv is the abbreviation for Comma Separated Values. It is an open, plain text spreadsheet format. Since the CSV format is a plain text itself, it is possible to use a spreadsheet program or even a text editor to edit the *.csv file.

Krita supports the CSV version used by TVPaint, to transfer layered animation between these two softwares and probably with others, like Blender. This is not an image sequence format, so use the document loading and saving functions in Krita instead of the Import animation frames and Render Animation menu items.

The format consists of a text file with .csv extension, together with a folder under the same name and a .frames extension. The CSV file and the folder must be on the same path location. The text file contains the parameters for the scene, like the field resolution and frame rate, and also contains the exposure sheet for the layers. The folder contains *.png picture files. Unlike image sequences, a key frame instance is only a single file and the exposure sheet links it to one or more frames on the timeline.

[image: ../../_images/Csv_spreadsheet.png]

A .csv file as a spreadsheet in LibreOffice Calc.

Krita can both export and import this format. It is recommended to use 8bit sRGB color space because that’s the only color space for TVPaint. Layer groups and layer masks are also not supported.

TVPaint can only export this format by itself. In TVPaint 11, use the Export to… option of the File menu, and on the upcoming Export footage window, use the Clip: Layers structure tab.

[image: ../../_images/Csv_tvp_csvexport.png]

Exporting into .csv in TVPaint.

To import this format back into TVPaint there is a George language script extension. See the “Packs, Plugins, Third party” section on the TVPaint community forum for more details and also if you need support for other softwares. Moho/Anime Studio and Blender also have plugins to import this format.

더 보기

	CSV import script for TVPaint [https://forum.tvpaint.com/viewtopic.php?f=26&t=9759].

	CSV import script for Moho/Anime Studio [https://forum.tvpaint.com/viewtopic.php?f=26&t=10050].

	CSV import script for Blender [https://developer.blender.org/T47462].

*.exr

.exr 형식은 부동 소수점 색 농도 이미지를 불러오고 저장할 때 가장 자주 사용하는 파일 형식이며, 해당 이미지를 다루는 라이브러리가 완전한 오픈 소스이기 때문에 데이터 교환 형식으로도 사용합니다.

컴퓨터 그래픽에서 부동 소수점 색 농도는 장면에서 참조하는 값을 저장하는 데 사용하며, 카메라나 컴퓨터 렌더러로 생성됩니다. 장면에서 참조하는 값은 흰색보다 더 흰색의 값이 들어 있을 수 있으며, 이를 사용하여 석양과 같은 조명 조건을 매우 정확하게 기록할 수 있습니다. EXR 파일은 렌더러에서 실사 조명을 구현하는 데 사용합니다.

Krita는 EXR 파일을 읽고 쓸 수 있으며(장면에서 참조하는 값 지원) Blender, Mari, Nuke, Natron 등 다른 앱과도 데이터를 교환할 수 있습니다.

Color Management

EXR file format does not have any internal color management capabilities, i.e. when saving the data into the file, no color space information is written into the file. Next time you load the same file into Krita, Krita will assign the default color space to the file (usually “Rec 709 Linear”). It may cause the file to change visually.

In general, there are two ways to handle the color management for the EXR files: OCIO and profile-based.

OCIO-based workflow

You need to select OCIO configuration and share it between Krita and other tools you use (Blender, Natron and etc). When using OCIO Krita will not use the assigned profile and will use the OCIO configuration you selected.

Profile-based workflow

Alternatively, you can assign the necessary ICC profile to the imported image. If you import the image and you know its color space is not “Rec 709 Linear TRC”, just use Tools ‣ Scripts ‣ Assign Profile to Image plugin to assign a different profile.

참고

If you do not see Assign Profile plugin, make sure it is activated in the Python Plugin Manager: Settings ‣ Configure Krita… ‣ Python Plugin Manager. After activating the plugin, restart Krita.

If your work is based on some non-default color space (e.g. ACES), then you can set this color space as the default for loading EXR images. Go to Settings ‣ Configure Krita… ‣ Color Management and select the required color space at Color profile for imported EXR images selector. Next time you load any EXR image, this color space will be assigned automatically.

[image: screenshot of Color profile for imported EXR images selector]
If you want to read more about color managed workflows, check this chapter.

*.gbr

The GIMP brush format. Krita can open, save and use these files as predefined brushes.

There’s three things that you can decide upon when exporting a *.gbr:

	이름
	This name is different from the file name, and will be shown inside Krita as the name of the brush.

	간격
	This sets the default spacing.

	Use color as mask
	This’ll turn the darkest values of the image as the ones that paint, and the whitest as transparent. Untick this if you are using colored images for the brush.

GBR brushes are otherwise unremarkable, and limited to 8bit color precision.

*.gif

.gif 파일 형식은 애니메이션을 저장하는 형식으로 잘 알려져 있습니다. 이 형식은 개발된 지 오래 되었으며, 프레임당 최대 256색으로 색상을 인덱싱하여 압축합니다. 이론적으로 256색으로 이미지를 생성하고 GIF 파일로 저장하면 손실이 발생하지 않기 때문에 무손실 압축으로 취급됩니다.

대부분의 회색조 이미지를 화질 손실 없이 처리할 수 있음을 의미합니다. 애니메이션을 사용하지 않는 컬러 이미지에는 *.jpg 또는 *.png 형식을 추천합니다.

*.gih

The GIMP image hose format. Krita can open and save these, as well as import via the predefined brush tab.

Image Hose means that this file format allows you to store multiple images and then set some options to make it specify how to output the multiple images.

[image: ../../_images/Gih-examples.png]

From top to bottom: Incremental, Pressure and Random

Dimension and ranks.

The GIMP image hose format allows multiple dimensions for a given brush. You could for example have a dimension that updates incrementally, and one that updates on pressure, or updates randomly. Upon export, Krita will use the ranks to subdivide the layers per dimension. If you have a 24 layer image and three ranks, and the first dimension is set to 2, the second to 4 and the third to 3, then Krita will divide 24 into 2 groups of 12, each of which have unique images for the 2 parts of the first dimension. Then those 2 groups of 12 get divided into 8 groups of 4, each of which have unique brush tips for the four parts of the second dimension, and finally, the grouped three images have each a unique brush for the final dimension.

So, the following image has a table where dimension 1 is unique in one of 4 numbers, while dimension 2 is unique in one of 3 shapes. So our ranks for dimension 1 and dimension 2 need to be 4 and 3 respectively. Now, to order the layers, you need to subdivide the table first by the first dimension, and then by the second. So we end up with three layers each for a shape in the second dimension but for the first number, then another three layers, each for a shape, but then for the second number, and so forth.

[image: ../../_images/gih_multi_dimension_explaination.png]

See the GIMP documentation [https://docs.gimp.org/2.8/en/gimp-using-animated-brushes.html] for a more thorough explanation.

GIMP image hose format options:

	상수
	This’ll use the first image, no matter what.

	증분
	This’ll paint the image layers in sequence. This is good for images that can be strung together to create a pattern.

	Pressure
	This’ll paint the images depending on pressure. This is good for brushes imitating the hairs of a natural brush.

	무작위
	This’ll draw the images randomly. This is good for image-collections used in speedpainting as well as images that generate texture. Or perhaps more graphical symbols.

	각도
	This’ll use the dragging angle to determine with image to draw.

When exporting a Krita file as a .gih, you will also get the option to set the default spacing, the option to set the name (very important for looking it up in the UI) and the ability to choose whether or not to generate the mask from the colors.

	Use Color as Mask
	This’ll turn the darkest values of the image as the ones that paint, and the whitest as transparent. Untick this if you are using colored images for the brush.

We have a Krita Brush tip page on how to create your own GIH brush.

*.heif and *.avif

The High Efficiency Image Format (*.heif, *.heic), and its cousin, AV1 Image Format (*.avif) are formats which use video codecs (H264, H265 and AV1) to store their data. They are more and more popular with mobile phones as their default image file format, and *.avif is to be natively supported by all web browsers within the next few years.

Krita supports saving Grayscale and RGB images to these formats. Furthermore, it can save 8 bit, will save 16 bit integer as 12 bit, and can save 16 and 32 bit float as 12 bit, with an HDR color space.

Compared to *.png and *.jpg, these formats tend to smooth out textures to make them easier to compress, and therefore great for sharp images with a lot of smooth gradients. Images with a lot of texture or fine details may lose said detail (for example, cat whiskers seem to get lost), and thus *.jpg might be better suited.

가져오기 옵션

Krita supports all the color spaces that these formats can handle, and will convert in the case of the few formats it cannot handle. This has been automated for the most part, with Krita selecting or generating the appropriate ICC profile where necessary.

Images that are HDR images, so the ones that have the Perceptual Quantizer, Hybrid Log Gamma or SMPTE ST 428 transfer functions, will be converted to a linear 32 bit floating point version of that color space.

However, Hybrid Log Gamma needs an extra conversion step inbetween, as Krita currently does not support sending HLG data to the display. For this Scene Linear to Display Linear conversion, it would need to know your display gamma and maximum brightness. The default brightness and gamma values are the ones used for a HLG to PQ conversion, and probably your best bet when your monitor is able to display Krita’s HDR. When exporting this image with HLG, it’s recommended to reuse the same values for the reverse OOTF there.

	Apply Hybrid Log Gamma OOTF
	Whether to apply the extra conversion step. This will convert scene linear values to display linear, and thus it’s necessity is completely dependent on your HDR workflow. If in doubt, apply.

	Gamma
	Approximate display gamma. Default value is 1.2 for conversion to PQ.

	Brightness
	Maximum display brightness. Default value is 10.000 cd/m² for conversion to PQ.

내보내기 옵션

	무손실
	Use the lossless encoding options. Disables the Lossy Advanced Settings.

	고급 손실 압축 설정
	
	Quality
	Determines how much the encoder should prioritize quality over compression. Higher values look better, but lower values have a lower file size.

	Chroma
	Chroma Subsampling settings. Humans are more sensitive to the brightness of an image than its colorfulness, so halving the colors of an image can be a very useful way to compress an image. This is best used with images that have few sharp contrasts, as that is where the reduced resolution is most obvious.

	420
	The brightness of the image will be at full resolution, while the colorfulness will be halved in both dimensions.

	422
	The brightness of the image will be at full resolution, while the colorfulness will be halved horizontally.

	444
	Both brightness and colorfulness of the image will be at full resolution.

Conversion Settings

These only appear on floating point images, and are used to store the images with values above 1.0 as HDR images by encoding them with a specific transfer function.

	Space:
	Encoding the right color space depends on how compatible the current color space is with the ITU H.273 CICP values [ituh273], as this is how PQ, HLG and SMPTE ST 428 are stored. Rec 2100 PQ or Rec 2100 HLG are the expected values for HDR images [rec2100].

In all cases when we store CICP values instead of an ICC profile, the Matrix Coefficient value will be set to 0 (Identity Matrix), as Krita does no conversion to YUV.

	Rec 2100 PQ
	Image will first be converted to Rec 2020 linear. Then encoded with the Perceptual Quantizer function (also known as SMPTE 2048 curve). This is the most common HDR encoding, and useful for images where the relative brightness is important.

	Rec 2100 HLG
	Image will first be converted to Rec 2020 linear. Then encoded with the Hybrid Log Gamma function, and finally, if chosen, the reverse Hybrid Log Gamma OOTF is applied. This is useful for images where the final display may not understand PQ.

	Keep Colorants, encode PQ
	Shows only for images with an ITU H.273 compatible color space [ituh273]. The image will be linearized first, and then encoded with a perceptual quantizer curve.

	Keep Colorants, encode HLG
	Shows only for images with an ITU H.273 compatible color space [ituh273]. The image will be linearized first, and then encoded with a Hybrid Log Gamma curve. Finally, the reverse HLG OOTF may be applied.

	Keep Colorants, encode SMPTE ST 428
	Shows only for images with an ITU H.273 compatible color space [ituh273]. The image will be linearized first, and then encoded with SMPTE ST 428. Krita always opens images like these as linear floating point, this option is there to save them as ST 428 again.

	No Changes, Clip
	The image will be converted plainly to 12bit integer, and values that are out of bounds are clipped, the ICC profile will be embedded.

	역 하이브리드 로그 감마 OOTF 적용
	Whether to apply the extra conversion step. It’s necessity is completely dependent on your HDR workflow. If in doubt, apply, always apply when you’ve imported an image with OOTF option enabled.

	Gamma
	Approximate display gamma. Default value is 1.2 for conversion to PQ.

	Brightness
	Maximum display brightness. Default value is 10.000 cd/m² for conversion to PQ.

더 보기

	High Efficiency Image File Format on Wikipedia [https://en.wikipedia.org/wiki/High_Efficiency_Image_File_Format]

[ituh273]
(1,2,3,4)
H.273 : Coding-independent code points for video signal type identification [https://www.itu.int/rec/T-REC-H.273/en]

[rec2100]

	BT.2100 : Image parameter values for high dynamic range television for use in production and international programme exchange [https://www.itu.int/rec/R-REC-BT.2100-2-201807-I/en]

	Perceptual Quantizer on Wikipedia [https://en.wikipedia.org/wiki/Perceptual_quantizer]

	Hybrid Log Gamma on Wikipedia [https://en.wikipedia.org/wiki/Hybrid_log%E2%80%93gamma]

*.jpg

.jpg, .jpeg or .jpeg2000 are a family of file-formats designed to encode photographs.

Photographs have the problem that they have a lot of little gradients, which means that you cannot index the file like you can with *.gif and expect the result to look good. What JPEG instead does is that it converts the file to a perceptual color space (YCrCb), and then compresses the channels that encode the colors, while keeping the channel that holds information about the relative lightness uncompressed. This works really well because human eye-sight is not as sensitive to colorfulness as it is to relative lightness. JPEG also uses other lossy compression techniques, like using cosine waves to describe image contrasts.

However, it does mean that JPEG should be used in certain cases. For images with a lot of gradients, like full scale paintings, JPEG performs better than *.png and *.gif.

But for images with a lot of sharp contrasts, like text and comic book styles, PNG is a much better choice despite a larger file size. For grayscale images, *.png and *.gif will definitely be more efficient.

Because JPEG uses lossy compression, it is not advised to save over the same JPEG multiple times. The lossy compression will cause the file to reduce in quality each time you save it. This is a fundamental problem with lossy compression methods. Instead use a lossless file format, or a working file format while you are working on the image.

*.jxl

JPEG XL (.jxl) is a new royalty-free image file format. It supports lossy compression mode designed for photographs similar to the JPEG file format, and also lossless compression mode similar to formats like PNG. In addition, it also supports saving animations with multiple frames like GIF.

When deciding between lossy and lossless compression modes, the same advice for JPEG and PNG applies. For images with a lot of gradients, like full scale paintings, lossy compression may work very well to produce small files with very little visual quality loss. But for images with a lot of sharp contrasts, like text and comic book styles, lossless compression is usually the better choice.

For JPEG XL files using lossy compression, it is not advised to save over the same file multiple times. The lossy compression will cause the file to reduce in quality each time you save it. This is a fundamental problem with lossy compression methods. Instead you should use the lossless compression mode, or a working file format while you are working on the image.

It is possible to losslessly transcode JPEG images into JPEG XL. Transcoding preserves the already-lossy compression data from the original JPEG image without any quality loss caused by re-encoding, while making the file size smaller than the original. To do this, you need to use specialized tools, for example the cjxl command line tool from libjxl [https://github.com/libjxl/libjxl], to perform the conversion. Beware that you cannot do this by opening the JPEG image in Krita and re-exporting it into JPEG XL. Krita always exports files from the raw pixel data, therefore this does not have the same effect as transcoding directly from JPEG to JPEG XL.

Exporting animations from Krita as JPEG XL is supported, though this flattens all layers in the image. To export JPEG XL animations, use Export… from the File Menu and then saving or exporting to a .jxl file. Make sure to enable Save as animated JPEG XL in the export options. This is different from 애니메이션 렌더 in that it does not use FFmpeg.

Export Options

General

JPEG XL’s encoder is designed to be fairly hands-off. Where in the case of JPEG you’d have to select the appropriate quality, JPEG XL instead tries to find the best quality for your image. What you instead choose is whether the preferred compression is lossy or lossless, and how much effort the encoder should put into finding the best compression for your image, with more effort also meaning longer saving times.

	Save as animated JPEG XL
	JPEG XL has the ability to store small animations like *.gif. Its animation capabilities are simple though, and specifically designed for stylized content that doesn’t have a lot of colors, like cel-animation. This is because JPEG XL doesn’t have intra-frame prediction, which is the best way to store video files with a lot of colors like 3D animation, film and painterly animation. We recommend you try using video rendering for painterly animation instead.

	Flatten the image
	If disabled, JPEG XL has the ability to store frames as layers if it’s not being used as animation, this can be useful to store multi-page images like *.tiff.

Its layered capabilities are very basic, and not designed to store complex layer stacks like *.psd and *.kra does. Some of its limitations are:

	Only raster paint layers are supported, any other type of layer will get rasterized and group layers will be flattened.

	Limited blending modes, only Normal and Addition while other modes will get converted to Normal.

	No partial layer opacity, will only export visible layers with full opacity setting (100%).

	No layer styles, these will get rasterized with Normal blending mode for outside pixels.

	Layer masks will be flattened and rasterized, but Colorize Mask won’t get rendered.

We recommend you leave this option enabled for web delivery.

버전 5.2에 추가.

	Encoding Options
	
	Lossy encoding
	Whether to use Lossy compression. Like *.webp, JPEG XL has a different way of encoding the images in lossless and lossy mode, with the latter being closer to the way the original *.jpg encodes.

	Quality
	This option sets the desired quality for lossy compression. Higher values look better, but lower values have a lower file size.

	Use modular mode
	Use the alternative Modular mode for lossy compression. By default, JPEG XL encodes lossy image with VarDCT mode.

버전 5.2에 추가.

	Tradeoff
	The encoder can give a better result if it is given more time. This slider allows you to decide how much the encoder should prioritize quality over speed. The different modes can be seen as presets [1]:

	Lightning – A fast mode useful for lossless mode. Fastest possible values for lossy compression, for lossless uses gradient predictors and fast histograms, but no MA tree.

	Thunder – Both Lightning and Thunder are similar for Lossy, for lossless, Thunder uses a fixed MA tree and gradient predictors.

	Falcon – Instead of using lossless mode, disables all options.

	Cheetah – Enables coefficient reordering, context clustering, and heuristics for selecting DCT sizes and quantization steps.

	Hare – Enables Gaborish Filtering, Chroma from Luma and estimates quantization steps.

	Wombat – Enables error diffusion quantization and DCT heuristics.

	Squirrel – Enables dots, patches and spline detection as well as context clustering.

	Kitten – Optimizes the adaptive quantization for a psychovisual metric.

	Tortoise – Enables a more thorough adaptive quantization search.

You can force-enable several of the options in the Advanced section even if they are disabled by the Tradeoff preset.

	Decoding Speed
	Decoding speed can be improved by allowing certain optimizations. However, this will lead to some quality loss. For example, if you think your images will be largely viewed on mobile phones it might be a good idea to experiment with this option. Conversely, if your image will only be viewed by desktop computers and quality is of utmost importance, this should be set to 0.

Conversion Settings

This option is only enabled when the image is in a floating point color space, and the options are exactly the same as the conversion settings for *.heif and *.avif.

버전 5.2에 추가.

Advanced

JPEG XL has two major ways of encoding data:

	VarDCT
	This one is in the same family of compression techniques as used by the original JPEG, and thus best for ‘Natural’ images, such as photographs and images with a lot of gradients and textures.

	Modular Mode
	This one has specific features for so-called ‘synthetic’ images, such as line art and images with a lot of wide patches. Modular mode is always used when selecting Lossless Encoding.

You could consider VarDCT to be like ‘lossy’ compression, while Modular Mode is like ‘lossless’ compression. Furthermore, JPEG XL splits up images into smaller chunks called ‘Groups’, these are 256x256 for VarDCT and you can choose one of several sizes for Modular Mode.

	Color channel resampling.
	How to sample the color channels.
This means that there will be less information stored, leading to a smaller file. However, because this only samples a few pixels, sharp contrasts are lost. The effect is similar to if you’d scale down the image by half (for 2x2), quarter (for 4x4) or to an eight (for 8x8) and then scaled it back up to the original size.

This feature is particularly useful for images that are deliberately blurry and devoid of sharp contrast. It’s recommended to set this to No Downsampling in any other case.

	Alpha channel resampling
	Same as Color channel resampling, but then for the transparency of the image.

	Photon noise
	This determines whether noise in the image should be abstracted and added later by the computer, giving a simulation of the noise that cameras sometimes capture.

	Generate dots
	Dots are a form of noise larger than Photon noise. Such dots make images more pleasing to look at, however, they make compressing difficult. This option allows you to choose whether or not to abstract these dots away and have the computer add them later. If this and Generate Patches is on, and the encoder finds both patches and dots, the dots will be encoded as if they were patches.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless Tradeoff.

	Disabled – Never use this regardless Tradeoff.

	Generate patches
	This determines whether or not to try and reuse bits and pieces of an image. This can be useful with images that have a lot of repeating bits, like sprite art, images with text or images using a lot of patterns.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless Tradeoff.

	Disabled – Never use this regardless Tradeoff.

	Edge Preserving Filter
	The edge preserving filter tries to preserve edges without getting artifacts like ‘rings’.

	Gaborish filter
	Whether or not to apply a Gabor-like sharpening filter, which can help emphasize important contrasts that would otherwise be lost during encoding and decoding.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless Tradeoff.

	Disabled – Never use this regardless Tradeoff.

	Modular encoding
	Unlike Modular Mode, which is the lossless compression method, Modular encoding instead splits the image into smaller chunks, allowing for multi-threaded encoding, as well as per-chunk optimization. This option allows you to choose whether the encoder should do so with the lossy VarDCT method, the lossless Modular Mode, or by letting the encoder itself choose.

	Keep color of invisible pixels
	Whether to keep the color values when a pixel is fully transparent or whether to abstract them away as if they were transparent black.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Group order
	How the groups are stored in Modular encoding. This is important for partially downloaded images and images using Progressive Encoding.

	Default
	Depends on Tradeoff.

	Scanline order
	Top left of the image is also the first group.

	Center first
	The centermost group of the image is the first group.

	Chroma-from-luma
	JPEG XL can use some algorithmic trickery to predict the color of a given section from the pixel brightness, meaning it only has to store the pixel brightness and not the color. Experimentation is recommended.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	VarDCT parameters
	The core of JPEG’s compression is the so-called Discrete Cosine Transform (DCT). This allows it to simplify a complex gradient of colors to a mathematical function. One of the new features of JPEG XL is that these DCT don’t have to be 8x8, nor do they have to be the same size over the whole image. This is called ‘Variable DCT’. The compression that is applied on this mathematical function is also finetuned by the encoder, this is called Adaptive Quantization.

Because the encoder is able to pick the best solution for the compression (Depending on what you selected for Tradeoff), the only thing you need to worry about is whether to enable progressive mode. Progressive mode for VarDCT takes the so-called DC values (which are per DCT block) to produce a coarse preview image that gets shown first and then it takes the AC values, which represent the fine details, and sends them out last. In effect this results in progressive images first showing a rough blurry image which, as the download completes, becomes progressively sharper. This is especially useful for images alongside text or images that get served over a slow internet connection.

	Spectral progression
	This enables progressive mode and uses advanced color maths to calculate the fine details of images. This takes more time but generally gives better results.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Quantization
	This enables progressive mode and then uses quantization to compress the fine details. This leads to a smaller file size at the cost of giving the encoder more time to do so.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Low resolution DC
	Where the previous two options covered the fine-grain parts of a progressive-encoded image, the DC is coarse-grain compression, specifically a coefficient for every DCT block that can be used to create the coarse preview image for progressive decoding. Because DCT can be variable-size in JPEG XL, you can opt to use a low-resolution image in addition. This should result in a better preview, though the file size will be a few bytes bigger.

	Default
	Let the encoder choose.

	Disable
	Do not use a lower-resolution image at all.

	64x64 low resolution pass
	Create an 64x64 image to use alongside the DC values to create the progressive preview.

	512x512 + 64x64 low resolution pass
	Create both a 512x512 image and a 64x64 image to use alongside the DC values to create the progressive preview.

	Modular Parameters
	Extra options for Modular Mode. Modular mode uses something akin to a small programming language by way of predictors to describe image data succinct and precise.

	Progressive encoding
	Whether or not to enable progressive encoding/decoding. As explained in VarDCT parameters, this means that the image can be saved in such a way that upon downloading and showing it, a rough previews will get shown first.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Global channel palette range
	Colors will be stored as a palette depending on whether the total amount of different colors used is smaller than the percentage of all color channel values possible. For 8 bit, 100% would mean 255 values total, 50% would mean 128 values total, and 10% would mean a total of 25 values total.

	Local channel palette range
	Like Global channel palette range, but then decided per group.

	Use color palette for … colors or less.
	Select the maximum amount of colors that need to be present in a group before the encoder will try to store them as a palette.

	Delta palette
	Whether to use a Delta-palette, also called a lossy-palette. This compresses the palette, but there’s no official documentation yet on how exactly.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Group size
	Images can be split into smaller chunks, which can be encoded separately. You can choose how big these chunks are when using Modular Mode, for VarDCT they will default to 256x256.

	128x128

	256x256

	512x512

	1024x1024

	Predictor
	Which predictor to use in conjunction with the MA tree. Where VarDCT compresses the image by abstracting complex gradients into mathematical functions, Modular Mode compresses sections by determining if it can be described by its neighbouring pixels, like ‘the same color as the pixel to the left’. This is a predictor, and you can select which predictor you’d prefer to be used. Recommended value is Default.

	Default – Let the encoder choose.

	Zero – Always returns the value 0.

	Left – Always returns the value at the left.

	Top – Always returns the value at the top.

	Avg0 – Returns the average of the values to the immediate left and top of the current location.

	Select – Subtracts the left and top neighbour from the top-left, and returns the neighbour whose difference is lower.

	Gradient – Returns the value of the top-left neighbour minus the values of the top and left neighbours.

	Weighted – A complex predictor that weights the top, left and top-left pixels in certain ways to achieve the result.

	Top Right – Returns the value topright of the current location.

	Top Left – Returns the value topleft of the current location.

	Left Left – Returns the value topright of the current location.

	Avg1 – Returns the average of the values to the immediate left and top-left of the current location.

	Avg2 – Returns the average of the values to the immediate top-left and top of the current location.

	Avg3 – Returns the average of the values to the immediate left and top-right of the current location.

	Toptop predictive average – Weights the value of 6 neighbours: the top, left, topright, and their immediately adjacent neighbours in the same direction.

	Gradient + Weighted – Mixes gradient and weighted.

	Use all predictors

	Pixels for MA tree learning.
	Fraction of pixels used for the Meta-Adaptive Context tree. The MA tree is a way of analyzing the pixels surrounding the current pixel, and depending on the context choose a given predictor for this pixel. More pixels mean a better understood context and thus better compression, but these also take more resources while encoding.

Metadata

	Store document metadata.
	Whether to store any metadata at all. You can individually toggle Exif, IPTC and XMP.

	Anonymizer
	Whether to remove author information.

	Tool information
	Whether to add tool information.

더 보기

	JPEG XL official website [https://jpeg.org/jpegxl/]

	JPEG XL community website [https://jpegxl.info/]

	libjxl – JPEG XL reference implementation [https://github.com/libjxl/libjxl]

[1]
Copied from this libjxl readme [https://github.com/libjxl/libjxl/blob/315247f000cff01fbc7ee2dd8252ea8fb82d0769/doc/benchmarking.md] as well as comments inside the libjxl source code.

*.kpl

Since 4.0, Krita has a new palette file-format that can handle colors that are wide gamut, RGB, CMYK, XYZ, GRAY, or LAB, and can be of any of the available bitdepths, as well as groups. These are Krita Palettes, or *.kpl.

*.kpl files are ZIP files, with two XMLs and ICC profiles inside. The colorset.xml file contains the swatches as ColorSetEntry and Groups as Group. The profiles.xml file contains a list of profiles, and the ICC profiles themselves are embedded to ensure compatibility over different computers.

A technical description in English can be found in here.

*.kra

.kra is Krita’s internal file-format, which means that it is the file format that saves all of the features Krita can handle. It’s construction is vaguely based on the open document standard, which means that you can rename your .kra file to a .zip file and open it up to look at the insides. In Krita’s settings dialog you can enable compression; with compression enabled the files will be smaller, but saving will take longer.

Other applications mostly cannot open .kra files, and you cannot upload .kra as images on websites like twitter or deviantArt.

A .kra file contains a file names mergedimage.png which contains the rendered image as you see it on your canvas. Some applications, like Scribus, can use the mergedimage.png file to open .kra files. This file is always in the RGBA color model, or grayscale for files that are originally grayscale.

The .krz file format is a .kra file without mergedimage.png and with compression always enabled. You can use this format if you want to save disk space and do not care about interchange with those applications that load the mergedimage.png file.

*.ora

.ora, or the Open Raster format, is an interchange format. It was designed to replace *.psd as an interchange format, as the latter isn’t meant for that. Like *.kra it is loosely based on the Open Document structure, thus a ZIP file with a bunch of XMLs and PNGs, but where Krita’s internal file format can sometimes have fully binary chunks, .ora saves its layers as *.png making it fully open and easy to support.

As an interchange format, it can be expected to be heavy and isn’t meant for uploading to the internet.

더 보기

Open Raster Specification [https://www.openraster.org/]

*.pbm, *.pgm, *.ppm

.pbm, .pgm and .ppm are a series of file-formats with a similar logic to them. They are designed to save images in a way that the result can be read as an ASCII file, from back when email clients couldn’t read images reliably.

They are very old file formats, and not used outside of very specialized usecases, such as embedding images inside code.

	.pbm
	One-bit and can only show strict black and white.

	.pgm
	Can show 255 values of gray (8bit).

	.ppm
	Can show 8bit rgb values.

*.pdf

.pdf is a format intended for making sure a document looks the same on all computers. It became popular because it allows the creator to make sure that the document looks the same and cannot be changed by viewers. These days it is an open standard and there is quite a variety of programs that can read and save PDFs.

Krita can open PDFs with multiple layers. There is currently no PDF export, nor is that planned. If you want to create a PDF with images from Krita, use Scribus [https://www.scribus.net/].

While PDFs can be viewed via most browsers, they can also become very heavy and are thus not recommended outside of official documents. Printhouses will often accept PDF.

*.png

.png, or Portable Network Graphics, is a modern alternative to *.gif and with that and *.jpg it makes up the three main formats that are widely supported on the internet.

PNG is a lossless file format, which means that it is able to maintain all the colors of your image perfectly. It does so at the cost of the file size being big, and therefore it is recommended to try *.jpg for images with a lot of gradients and different colors. Grayscale images will do better in PNG as well as images with a lot of text and sharp contrasts, like comics.

Like *.gif, PNG can support indexed color. Unlike *.gif, PNG doesn’t support animation. There have been two attempts at giving animation support to PNG, APNG and MNG, the former is unofficial and the latter too complicated, so neither have really taken off yet.

버전 4.2에 추가: Since 4.2 we support saving HDR to PNG as according to the W3C PQ HDR PNG standard [https://www.w3.org/TR/png-hdr-pq/]. To save as such files, toggle Save as HDR image (Rec. 2020 PQ), which will convert your image to the Rec 2020 PQ color space and then save it as a special HDR PNG.

*.psd

.psd is Photoshop’s internal file format. For some reason, people like to use it as an interchange format, even though it is not designed for this.

.psd, unlike actual interchange formats like *.pdf, *.tiff, *.exr, *.ora and *.svg doesn’t have an official spec online. Which means that it needs to be reverse engineered. Furthermore, as an internal file format, it doesn’t have much of a philosophy to its structure, as it’s only purpose is to save what Photoshop is busy with, or rather, what all the past versions of Photoshop have been busy with. This means that the inside of a PSD looks somewhat like Photoshop’s virtual brains, and PSD is in general a very disliked file-format.

Due to .psd being used as an interchange format, this leads to confusion amongst people using these programs, as to why not all programs support opening these. Sometimes, you might even see users saying that a certain program is terrible because it doesn’t support opening PSDs properly. But as PSD is an internal file-format without online specs, it is impossible to have any program outside it support it 100%.

Krita supports loading and saving raster layers, blending modes, layerstyles, layer groups, and transparency masks from PSD. It will likely never support vector and text layers, as these are just too difficult to program properly.

We recommend using any other file format instead of PSD if possible, with a strong preference towards *.ora or *.tiff.

As a working file format, PSDs can be expected to become very heavy and most websites won’t accept them.

*.svg

.svg, or Scalable Vector Graphics, is the most modern vector graphics interchange file format out there.

Being vector graphics, SVG is very light weight. This is because it usually only stores coordinates and parameters for the maths involved with vector graphics.

It is maintained by the W3C SVG working group, who also maintain other open standards that make up our modern internet.

While you can open up SVG files with any text-editor to edit them, it is best to use a vector program like Inkscape. Krita 2.9 to 3.3 supports importing SVG via the add shape docker. Since Krita 4.0, SVGs can be properly imported, and you can export singlevector layers via Layer ‣ Import/Export ‣ Save Vector Layer as SVG… menu item. For 4.0, Krita will also use SVG to save vector data into its internal format.

SVG is designed for the internet, though sadly, because vector graphics are considered a bit obscure compared to raster graphics, not a lot of websites accept them yet. Hosting them on your own webhost works just fine though.

*.tiff

.tiff, or Tagged Image File Format, is a raster interchange format that was originally designed to be a common format generated by scanners and used by printers.

It can support multiple color spaces, and even layers.

버전 5.1에서 변경: If build with libtiff 4.2 or later, Krita can open and save Photoshop style layered .tiff. These are different from regular layered .tiff, as Photoshop stores *.psd data inside the .tiff. This means things like layerstyles and blending modes can be stored and read by Photoshop, but not every software that can open layered .tiff will be able to open these.

As an interchange format, .tiff is not meant for sharing on the internet, and you will not find many websites that do accept it. However, printhouses know the file format, and will likely accept it.

*.webp

WebP is a file format based on the RIFF container specification [https://developers.google.com/speed/webp/docs/riff_container] that, like *.heif and *.avif, builds upon a video codec (VP8 [https://developers.google.com/speed/webp/docs/compression#lossy_webp]) to support Lossy and Lossless Image Compression. WebP tends to be largely used for websites, though not all websites support uploading such files. If you self-host you can investigate whether WebP is an improvement over *.jpg or *.png. However, it is not very widely supported by image editors, so if you are doing collaboration with other artists, it may be better to use a different file format.

Krita has supported simple WebP export for a while, but since 5.1 it supports all the export options offered by libwebp [https://chromium.googlesource.com/webm/libwebp].

Export Options:

Instead of making you responsible for the precise settings, the WebP exporter will try out different techniques to compress better. You give a goal (a given quality or a certain file size) to aim for, and it will try its best to reach that goal. To do this, it may actually try to redo a given step of the encoding process several times. In the end, what you will have to choose is whether you want a high quality result at the cost of a slow export, or a quick export at the cost of quality.

General:

	Preset:
	WebP offers some presets for a given type of photo. For stylized images, use Line Drawing, for painterly images, use Portrait or Outdoor Photo.

	Lossless Compression:
	Use the lossless compression mode, this is a slightly different algorithm, which is heavier but gives better results for sharp contrasts.

	Quality:
	Slider for quality.

With Lossless Compression, 0% means the library will use the fewest amount of algorithmic tricks to reduce file size. This means fast saving times, at the expense of larger files. Conversely, 100% means all algorithmic tricks will be used, leading to the smallest file size, but saving will take longer. The first is best for a situation where speed is more important than size, such as files you share via USB. The latter is useful for situations where the file size can become a problem, such as serving it over the Internet.

Without Lossless Compression, image information considered redundant will be removed, rather than compressed. This means that at 0%, the most information will be lost and thus the smallest file size is achieved. This also reduces the overall quality. Conversely, 100% will remove the least amount of image information and thus maintain quality at the expense of a large file size.

	Trade Off
	A slider that allows you to select whether saving speed is more important than quality.

	Dithering:
	This enables dithering, which allows storing fewer colors while still keeping good gradients.

Advanced

	SNS Strength:
	Specifies the strength of the Spatial Noise Shaping algorithm, which tries to see if parts of the image can be better compressed than other parts.

	Filter Strength:
	Strength of the deblocking filter. 0% will mean there’s no filtering after decoding, with increasing filter strength the image will appear smoother.

	Filter Sharpness:
	Defines the sharpness of the deblocking filter, with 0 being the sharpest and 7 being the least sharp.

	Filter Type:
	Type of deblocking filter, options are Strong and Simple.

	Alpha Plane Compression:
	Whether to losslessly compress the alpha channel (Lossless) or outright discard it (None).
None

	Predictive Filtering for Alpha Plane:
	Whether to use predictive filtering for the alpha/transparency. Best will try all potential predictive filter modes before deciding which one to use, making it slower than Fast, which just makes a guess and selects that.

	Alpha Plane Quality:
	Compression quality for the alpha channel. 0% means smallest size, 100% means no compression. Only with Alpha Plane Compression set to Lossless.

	Show Compressed:
	Tells libwebp to skip the in-loop filtering step. May adversely affect the quality of the end file.

	Multithreaded Encoding:
	Use multithreading for encoding if possible.

	Reduce Memory Usage:
	Try to reduce memory usage at the cost of speed.

	Exact:
	Preserve RGB values in transparent areas instead of defaulting them to transparent black.

	Use Sharp YUV:
	Whether to use the slower, but more accurate, RGB to YUV conversion.

Lossy Compression

The following options only apply if Lossless Compression is off.

	Target Size:
	Specify the amount of bytes to aim for.

	Target PSNR:
	PSNR means Peak Signal to Noise Ratio <https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio_>, and indicates how much noise the image has. Higher values mean less noise is accepted.

	Segments:
	How many segments the VP8 video codec can divide the image into. VP8 accepts between 1 and 4 segments.

	Partitions:
	Sets how many partitions can the VP8 codec use for storing decompression information. Must be between 0 and 3. Default is 0 to make decoding easier.

	Auto Adjust Filter Strength:
	The encoder will spend some time tuning and selecting the best filter options before encoding.

	Entropy Passes:
	Number of passes to do for selecting the best option between target size and target PSNR.

	Emulate JPEG Size:
	The encoder will try to match the size of a jpeg of similar dimensions.

	Minimum Quality:
	Used with ‘entropy passes’, the lowest allowed quality for the image.

	Maximum Quality:
	Used with ‘entropy passes’, the highest allowed quality for the image.

	Preprocessing Filter:
	Whether or not to add Pseudo Random Dithering to the image before converting RGB to YUV.

Lossless compression

The following options only work with Lossless Compression on.

	Partition Limit:
	Limit how big a given segment is in bytes. The higher this is, the less possible information is stored per segment.

	Near Lossless:
	The encoder is able to minimally adjust pixel-values so they compress better in lossless compression mode. This enables this feature.
Automatically triggers Lossless Compression.

더 보기

https://developers.google.com/speed/webp/docs/compression

Lossy and Lossless Image Compression

When we compress a file, we do this because we want to temporarily make it smaller (like for sending over email), or we want to permanently make it smaller (like for showing images on the internet).

Lossless compression techniques are for when we want to temporarily reduce information. As the name implies, they compress without losing information. In text, the use of abbreviations is a good example of a lossless compression technique. Everyone knows ‘etc.’ expands to ‘etcetera’, meaning that you can half the 8 character long ‘etcetera’ to the four character long ‘etc.’.

Within image formats, examples of such compression is by for example ‘indexed’ color, where we make a list of available colors in an image, and then assign a single number to them. Then, when describing the pixels, we only write down said number, so that we don’t need to write the color definition over and over.

Lossy compression techniques are for when we want to permanently reduce the file size of an image. This is necessary for final products where having a small filesize is preferable such as a website. That the image will not be edited anymore after this allows for the use of the context of a pixel to be taken into account when compressing, meaning that we can rely on psychological and statistical tricks.

One of the primary things JPEG for example does is chroma sub-sampling, that is, to split up the image into a grayscale and two color versions (one containing all red-green contrast and the other containing all blue-yellow contrast), and then it makes the latter two versions smaller. This works because humans are much more sensitive to differences in lightness than we are to differences in hue and saturation.

Another thing it does is to use cosine waves to describe contrasts in an image. What this means is that JPEG and other lossy formats using this are very good at describing gradients, but not very good at describing sharp contrasts.

Conversely, lossless image compression techniques are really good at describing images with few colors thus sharp contrasts, but are not good to compress images with a lot of gradients.

Another big difference between lossy and lossless images is that lossy file formats will degrade if you re-encode them, that is, if you load a JPEG into Krita edit a little, resave, edit a little, resave, each subsequent save will lose some data. This is a fundamental part of lossy image compression, and the primary reason we use working files.

더 보기

If you’re interested in different compression techniques, Wikipedia’s page(s) on image compression [https://en.wikipedia.org/wiki/Image_compression] are very good, if not a little technical.

Perspective Projection

The Perspective Projection tutorial is one of the Kickstarter 2015 tutorial rewards. It’s about something that humanity has known scientifically for a very long time, and decent formal training will teach you about this. But I think there are very very few tutorials about it in regard to how to achieve it in digital painting programs, let alone open source.

The tutorial is a bit image heavy, and technical, but I hope the skill it teaches will be really useful to anyone trying to get a grasp on a complicated pose. Enjoy, and don’t forget to thank Raghukamath [https://www.raghukamath.com/] for choosing this topic!

[image: ../_images/projection-cube_09.svg]

부분:

	정사형

	Oblique

	Axonometric

	Perspective Projection

	Practical

	Conclusion and afterthoughts

 So let’s start with the basics…

정사형

Despite the fancy name, you probably know what orthographic is. It is a schematic representation of an object, draw undeformed. Like the following example:

[image: ../../_images/projection-cube_01.svg]This is a rectangle. We have a front, top and side view. Put into perspective it should look somewhat like this:

[image: ../../_images/projection-cube_02.svg]While orthographic representations are kinda boring, they’re also a good basis to start with when you find yourself in trouble with a pose. But we’ll get to that in a bit.

Oblique

So, if we can say that the front view is the viewer looking at the front, and the side view is the viewer directly looking at the side. (The perpendicular line being the view plane it is projected on)

[image: ../../_images/projection-cube_03.svg]Then we can get a half-way view from looking from an angle, no?

[image: ../../_images/projection-cube_04.svg]If we do that for a lot of different sides…

[image: ../../_images/projection-cube_05.svg]And we line up the sides we get a…

[image: ../../_images/projection-cube_06.svg]But cubes are boring. I am suspecting that projection is so ignored because no tutorial applies it to an object where you actually might NEED projection. Like a face.

First, let’s prepare our front and side views:

[image: ../../_images/projection_image_01.png]
I always start with the side, and then extrapolate the front view from it. Because you are using Krita, set up two parallel rulers, one vertical and the other horizontal. To snap them perfectly, drag one of the nodes after you have made the ruler, and press the Shift key to snap it horizontal or vertical. In 3.0, you can also snap them to the image borders if you have Snap Image Bounds active via the Shift + S shortcut.

Then, by moving the mirror to the left, you can design a front view from the side view, while the parallel preview line helps you with aligning the eyes (which in the above screenshot are too low).

Eventually, you should have something like this:

[image: ../../_images/projection_image_02.png]
And of course, let us not forget the top, it’s pretty important:

[image: ../../_images/projection_image_03.png]

팁

When you are using Krita, you can just use transform masks to rotate the side view for drawing the top view.

The top view works as a method for debugging your orthos as well. If we take the red line to figure out the orthographics from, we see that our eyes are obviously too inset. Let’s move them a bit more forward, to around the nose.

[image: ../../_images/projection_image_04.png]
If you want to do precision position moving in the tool options docker, just select ‘position’ and the input box for the X. Pressing down then moves the transformed selection left. With Krita 3.0 you can just use the move tool for this and the arrow keys. Using transform here can be more convenient if you also have to squash and stretch an eye.

[image: ../../_images/projection_image_05.png]
We fix the top view now. Much better.

For faces, the multiple slices are actually pretty important. So important even, that I have decided we should have these slices on separate layers. Thankfully, I chose to color them, so all we need to do is go to Layer ‣ Split Layer.

[image: ../../_images/projection_image_06.png]
This’ll give you a few awkwardly named layers… rename them by selecting all and mass changing the name in the properties editor:

[image: ../../_images/projection_image_07.png]
So, after some cleanup, we should have the following:

[image: ../../_images/projection_image_08.png]
Okay, now we’re gonna use animation for the next bit.

Set it up as follows:

[image: ../../_images/projection_image_09.png]

	Both front view and side view are set up as ‘visible in timeline’ so we can always see them.

	Front view has its visible frame on frame 0 and an empty frame on frame 23.

	Side view has its visible frame on frame 23 and an empty view on frame 0.

	The end of the animation is set to 23.

[image: ../../_images/projection_image_10.png]
Krita can’t animate a transformation on multiple layers on multiple frames yet, so let’s just only transform the top layer. Add a semi-transparent layer where we draw the guidelines.

Now, select frame 11 (halfway), add new frames from front view, side view and the guidelines. And turn on the onion skin by toggling the lamp symbols. We copy the frame for the top view and use the transform tool to rotate it 45°.

[image: ../../_images/projection_image_11.png]
So, we draw our vertical guides again and determine a in-between…

[image: ../../_images/projection_image_12.png]
This is about how far you can get with only the main slice, so rotate the rest as well.

[image: ../../_images/projection_image_13.png]
And just like with the cube, we do this for all slices…

[image: ../../_images/projection_image_14.png]
Eventually, if you have the top slices rotate every frame with 15°, you should be able to make a turn table, like this:

[image: ../../_images/projection_animation_01.gif]
Because our boy here is fully symmetrical, you can just animate one side and flip the frames for the other half.

While it is not necessary to follow all the steps in the theory section to understand the tutorial, I do recommend making a turn table sometime. It teaches you a lot about drawing 3/4th faces.

How about… we introduce the top view into the drawing itself?

 This is a continuation of the orthographic and oblique tutorial, be sure to check it out if you get confused!

Axonometric

So, the logic of adding the top is still similar to that of the side.

[image: ../../_images/projection-cube_07.svg]Not very interesting. But it gets much more interesting when we use a side projection:

[image: ../../_images/projection-cube_08.svg]Because our cube is red on both front-sides, and blue on both left and right side, we can just use copies, this simplifies the method for cubes a lot. We call this form of axonometric projection ‘dimetric’ as it deforms two parallel lines equally.

Isometric is sorta like dimetric where we have the same angle between all main lines:

[image: ../../_images/projection-cube_09.svg]True isometric is done with a 90-54.736=35.264° angle from ground plane:

[image: ../../_images/projection-cube_10.svg](as you can see, it doesn’t line up perfectly, because Inkscape, while more designed for making these kinds of diagrams than Krita, doesn’t have tools to manipulate the line’s angle in degrees)

This is a bit of an awkward angle, and on top of that, it doesn’t line up with pixels sensibly, so for videogames an angle of 30° from the ground plane is used.

[image: ../../_images/projection-cube_11.svg]Alright, so, let’s make an isometric out of our boy then.

We make a new document, and add a vector layer.

On the vector layer, we select the straight line tool, start a line and then hold the Shift key to make it snap to angles. This’ll allow us to make a 30° setup like above:

[image: ../../_images/projection_image_15.png]
We then import some of the frames from the animation via Layers ‣ Import/Export ‣ Import layer.

Then crop it by setting the crop tool to Layer, and use Filters ‣ Colors ‣ Color to alpha… to remove any background. I also set the layers to 50% opacity. We then align the vectors to them:

[image: ../../_images/projection_image_16.png]

팁

To resize a vector but keep its angle, you just select it with the shape handling tool (the white arrow) drag on the corners of the bounding box to start moving them, and then press the Shift key to constrain the ratio. This’ll allow you to keep the angle.

The lower image is ‘the back seen from the front’, we’ll be using this to determine where the ear should go.

Now, we obviously have too little space, so select the crop tool, select Image and tick Grow and do the following:

[image: ../../_images/projection_image_17.png]
Grow is a more practical way of resizing the canvas in width and height immediately.

Then we align the other heads and transform them by using the transform tool options:

[image: ../../_images/projection_image_18.png]
(330° here is 360°-30°)

Our rectangle we’ll be working in slowly becomes visible. Now, this is a bit of a difficult angle to work at, so we go to Image ‣ Rotate ‣ Rotate Image and fill in 30° clockwise:

[image: ../../_images/projection_image_19.png]
[image: ../../_images/projection_image_20.png]
(of course, we could’ve just rotated the left two images 30°, this is mostly to be less confusing compared to the cube)

So, we do some cropping, some cleanup and add two parallel assistants like we did with the orthographic:

[image: ../../_images/projection_image_21.png]
So the idea here is that you draw parallel lines from both sides to find points in the drawing area. You can use the previews of the assistants for this to keep things clean, but I drew the lines anyway for your convenience.

[image: ../../_images/projection_image_22.png]
The best is to make a few sampling points, like with the eyebrows here, and then draw the eyebrow over it.

[image: ../../_images/projection_image_23.png]

Alternative axonometric with the transform tool

Now, there’s an alternative way of getting there that doesn’t require as much space.

We open our orthographic with Open existing Document as Untitled Document so that we don’t save over it.

Our game-safe isometric has its angle at two pixels horizontal is one pixel vertical. So, we shear the ortho graphics with transform masks to -.5/+.5 pixels (this is proportional)

[image: ../../_images/projection_image_24.png]
Use the grid to setup two parallel rulers that represent both diagonals (you can snap them with the Shift + S shortcut):

[image: ../../_images/projection_image_25.png]
Add the top view as well:

[image: ../../_images/projection_image_26.png]
if you do this for all slices, you get something like this:

[image: ../../_images/projection_image_27.png]
Using the parallel rulers, you can then figure out the position of a point in 3d-ish space:

[image: ../../_images/projection_image_28.png]
As you can see, this version both looks more 3d as well as more creepy.

That’s because there are less steps involved as the previous version – We’re deriving our image directly from the orthographic view – so there are less errors involved.

The creepiness is because we’ve had the tiniest bit of stylisation in our side view, so the eyes come out HUGE. This is because when we stylize the side view of an eye, we tend to draw it not perfectly from the side, but rather slightly at an angle. If you look carefully at the turntable, the same problem crops up there as well.

Generally, stylized stuff tends to fall apart in 3d view, and you might need to make some choices on how to make it work.

For example, we can just easily fix the side view (because we used transform masks, this is easy.)

[image: ../../_images/projection_image_29.png]
And then generate a new drawing from that…

[image: ../../_images/projection_animation_02.gif]
Compare to the old one and you should be able to see that the new result’s eyes are much less creepy:

[image: ../../_images/projection_image_30.png]
It still feels very squashed compared to the regular parallel projection above, and it might be an idea to not just skew but also stretch the orthos a bit.

Let’s continue with perspective projection in the next one!

 This is a continuation of the axonometric tutorial, be sure to check it out if you get confused!

Perspective Projection

So, up till now we’ve done only parallel projection. This is called like that because all the projection lines we drew were parallel ones.

However, in real life we don’t have parallel projection. This is due to the lens in our eyes.

[image: ../../_images/Projection_Lens1_from_wikipedia.svg]Convex lenses, as this lovely image from wikipedia [https://en.wikipedia.org/wiki/Lens_%28optics%29] shows us, have the ability to turn parallel lightrays into converging ones.

The point where all the rays come together is called the focal point, and the vanishing point in a 2d drawing is related to it as it’s the expression of the maximum distortion that can be given to two parallel lines as they’re skewed toward the focal point.

As you can see from the image, the focal point is not an end-point of the rays. Rather, it is where the rays cross before diverging again… The only difference is that the resulting image will be inverted. Even in our eyes this inversion happens, but our brains are used to this awkwardness since childhood and turn it around automatically.

Let’s see if we can perspectively project our box now.

[image: ../../_images/projection-cube_12.svg]That went pretty well. As you can see we sort of merged the two sides into one (resulting into the purple side square) so we had an easier time projecting. The projection is limited to one or two vanishing point type projection, so only the horizontal lines get distorted. We can also distort the vertical lines

[image: ../../_images/projection-cube_13.svg]… to get three-point projection, but this is a bit much. (And I totally made a mistake in there…)

Let’s setup our perspective projection again…

[image: ../../_images/projection_image_31.png]
We’ll be using a single vanishing point for our focal point. A guide line will be there for the projection plane, and we’re setting up horizontal and vertical parallel rules to easily draw the straight lines from the view plane to where they intersect.

And now the workflow in GIF format… (don’t forget you can rotate the canvas with the 4 and 6 keys)

[image: ../../_images/projection_animation_03.gif]
결과:

[image: ../../_images/projection_image_32.png]
Looks pretty haughty, doesn’t he?

And again, there’s technically a simpler setup here…

Did you know you can use Krita to rotate in 3d? No?

[image: ../../_images/projection_image_33.png]
Well, now you do.

The ortho graphics are being set to 45 and 135 degrees respectively.

We draw horizontal lines on the originals, so that we can align vanishing point rulers to them.

[image: ../../_images/projection_image_34.png]
And from this, like with the shearing method, we start drawing. (Don’t forget the top-views!)

Which should get you something like this:

[image: ../../_images/projection_image_35.png]
But again, the regular method is actually a bit easier…

But now you might be thinking: gee, this is a lot of work… Can’t we make it easier with the computer somehow?

Uhm, yes, that’s more or less why people spent time on developing 3d graphics technology:

[image: ../../_images/projection_image_36.png]
[image: ../../_images/projection_image_37.png]
(The image above is sculpted in blender using our orthographic reference)

So let us look at what this technique can be practically used for in the next part…

 This is a continuation of the perspective projection tutorial, be sure to check it out if you get confused!

Practical

So, if computers can already automate a ton, and it is fairly complicated, is there still a use for a traditional 2d artist to learn this?

Yes, actually. The benefit that 2d art still has over 3d is that it’s plain faster for single images, especially with complicated subjects like faces and bodies.

Perspective projection can help a lot getting down those annoying poses, like people lying down. It also helps when combining 2d and 3d, as when you know where the camera is in the 3d render, you can use that in a projection to get the character projected.

[image: ../../_images/projection_animation_04.gif]
The side view of a person lying down is often easy to draw, but the top view or the view from the feet isn’t. Hence why we use the side view to do perspective projection on.

[image: ../../_images/projection_image_38.png]
Another example with an equally epic task: sitting.

[image: ../../_images/projection_animation_05.gif]
Now, with this one we have a second vanishing point above the front-view. It should be about the same distance above the front-view as it is above the head of the rotated side-view. The projection plane should also be the same distance from the vanishing point, but that doesn’t mean it has to be behind. This is something I avoided in the earlier examples, because it makes the working field really messy, but if you look up perspective projection you’ll see multiple examples of this method.

Also of note is that you actually should be having the view plane/projection plane perfectly perpendicular to the angle of the focal point, otherwise you get odd distortion, this doesn’t happen here, which means this sitting person is a bit more stretched vertically than necessary.

[image: ../../_images/projection_image_39.png]
One more, for the road…

[image: ../../_images/projection_animation_06.gif]
Here you can see that the misalignment of the vanishing point to the projection plane causes skewing which was then fixed by Krita’s transform tools, technically it’s of course correct, but what is correct doesn’t always look good. (I also mess up the position of the shoulder for a good while if you look closely.)

[image: ../../_images/projection_image_40.png]

Conclusion and afterthoughts

I probably didn’t make as nice result images as I could have, especially if you compare it to the 3d images. However, you can still see that the main landmarks are there. The real use of this technique lies in poses though, and it allows you to iterate on a pose quite quickly once you get the hang of it.

Generally, it’s worth exploring, if only because it improves your spatial sense.

더 보기

	https://en.wikipedia.org/wiki/Axonometric_projection

	https://blenderartists.org/t/creating-an-isometric-camera/440743

	http://flarerpg.org/tutorials/isometric_tiles/

	https://en.wikipedia.org/wiki/Isometric_graphics_in_video_games_and_pixel_art

	https://en.wikipedia.org/wiki/Lens_%28optics%29

참조 문서

A quick run-down of all the tools that are available.

목차:

	Audio for Animation

	혼합 모드

	브러시

	배열 복제

	새 문서 만들기

	Pre-installed Python plugins

	도커

	Dr. MinGW Debugger

	필터

	HDR Display

	이미지 분할

	Import Animation

	즉시 미리 보기

	Krita 4 Preset Bundle Overview

	레이어와 마스크

	Linux Command Line

	The List of Supported Tablets

	주 메뉴

	Maths Input

	팝업 팔레트

	환경 설정

	애니메이션 렌더

	Resource Management

	SeExpr Quick Reference

	Separate Image

	Getting Krita logs

	레이어 분할

	SVG Storyboard Export Templates

	Stroke Selection

	도구

	Welcome Screen

Audio for Animation

Within Krita you can load an audio file into your document to help synchronize your animation with dialogue or music. This functionality is available from the audio menu in the Timeline Docker’s titlebar.

Importing Audio Files

Krita supports a variety of audio file types, including WAV, FLAC, OGG, MP3, and more.

To load an audio file into your Krita document, first open the Timeline Docker.

On the right-hand side of the Timeline Docker’s toolbar, you’ll find the Audio Menu button with an icon that looks like a speaker.
This is the main area where you will interact with Krita’s audio system, including loading and removing audio tracks and adjusting the playback volume.

Specifically, these options and widgets are available in the Audio Menu:

	Load Audio File

	Remove Audio File

	Mute Audio

	Audio Volume Slider

Crucially, Krita only saves the location (file path) of your audio file inside your Krita document. Because of that, if you happen to move or rename an audio file that you’ve referenced in one of your Krita animations, Krita will no longer be able to find it and you will need to re-load it manually. However, Krita will tell you the file was moved or deleted the next time you try to open the Krita file up.

Using Audio

Once you’ve imported some audio, you will be able scrub through frames on the timeline and Krita will play the audio chunk associated with the frame that you want on. Then, when you press the Play button, your audio will playback while you animation plays synchronized with the image frame changes.

As of now there is no visual audio waveform display in Krita’s UI, so you will need to use your ears and the scrubbing functionality to line your keyframes up with specific parts of the audio.

Exporting with Audio

To have audio included with your exported animation video you will need to check enable it in the Render Animation options. In the File ‣ Render Animation options there is a checkbox Include Audio. Make sure that is checked before you export and you should be good to go.

혼합 모드

Blending modes are a little difficult to explain. Basically, when one layer is above the other, the computer uses a bit of programming to decide how the combination of both layers will look.

Blending modes can not just apply to Layers, but also to individual strokes.

책갈피

These are the blending modes that have been ticked as favorites, defaulting these are:

	Addition

	Burn

	Color, HSV, HSI, HSL, HSY

	색상 닷지

	어둡게

	Erase

	밝게

	광도

	Multiply

	Normal

	Overlay

	Saturation HSI, HSV, HSL, HSY

Hotkeys associated with Blending modes

By default, the following hotkeys are associated with blending modes used for painting. Note: these shortcuts do not change the blending mode of the current layer.

You first need to use modifiers Alt + Shift, then use the following hotkey to have the associated blending mode:

	A 선형 번

	B Burn

	C Color, HSV, HSI, HSL, HSY

	D 색상 닷지

	E Difference

	F Soft Light (Photoshop) & Soft Light SVG

	G 밝게

	H 강한 조명

	I Dissolve

	J 선형 광선

	K 어둡게

	L Hard Mix

	M Multiply

	N Normal

	O Overlay

	P 강한 오버레이

	Q 뒤로

	S Screen

	T Saturation HSI, HSV, HSL, HSY

	U Hue HSV, HSI, HSL, HSY

	V 선명한 광선

	W 제외

	X 선형 닷지

	Y 광도

	Z 핀 조명

	Next Blending Mode +

	Previous Blending Mode -

사용 가능한 혼합 모드

	Arithmetic
	Addition

	Divide

	역 빼기

	Multiply

	Subtract

	Binary
	AND

	CONVERSE

	IMPLICATION

	NAND

	NOR

	NOT CONVERSE

	NOT IMPLICATION

	OR

	XOR

	XNOR

	어둡게
	Burn

	Easy Burn

	안개 어둡게(IFS Illusions)

	어둡게

	Darker Color

	감마 어둡게

	선형 번

	그림자(IFS Illusions)

	HSX
	HSI

	HSL

	HSV

	HSY

	HSX Blending Modes

	밝게
	색상 닷지

	감마 조명

	감마 광선

	강한 조명

	밝게

	Lighter Color

	선형 닷지

	쉬운 닷지

	고른 광선

	밝아지는 안개(IFS Illusions)

	선형 광선

	광도/광택(SAI)

	P-표준 A

	P-표준 B

	핀 조명

	Screen

	Soft Light (Photoshop) & Soft Light SVG

	Soft Light (IFS Illusions) & Soft Light (Pegtop-Delphi)

	대단한 조명

	틴트(IFS Illusions)

	선명한 광선

	기타
	범프맵

	노멀 맵 합치기

	복사

	Copy Red, Green, Blue

	Dissolve

	Mix
	알라논

	보간

	보간 - 2X

	알파 어둡게

	뒤로

	Erase

	기하 평균

	그레인 추출

	그레인 병합

	Greater

	Hard Mix

	강한 섞기(Photoshop)

	Hard Mix Softer (Photoshop)

	강한 오버레이

	Normal

	Overlay

	평행

	반그림자 A

	반그림자 B

	반그림자 C

	반그림자 D

	나머지
	나눗셈 나머지

	나눗셈 나머지 - 연속

	나머지

	나머지 - 연속

	나머지 시프트

	나머지 시프트 - 연속

	Negative
	Additive Subtractive

	역탄젠트

	Difference

	등가

	제외

	반전

	2차
	Freeze

	동결-반사

	Glow

	발광-가열

	가열

	가열-발광

	Heat-Glow and Freeze-Reflect Hybrid

	반사

	반사-동결

더 보기

	Basic blending modes:
	https://en.wikipedia.org/wiki/Blend_modes

	Grain Extract/Grain Merge:
	https://docs.gimp.org/en/gimp-concepts-layer-modes.html

Arithmetic

These blending modes are based on simple maths.

Addition

힌트

This blending mode is called “Addition” in English.

Adds the numerical values of two colors together:

Yellow(1, 1, 0) + Blue(0, 0, 1) = White(1, 1, 1)

Darker Gray(0.4, 0.4, 0.4) + Lighter Gray(0.5, 0.5, 0.5) = Even Lighter Gray (0.9, 0.9, 0.9)

[image: ../../_images/Blending_modes_Addition_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Addition.

Light Blue(0.1608, 0.6274, 0.8274) + Orange(1, 0.5961, 0.0706) = (1.1608, 1.2235, 0.8980) → Very Light Yellow(1, 1, 0.8980)

[image: ../../_images/Blending_modes_Addition_Light_blue_and_Orange.png]

Left: Normal. Right: Addition.

Red(1, 0, 0) + Gray(0.5, 0.5, 0.5) = Pink(1, 0.5, 0.5)

[image: ../../_images/Blending_modes_Addition_Red_plus_gray.png]

Left: Normal. Right: Addition.

When the result of the addition is more than 1, white is the color displayed. Therefore, white plus any other color results in white. On the other hand, black plus any other color results in the added color.

[image: ../../_images/Blending_modes_Addition_Sample_image_with_dots.png]

Left: Normal. Right: Addition.

Divide

힌트

This blending mode is called “Divide” in English.

Divides the numerical value from the lower color by the upper color.

Red(1, 0, 0) / Gray(0.5, 0.5, 0.5) = (2, 0, 0) → Red(1, 0, 0)

Darker Gray(0.4, 0.4, 0.4) / Lighter Gray(0.5, 0.5, 0.5) = Even Lighter Gray (0.8, 0.8, 0.8)

[image: ../../_images/Blending_modes_Divide_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Divide.

Light Blue(0.1608, 0.6274, 0.8274) / Orange(1, 0.5961, 0.0706) = (0.1608, 1.0525, 11.7195) → Aqua(0.1608, 1, 1)

[image: ../../_images/Blending_modes_Divide_Light_blue_and_Orange.png]

Left: Normal. Right: Divide.

[image: ../../_images/Blending_modes_Divide_Sample_image_with_dots.png]

Left: Normal. Right: Divide.

역 빼기

힌트

This blending mode is called “Inverse Subtract” in English.

This inverts the lower layer before subtracting it from the upper layer.

Lighter Gray(0.5, 0.5, 0.5)_(1_Darker Gray(0.4, 0.4, 0.4)) = (-0.1, -0.1, -0.1) → Black(0, 0, 0)

[image: ../../_images/Blending_modes_Inverse_Subtract_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Inverse Subtract.

Orange(1, 0.5961, 0.0706)_(1_Light Blue(0.1608, 0.6274, 0.8274)) = (0.1608, 0.2235, -0.102) → Dark Green(0.1608, 0.2235, 0)

[image: ../../_images/Blending_modes_Inverse_Subtract_Light_blue_and_Orange.png]

Left: Normal. Right: Inverse Subtract.

[image: ../../_images/Blending_modes_Inverse_Subtract_Sample_image_with_dots.png]

Left: Normal. Right: Inverse Subtract.

Multiply

힌트

This blending mode is called “Multiply” in English.

Multiplies the two colors with each other, but does not go beyond the upper limit.

This is often used to color in a black and white lineart.
One puts the black and white lineart on top, sets the layer to ‘Multiply’, and then draws in color on a layer beneath. Multiply will allow all the color to go through.

White(1,1,1) x White(1, 1, 1) = White(1, 1, 1)

White(1, 1, 1) x Gray(0.5, 0.5, 0.5) = Gray(0.5, 0.5, 0.5)

Darker Gray(0.4, 0.4, 0.4) x Lighter Gray(0.5, 0.5, 0.5) = Even Darker Gray (0.2, 0.2, 0.2)

[image: ../../_images/Blending_modes_Multiply_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Multiply.

Light Blue(0.1608, 0.6274, 0.8274) x Orange(1, 0.5961, 0.0706) = Green(0.1608, 0.3740, 0.0584)

[image: ../../_images/Blending_modes_Multiply_Light_blue_and_Orange.png]

Left: Normal. Right: Multiply.

[image: ../../_images/Blending_modes_Multiply_Sample_image_with_dots.png]

Left: Normal. Right: Multiply.

Subtract

힌트

This blending mode is called “Subtract” in English.

Subtracts the top layer from the bottom layer.

White(1, 1, 1)_White(1, 1, 1) = Black(0, 0, 0)

White(1, 1, 1)_Gray(0.5, 0.5, 0.5) = Gray(0.5, 0.5, 0.5)

Darker Gray(0.4, 0.4, 0.4)_Lighter Gray(0.5, 0.5, 0.5) = (-0.1, -0.1, -0.1) → Black(0, 0, 0)

[image: ../../_images/Blending_modes_Subtract_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Subtract.

Light Blue(0.1608, 0.6274, 0.8274) - Orange(1, 0.5961, 0.0706) = (-0.8392, 0.0313, 0.7568) → Blue(0, 0.0313, 0.7568)

[image: ../../_images/Blending_modes_Subtract_Light_blue_and_Orange.png]

Left: Normal. Right: Subtract.

[image: ../../_images/Blending_modes_Subtract_Sample_image_with_dots.png]

Left: Normal. Right: Subtract.

Binary

Binary modes are a special class of blending modes which utilize binary operators for calculations. Binary modes are unlike every other blending modes as these modes have a fractal attribute with falloff similar to other blending modes. Binary modes can be used for generation of abstract art using layers with very smooth surfaces. All binary modes have capitalized letters to distinguish themselves from other blending modes.

To clarify on how binary modes work, convert decimal values to binary values, then treat 1 or 0 as T or F respectively, and use binary operation to get the end result, and then convert the result back to decimal.

경고

Binary blending modes do not work on float images or negative numbers! So, don’t report bugs about using binary modes on unsupported color spaces.

AND

힌트

This blending mode is called “AND” in English.

Performs the AND operation for the base and blend layer. Similar to multiply blending mode.

[image: ../../_images/Blend_modes_AND_map.png]

Left: Base Layer. Middle: Blend Layer. Right: AND.

[image: ../../_images/Blending_modes_AND_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: AND.

CONVERSE

힌트

This blending mode is called “CONVERSE” in English.

Performs the inverse of IMPLICATION operation for the base and blend layer. Similar to screen mode with blend layer and base layer inverted.

[image: ../../_images/Blend_modes_CONVERSE_map.png]

Left: Base Layer. Middle: Blend Layer. Right: CONVERSE.

[image: ../../_images/Blending_modes_CONVERSE_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: CONVERSE.

IMPLICATION

힌트

This blending mode is called “IMPLICATION” in English.

Performs the IMPLICATION operation for the base and blend layer. Similar to screen mode with base layer inverted.

[image: ../../_images/Blend_modes_IMPLIES_map.png]

Left: Base Layer. Middle: Blend Layer. Right: IMPLICATION.

[image: ../../_images/Blending_modes_IMPLIES_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: IMPLICATION.

NAND

힌트

This blending mode is called “NAND” in English.

Performs the inverse of AND operation for base and blend layer. Similar to the inverted multiply mode.

[image: ../../_images/Blend_modes_NAND_map.png]

Left: Base Layer. Middle: Blend Layer. Right: NAND.

[image: ../../_images/Blending_modes_NAND_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: NAND.

NOR

힌트

This blending mode is called “NOR” in English.

Performs the inverse of OR operation for base and blend layer. Similar to the inverted screen mode.

[image: ../../_images/Blend_modes_NOR_map.png]

Left: Base Layer. Middle: Blend Layer. Right: NOR.

[image: ../../_images/Blending_modes_NOR_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: NOR.

NOT CONVERSE

힌트

This blending mode is called “NOT CONVERSE” in English.

Performs the inverse of CONVERSE operation for base and blend layer. Similar to the multiply mode with base layer and blend layer inverted.

[image: ../../_images/Blend_modes_NOT_CONVERSE_map.png]

Left: Base Layer. Middle: Blend Layer. Right: NOT CONVERSE.

[image: ../../_images/Blending_modes_NOT_CONVERSE_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: NOT CONVERSE.

NOT IMPLICATION

힌트

This blending mode is called “NOT IMPLICATION” in English.

Performs the inverse of IMPLICATION operation for base and blend layer. Similar to the multiply mode with the blend layer inverted.

[image: ../../_images/Blend_modes_NOT_IMPLICATION_map.png]

Left: Base Layer. Middle: Blend Layer. Right: NOT IMPLICATION.

[image: ../../_images/Blending_modes_NOT_IMPLICATION_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: NOT IMPLICATION.

OR

힌트

This blending mode is called “OR” in English.

Performs the OR operation for base and blend layer. Similar to screen mode.

[image: ../../_images/Blend_modes_OR_map.png]

Left: Base Layer. Middle: Blend Layer. Right: OR.

[image: ../../_images/Blending_modes_OR_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: XOR.

XOR

힌트

This blending mode is called “XOR” in English.

Performs the XOR operation for base and blend layer. This mode has a special property that if you duplicate the blend layer twice, you get the base layer.

[image: ../../_images/Blend_modes_XOR_map.png]

Left: Base Layer. Middle: Blend Layer. Right: XOR.

[image: ../../_images/Blending_modes_XOR_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: XOR.

XNOR

힌트

This blending mode is called “XNOR” in English.

Performs the XNOR operation for base and blend layer. This mode has a special property that if you duplicate the blend layer twice, you get the base layer.

[image: ../../_images/Blend_modes_XNOR_map.png]

Left: Base Layer. Middle: Blend Layer. Right: XNOR.

[image: ../../_images/Blending_modes_XNOR_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: XNOR.

어둡게

Burn

힌트

This blending mode is called “Burn” in English.

A variation on Divide, sometimes called ‘Color Burn’ in some programs.

This inverts the bottom layer, then divides it by the top layer, and inverts the result.
This results in a darkened effect that takes the colors of the lower layer into account, similar to the burn technique used in traditional darkroom photography.

1_{[1_Darker Gray(0.4, 0.4, 0.4)] / Lighter Gray(0.5, 0.5, 0.5)} = (-0.2, -0.2, -0.2) → Black(0, 0, 0)

[image: ../../_images/Blending_modes_Burn_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Burn.

1_{[1_Light Blue(0.1608, 0.6274, 0.8274)] / Orange(1, 0.5961, 0.0706)} = (0.1608, 0.3749, -1.4448) → Green(0.1608, 0.3749, 0)

[image: ../../_images/Blending_modes_Burn_Light_blue_and_Orange.png]

Left: Normal. Right: Burn.

[image: ../../_images/Blending_modes_Burn_Sample_image_with_dots.png]

Left: Normal. Right: Burn.

Easy Burn

힌트

This blending mode is called “Easy Burn” in English.

Aims to solve issues with Color Burn blending mode by using a formula which falloff is similar to Dodge, but the falloff rate is softer. It is within the range of 0.0f and 1.0f unlike Color Burn mode.

[image: ../../_images/Blending_modes_Easy_Burn_Sample_image_with_dots.png]

Left: Normal. Right: Easy Burn.

안개 어둡게(IFS Illusions)

힌트

This blending mode is called “Fog Darken (IFS Illusions)” in English.

Darken the image in a way that there is a ‘fog’ in the end result. This is due to the unique property of Fog Darken in which midtones combined are lighter than non-midtones blend.

[image: ../../_images/Blending_modes_Fog_Darken_Sample_image_with_dots.png]

Left: Normal. Right: Fog Darken (exactly the same as Addition).

어둡게

힌트

This blending mode is called “Darken” in English.

With Darken, the upper layer’s colors are checked for their lightness. Only if they are darker than the underlying color on the lower layer, will they be visible.

Is Lighter Gray(0.5, 0.5, 0.5) darker than Darker Gray(0.4, 0.4, 0.4)? = (no, no, no) → Darker Gray(0.4, 0.4, 0.4)

[image: ../../_images/Blending_modes_Darken_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Darken.

Is Orange(1, 0.5961, 0.0706) darker than Light Blue(0.1608, 0.6274, 0.8274)? = (no, yes, yes) → Green(0.1608, 0.5961, 0.0706)

[image: ../../_images/Blending_modes_Darken_Light_blue_and_Orange.png]

Left: Normal. Right: Darken.

[image: ../../_images/Blending_modes_Darken_Sample_image_with_dots.png]

Left: Normal. Right: Darken.

Darker Color

힌트

This blending mode is called “Darker Color” in English.

[image: ../../_images/Blending_modes_Darker_Color_Sample_image_with_dots.png]

Left: Normal. Right: Darker Color.

감마 어둡게

힌트

This blending mode is called “Gamma Dark” in English.

Divides 1 by the upper layer, and calculates the end result using that as the power of the lower layer.

Darker Gray(0.4, 0.4, 0.4)^[1 / Lighter Gray(0.5, 0.5, 0.5)] = Even Darker Gray(0.1600, 0.1600, 0.1600)

[image: ../../_images/Blending_modes_Gamma_Dark_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Gamma Dark.

Light Blue(0.1608, 0.6274, 0.8274)^[1 / Orange(1, 0.5961, 0.0706)] = Green(0.1608, 0.4575, 0.0683)

[image: ../../_images/Blending_modes_Gamma_Dark_Light_blue_and_Orange.png]

Left: Normal. Right: Gamma Dark.

[image: ../../_images/Blending_modes_Gamma_Dark_Sample_image_with_dots.png]

Left: Normal. Right: Gamma Dark.

선형 번

힌트

This blending mode is called “Linear Burn” in English.

Adds the values of the two layers together and then subtracts 1. Seems to produce the same result as 역 빼기.

[Darker Gray(0.4, 0.4, 0.4) + Lighter Gray(0.5, 0.5, 0.5)]_1 = (-0.1000, -0.1000, -0.1000) → Black(0, 0, 0)

[image: ../../_images/Blending_modes_Linear_Burn_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Linear Burn.

[Light Blue(0.1608, 0.6274, 0.8274) + Orange(1, 0.5961, 0.0706)]_1 = (0.1608, 0.2235, -0.1020) → Dark Green(0.1608, 0.2235, 0)

[image: ../../_images/Blending_modes_Linear_Burn_Light_blue_and_Orange.png]

Left: Normal. Right: Linear Burn.

[image: ../../_images/Blending_modes_Linear_Burn_Sample_image_with_dots.png]

Left: Normal. Right: Linear Burn.

그림자(IFS Illusions)

힌트

This blending mode is called “Shade (IFS Illusions)” in English.

Basically, the blending mode only ends in shades of shades. This means that it’s very useful for painting shading colors while still in the range of shades.

[image: ../../_images/Blending_modes_Shade_Sample_image_with_dots.png]

Left: Normal. Right: Shade.

HSX

Krita has four different HSX coordinate systems. The difference between them is how they handle tone.

HSI

HSI is a color coordinate system, using Hue, Saturation and Intensity to categorize a color.
Hue is roughly the wavelength, whether the color is red, yellow, green, cyan, blue or purple. It is measured in 360°, with 0 being red.
Saturation is the measurement of how close a color is to gray.
Intensity, in this case, is the tone of the color. What makes intensity special is that it recognizes yellow (rgb:1,1,0) having a higher combined rgb value than blue (rgb:0,0,1). This is a non-linear tone dimension, which means it’s gamma-corrected.

HSL

HSL is a color coordinate system that describes colors in Hue, Saturation and Lightness.
Lightness specifically puts both yellow (rgb:1,1,0), blue (rgb:0,0,1) and middle gray (rgb:0.5,0.5,0.5) at the same lightness (0.5).

HSV

HSV, occasionally called HSB, is a color coordinate system that measures colors in Hue, Saturation, and Value (also called Brightness).
Value or Brightness specifically refers to strength at which the pixel-lights on your monitor have to shine. It sets Yellow (rgb:1,1,0), Blue (rgb:0,0,1) and White (rgb:1,1,1) at the same Value (100%).

HSY

HSY is a color coordinate system categorizing colors in Hue, Saturation and Luminosity. Well, not really, it uses Luma instead of true luminosity, the difference being that Luminosity is linear while Luma is gamma-corrected and just weights the rgb components.
Luma is based on scientific studies of how much light a color reflects in real-life. While like intensity it acknowledges that yellow (rgb:1,1,0) is lighter than blue (rgb:0,0,1), it also acknowledges that yellow (rgb:1,1,0) is lighter than cyan (rgb:0,1,1), based on these studies.

HSX Blending Modes

Color, HSV, HSI, HSL, HSY

힌트

These blending modes are called “Color” in English.

This takes the Luminosity/Value/Intensity/Lightness of the colors on the lower layer, and combines them with the Saturation and Hue of the upper pixels. We refer to Color HSY as ‘Color’ in line with other applications.

[image: ../../_images/Blending_modes_Color_HSI_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Color HSI.

[image: ../../_images/Blending_modes_Color_HSI_Light_blue_and_Orange.png]

Left: Normal. Right: Color HSI.

[image: ../../_images/Blending_modes_Color_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Color HSI.

[image: ../../_images/Blending_modes_Color_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Color HSL.

[image: ../../_images/Blending_modes_Color_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Color HSV.

[image: ../../_images/Blending_modes_Color_Sample_image_with_dots.png]

Left: Normal. Right: Color.

Hue HSV, HSI, HSL, HSY

힌트

These blending modes are called “Hue” in English.

Takes the saturation and tone of the lower layer and combines them with the hue of the upper-layer.
Tone in this case being either Value, Lightness, Intensity or Luminosity.

[image: ../../_images/Blending_modes_Hue_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Hue HSI.

[image: ../../_images/Blending_modes_Hue_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Hue HSL.

[image: ../../_images/Blending_modes_Hue_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Hue HSV.

[image: ../../_images/Blending_modes_Hue_Sample_image_with_dots.png]

Left: Normal. Right: Hue.

Increase Value, Lightness, Intensity or Luminosity.

힌트

These blending modes are called “Increase Value / Lightness / Intensity / Luminosity” in English.

Similar to Lighten, but specific to tone.
Checks whether the upper layer’s pixel has a higher tone than the lower layer’s pixel. If so, the tone is increased, if not, the lower layer’s tone is maintained.

[image: ../../_images/Blending_modes_Increase_Intensity_Sample_image_with_dots.png]

Left: Normal. Right: Increase Intensity.

[image: ../../_images/Blending_modes_Increase_Lightness_Sample_image_with_dots.png]

Left: Normal. Right: Increase Lightness.

[image: ../../_images/Blending_modes_Increase_Value_Sample_image_with_dots.png]

Left: Normal. Right: Increase Value.

[image: ../../_images/Blending_modes_Increase_Luminosity_Sample_image_with_dots.png]

Left: Normal. Right: Increase Luminosity.

Increase Saturation HSI, HSV, HSL, HSY

힌트

These blending modes are called “Increase Saturation” in English.

Similar to Lighten, but specific to Saturation.
Checks whether the upper layer’s pixel has a higher Saturation than the lower layer’s pixel. If so, the Saturation is increased, if not, the lower layer’s Saturation is maintained.

[image: ../../_images/Blending_modes_Increase_Saturation_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Increase Saturation HSI.

[image: ../../_images/Blending_modes_Increase_Saturation_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Increase Saturation HSL.

[image: ../../_images/Blending_modes_Increase_Saturation_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Increase Saturation HSV.

[image: ../../_images/Blending_modes_Increase_Saturation_Sample_image_with_dots.png]

Left: Normal. Right: Increase Saturation.

Intensity

힌트

This blending mode is called “Intensity” in English.

Takes the Hue and Saturation of the lower layer and outputs them with the intensity of the upper layer.

[image: ../../_images/Blending_modes_Intensity_Sample_image_with_dots.png]

Left: Normal. Right: Intensity.

Value

힌트

This blending mode is called “Value” in English.

Takes the Hue and Saturation of the lower layer and outputs them with the Value of the upper layer.

[image: ../../_images/Blending_modes_Value_Sample_image_with_dots.png]

Left: Normal. Right: Value.

Lightness

힌트

This blending mode is called “Lightness” in English.

Takes the Hue and Saturation of the lower layer and outputs them with the Lightness of the upper layer.

[image: ../../_images/Blending_modes_Lightness_Sample_image_with_dots.png]

Left: Normal. Right: Lightness.

광도

힌트

This blending mode is called “Luminosity” in English.

As explained above, actually Luma, but called this way as it’s in line with the terminology in other applications.
Takes the Hue and Saturation of the lower layer and outputs them with the Luminosity of the upper layer.
The most preferred one of the four Tone blending modes, as this one gives fairly intuitive results for the Tone of a hue.

[image: ../../_images/Blending_modes_Luminosity_Sample_image_with_dots.png]

Left: Normal. Right: Luminosity.

Saturation HSI, HSV, HSL, HSY

힌트

These blending modes are called “Saturation” in English.

Takes the Intensity and Hue of the lower layer, and outputs them with the HSI saturation of the upper layer.

[image: ../../_images/Blending_modes_Saturation_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Saturation HSI.

[image: ../../_images/Blending_modes_Saturation_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Saturation HSL.

[image: ../../_images/Blending_modes_Saturation_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Saturation HSV.

[image: ../../_images/Blending_modes_Saturation_Sample_image_with_dots.png]

Left: Normal. Right: Saturation.

Decrease Value, Lightness, Intensity or Luminosity

힌트

These blending modes are called “Decrease Value / Lightness / Intensity / Luminosity” in English.

Similar to Darken, but specific to tone.
Checks whether the upper layer’s pixel has a lower tone than the lower layer’s pixel. If so, the tone is decreased, if not, the lower layer’s tone is maintained.

[image: ../../_images/Blending_modes_Decrease_Intensity_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Decrease Intensity.

[image: ../../_images/Blending_modes_Decrease_Intensity_Light_blue_and_Orange.png]

Left: Normal. Right: Decrease Intensity.

[image: ../../_images/Blending_modes_Decrease_Intensity_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Intensity.

[image: ../../_images/Blending_modes_Decrease_Lightness_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Lightness.

[image: ../../_images/Blending_modes_Decrease_Value_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Value.

[image: ../../_images/Blending_modes_Decrease_Luminosity_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Luminosity.

Decrease Saturation HSI, HSV, HSL, HSY

힌트

These blending modes are called “Decrease Saturation” in English.

Similar to Darken, but specific to Saturation.
Checks whether the upper layer’s pixel has a lower Saturation than the lower layer’s pixel. If so, the Saturation is decreased, if not, the lower layer’s Saturation is maintained.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSI_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Decrease Saturation HSI.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSI_Light_blue_and_Orange.png]

Left: Normal. Right: Decrease Saturation HSI.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Saturation HSI.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Saturation HSL.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Saturation HSV.

[image: ../../_images/Blending_modes_Decrease_Saturation_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Saturation.

밝게

Blending modes that lighten the image.

색상 닷지

힌트

This blending mode is called “Color Dodge” in English.

Similar to Divide.
Inverts the top layer, and divides the lower layer by the inverted top layer.
This results in a image with emphasized highlights, like Dodging would do in traditional darkroom photography.

[image: ../../_images/Blending_modes_Color_Dodge_Sample_image_with_dots.png]

Left: Normal. Right: Color Dodge.

감마 조명

힌트

This blending mode is called “Gamma Illumination” in English.

Inverted Gamma Dark blending mode.

[image: ../../_images/Blending_modes_Gamma_Illumination_Sample_image_with_dots.png]

Left: Normal. Right: Gamma Illumination.

감마 광선

힌트

This blending mode is called “Gamma Light” in English.

Outputs the upper layer as a power of the lower layer.

[image: ../../_images/Blending_modes_Gamma_Light_Sample_image_with_dots.png]

Left: Normal. Right: Gamma Light.

강한 조명

힌트

This blending mode is called “Hard Light” in English.

Similar to Overlay.
A combination of the Multiply and Screen blending modes, switching between both at a middle-lightness.

Hard Light checks if the color on the upper layer has a lightness above 0.5. Unlike Overlay, if the pixel is lighter than 0.5, it is blended like in Multiply mode, if not the pixel is blended like in Screen mode.

Effectively, this decreases contrast.

[image: ../../_images/Blending_modes_Hard_Light_Sample_image_with_dots.png]

Left: Normal. Right: Hard Light.

밝게

힌트

This blending mode is called “Lighten” in English.

With Lighten, the upper layer’s colors are checked for their lightness. Only if they are Lighter than the underlying color on the lower layer, will they be visible.

[image: ../../_images/Blending_modes_Lighten_Sample_image_with_dots.png]

Left: Normal. Right: Lighten.

Lighter Color

힌트

This blending mode is called “Lighter Color” in English.

[image: ../../_images/Blending_modes_Lighter_Color_Sample_image_with_dots.png]

Left: Normal. Right: Lighter Color.

선형 닷지

힌트

This blending mode is called “Linear Dodge” in English.

Exactly the same as Addition.

Put in for compatibility purposes.

[image: ../../_images/Blending_modes_Linear_Dodge_Sample_image_with_dots.png]

Left: Normal. Right: Linear Dodge (exactly the same as Addition).

쉬운 닷지

힌트

This blending mode is called “Easy Dodge” in English.

Aims to solve issues with Color Dodge blending mode by using a formula in which falloff is similar to Dodge, but the falloff rate is softer. It is within the range of 0.0f and 1.0f unlike Color Dodge mode.

[image: ../../_images/Blending_modes_Easy_Dodge_Sample_image_with_dots.png]

Left: Normal. Right: Easy Dodge.

고른 광선

힌트

This blending mode is called “Flat Light” in English.

The spreadout variation of Vivid Light mode in which range is between 0.0f and 1.0f.

[image: ../../_images/Blending_modes_Flat_Light_Sample_image_with_dots.png]

Left: Normal. Right: Flat Light.

밝아지는 안개(IFS Illusions)

힌트

This blending mode is called “Fog Lighten (IFS Illusions)” in English.

Lightens the image in a way that there is a ‘fog’ in the end result. This is due to the unique property of Fog Lighten in which midtones combined are lighter than non-midtones blend.

[image: ../../_images/Blending_modes_Fog_Light_Sample_image_with_dots.png]

Left: Normal. Right: Fog Lighten.

선형 광선

힌트

This blending mode is called “Linear Light” in English.

Similar to Overlay.

Combines 선형 닷지 and 선형 번. When the lightness of the upper-pixel is higher than 0.5, it uses Linear Dodge, if not, Linear Burn to blend the pixels.

[image: ../../_images/Blending_modes_Linear_Light_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Linear Light.

[image: ../../_images/Blending_modes_Linear_Light_Light_blue_and_Orange.png]

Left: Normal. Right: Linear Light.

[image: ../../_images/Blending_modes_Linear_Light_Sample_image_with_dots.png]

Left: Normal. Right: Linear Light.

광도/광택(SAI)

힌트

This blending mode is called “Luminosity/Shine (SAI)” in English.

Similar to Addition.

Takes the opacity of the new color (combined opacity of the layer, the brush, any used transparency masks, etc.) and multiplies the color by the opacity, then adds to the original/previous color.

\[c_{new} = c_{above}*{\alpha}_{above} + c_{below}\]

The result of this operation is the same as combining the new pixels with a fully opaque black layer in a Normal mode and then combining the result with the original layer using Addition mode. It should be also the same as the results of “Luminosity” blending mode in SAI1 or “Shine” blending mode in SAI2.

[image: ../../_images/Blending_modes_Luminosity_Shine_SAI_Sample_image_with_dots.png]

Left: Normal. Right: Luminosity/Shine (SAI).

P-표준 A

힌트

This blending mode is called “P-Norm A” in English.

P-Norm A is similar to Screen blending mode which slightly darken images, and the falloff is more consistent all-around in terms of outline of values. Can be used an alternative to Screen blending mode at times.

[image: ../../_images/Blending_modes_P-Norm_A_Sample_image_with_dots.png]

Left: Normal. Right: P-Norm A.

P-표준 B

힌트

This blending mode is called “P-Norm B” in English.

P-Norm B is similar to Screen blending mode which slightly darken images, and the falloff is more consistent all-around in terms of outline of values. The falloff is sharper in P-Norm B than in P-Norm A. Can be used as an alternative to Screen blending mode at times.

[image: ../../_images/Blending_modes_P-Norm_B_Sample_image_with_dots.png]

Left: Normal. Right: P-Norm B.

핀 조명

힌트

This blending mode is called “Pin Light” in English.

Checks which is darker between the lower layer’s pixel or the upper layer’s double so bright.
Then checks which is brighter of that result or the inversion of the doubled lower layer.

[image: ../../_images/Blending_modes_Pin_Light_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Pin Light.

[image: ../../_images/Blending_modes_Pin_Light_Light_blue_and_Orange.png]

Left: Normal. Right: Pin Light.

[image: ../../_images/Blending_modes_Pin_Light_Sample_image_with_dots.png]

Left: Normal. Right: Pin Light.

Screen

힌트

This blending mode is called “Screen” in English.

Perceptually the opposite of Multiply.

Mathematically, Screen takes both layers, inverts them, then multiplies them, and finally inverts them again.

This results in light tones being more opaque and dark tones transparent.

[image: ../../_images/Blending_modes_Screen_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Screen.

[image: ../../_images/Blending_modes_Screen_Light_blue_and_Orange.png]

Left: Normal. Right: Screen.

[image: ../../_images/Blending_modes_Screen_Sample_image_with_dots.png]

Left: Normal. Right: Screen.

Soft Light (Photoshop) & Soft Light SVG

힌트

These blending modes are called “Soft Light (Photoshop)” and “Soft Light SVG” in English.

These are less harsh versions of Hard Light, not resulting in full black or full white.

The SVG version is slightly different to the Photoshop version in that it uses a slightly different bit of formula when the lightness of the lower pixel is lower than 25%, this prevents the strength of the brightness increase.

[image: ../../_images/Blending_modes_Soft_Light_Photoshop_Sample_image_with_dots.png]

Left: Normal. Right: Soft Light (Photoshop).

[image: ../../_images/Blending_modes_Soft_Light_SVG_Sample_image_with_dots.png]

Left: Normal. Right: Soft Light (SVG).

Soft Light (IFS Illusions) & Soft Light (Pegtop-Delphi)

힌트

These blending modes are called “Soft Light (IFS Illusions)” and “Soft Light (Pegtop-Delphi)” in English.

These are alternative versions of standard Soft Light modes which are made to solve discontinuities seen with the standard blend modes. Sometimes, these modes offer subtle advantages by offering more contrast within some areas, and these advantages are more or less noticeable within different color spaces and depth.

[image: ../../_images/Blending_modes_Soft_Light_IFS_Sample_image_with_dots.png]

Left: Normal. Right: Soft Light (IFS Illusions).

[image: ../../_images/Blending_modes_Soft_Light_PEGTOP_Sample_image_with_dots.png]

Left: Normal. Right: Soft Light (Pegtop-Delphi).

대단한 조명

힌트

This blending mode is called “Super Light” in English.

Smoother variation of Hard Light blending mode with more contrast in it.

[image: ../../_images/Blending_modes_Super_Light_Sample_image_with_dots.png]

Left: Normal. Right: Super Light.

틴트(IFS Illusions)

힌트

This blending mode is called “Tint (IFS Illusions)” in English.

Basically, the blending mode only ends in shades of tints. This means that it’s very useful for painting light colors while still in the range of tints.

[image: ../../_images/Blending_modes_Tint_Sample_image_with_dots.png]

Left: Normal. Right: Tint.

선명한 광선

힌트

This blending mode is called “Vivid Light” in English.

Similar to Overlay.

Mixes both Color Dodge and Burn blending modes. If the color of the upper layer is darker than 50%, the blending mode will be Burn, if not the blending mode will be Color Dodge.

경고

This algorithm doesn’t use color dodge and burn, we don’t know WHAT it does do but for Color Dodge and Burn you need to use Hard Mix.

[image: ../../_images/Blending_modes_Vivid_Light_Sample_image_with_dots.png]

Left: Normal. Right: Vivid Light.

기타

범프맵

힌트

This blending mode is called “Bumpmap” in English.

This filter seems to both multiply and respect the alpha of the input.

노멀 맵 합치기

힌트

This blending mode is called “Combine Normal Map” in English.

Mathematically robust blending mode for normal maps, using Reoriented Normal Map Blending [https://blog.selfshadow.com/publications/blending-in-detail/].

복사

힌트

This blending mode is called “Copy” in English.

Copies the previous layer exactly.
Useful for when using filters and filter-masks.

[image: ../../_images/Blending_modes_Copy_Sample_image_with_dots.png]

Left: Normal. Right: Copy.

Copy Red, Green, Blue

힌트

These blending modes are called “Copy Red / Green / Blue” in English.

This is a blending mode that will just copy/blend a source channel to a destination channel.
Specifically, it will take the specific channel from the upper layer and copy that over to the lower layers.

So, if you want the brush to only affect the red channel, set the blending mode to ‘Copy Red’.

[image: ../../_images/Krita_Filter_layer_invert_greenchannel.png]

The copy red, green and blue blending modes also work on filter-layers.

This can also be done with filter layers. So if you quickly want to flip a layer’s green channel, make an Invert filter layer with ‘Copy Green’ above it.

[image: ../../_images/Blending_modes_Copy_Red_Sample_image_with_dots.png]

Left: Normal. Right: Copy Red.

[image: ../../_images/Blending_modes_Copy_Green_Sample_image_with_dots.png]

Left: Normal. Right: Copy Green.

[image: ../../_images/Blending_modes_Copy_Blue_Sample_image_with_dots.png]

Left: Normal. Right: Copy Blue.

Dissolve

힌트

This blending mode is called “Dissolve” in English.

Instead of using transparency, this blending mode will use a random dithering pattern to make the transparent areas look sort of transparent.

[image: ../../_images/Blending_modes_Dissolve_Sample_image_with_dots.png]

Left: Normal. Right: Dissolve.

Mix

알라논

힌트

This blending mode is called “Allanon” in English.

Blends the upper layer as half-transparent with the lower. (It adds the two layers together and then halves the value).

[image: ../../_images/Blending_modes_Allanon_Sample_image_with_dots.png]

Left: Normal. Right: Allanon.

보간

힌트

This blending mode is called “Interpolation” in English.

Subtract 0.5f by 1/4 of cosine of base layer subtracted by 1/4 of cosine of blend layer assuming 0-1 range.
The result is similar to Allanon mode, but with more contrast and functional difference to 50% opacity.

[image: ../../_images/Blending_modes_Interpolation_Sample_image_with_dots.png]

Left: Normal. Right: Interpolation.

보간 - 2X

힌트

This blending mode is called “Interpolation - 2X” in English.

Applies Interpolation blend mode to base and blend layers, then duplicates to repeat interpolation blending.

[image: ../../_images/Blending_modes_Interpolation_X2_Sample_image_with_dots.png]

Left: Normal. Right: Interpolation - 2X.

알파 어둡게

힌트

This blending mode is called “Alpha Darken” in English.

As far as I can tell this seems to premultiply the alpha, as is common in some file-formats.

[image: ../../_images/Blending_modes_Alpha_Darken_Sample_image_with_dots.png]

Left: Normal. Right: Alpha Darken.

뒤로

힌트

This blending mode is called “Behind” in English.

Does the opposite of Normal, and tries to have the upper layer rendered below the lower layer.

[image: ../../_images/Blending_modes_Behind_Sample_image_with_dots.png]

Left: Normal. Right: Behind.

Erase

힌트

This blending mode is called “Erase” in English.

This subtracts the opaque pixels of the upper layer from the lower layer, effectively erasing.

[image: ../../_images/Blending_modes_Erase_Sample_image_with_dots.png]

Left: Normal. Right: Erase.

기하 평균

힌트

This blending mode is called “Geometric Mean” in English.

This blending mode multiplies the top layer with the bottom, and then outputs the square root of that.

[image: ../../_images/Blending_modes_Geometric_Mean_Sample_image_with_dots.png]

Left: Normal. Right: Geometric Mean.

그레인 추출

힌트

This blending mode is called “Grain Extract” in English.

Similar to Subtract, the colors of the upper layer are subtracted from the colors of the lower layer, and then 50% gray is added.

[image: ../../_images/Blending_modes_Grain_Extract_Sample_image_with_dots.png]

Left: Normal. Right: Grain Extract.

그레인 병합

힌트

This blending mode is called “Grain Merge” in English.

Similar to Addition, the colors of the upper layer are added to the colors, and then 50% gray is subtracted.

[image: ../../_images/Blending_modes_Grain_Merge_Sample_image_with_dots.png]

Left: Normal. Right: Grain Merge.

Greater

힌트

This blending mode is called “Greater” in English.

A blending mode which checks whether the painted color is painted with a higher opacity than the existing colors. If so, it paints over them, if not, it doesn’t paint at all.

[image: ../../_images/Greaterblendmode.gif]

Hard Mix

힌트

This blending mode is called “Hard Mix” in English.

Similar to Overlay.

Mixes both Color Dodge and Burn blending modes. If the color of the upper layer is darker than 50%, the blending mode will be Burn, if not the blending mode will be Color Dodge.

[image: ../../_images/Blending_modes_Hard_Mix_Sample_image_with_dots.png]

Left: Normal. Right: Hard Mix.

강한 섞기(Photoshop)

힌트

This blending mode is called “Hard Mix (Photoshop)” in English.

This is the Hard Mix blending mode as it is implemented in Photoshop.

[image: ../../_images/Krita_4_0_hard_mix_ps.png]

Left: Dots are mixed in with the normal blending mode, on the Right: Dots are mixed in with hardmix.

This add the two values, and then checks if the value is above the maximum. If so it will output the maximum, otherwise the minimum.

Hard Mix Softer (Photoshop)

힌트

This blending mode is called “Hard Mix Softer (Photoshop)” in English.

버전 5.0에 추가.

This is the Hard Mix blending mode as it is implemented in Photoshop for texturing brushes. It produces softer edges
than the normal Hard Mix (Photoshop).

[image: ../../_images/Blending_modes_Hard_Mix_Softer_Photoshop_Sample_image_with_dots.png]

Left: Dots are mixed in with the normal blending mode, on the Right: Dots are mixed in with hard mix softer.

This is like the Inverse Subtract mode but the two terms are scaled up to increase the contrast. This is not really a
Hard Mix mode in the sense that it doesn’t choose between a result or another based on a threshold, although in most
cases the result looks like the normal Hard Mix (Photoshop) but with softer edges.

강한 오버레이

힌트

This blending mode is called “Hard Overlay” in English.

버전 4.0에 추가.

Similar to Hard Light but Hard Light use Screen when the value is above 50%. Divide gives better results than Screen, especially on floating point images.

[image: ../../_images/Blending_modes_Hard_Overlay_Sample_image_with_dots.png]

Left: Normal. Right: Hard Overlay.

Normal

힌트

This blending mode is called “Normal” in English.

As you may have guessed this is the default Blending mode for all layers.

In this mode, the computer checks on the upper layer how transparent a pixel is, which color it is, and then mixes the color of the upper layer with the lower layer proportional to the transparency.

[image: ../../_images/Blending_modes_Normal_50_Opacity_Sample_image_with_dots.png]

Left: Normal 100% Opacity. Right: Normal 50% Opacity.

Overlay

힌트

This blending mode is called “Overlay” in English.

A combination of the Multiply and Screen blending modes, switching between both at a middle-lightness.

Overlay checks if the color on the upper layer has a lightness above 0.5. If so, the pixel is blended like in Screen mode, if not the pixel is blended like in Multiply mode.

This is useful for deepening shadows and highlights.

[image: ../../_images/Blending_modes_Overlay_Sample_image_with_dots.png]

Left: Normal. Right: Overlay.

평행

힌트

This blending mode is called “Parallel” in English.

This one first takes the percentage in decimals for both layers.
It then adds the two values.
Divides 2 by the sum.

[image: ../../_images/Blending_modes_Parallel_Sample_image_with_dots.png]

Left: Normal. Right: Parallel.

반그림자 A

힌트

This blending mode is called “Penumbra A” in English.

Creates a linear penumbra falloff. This means most tones will be in the midtone ranges.

[image: ../../_images/Blending_modes_Penumbra_A_Sample_image_with_dots.png]

Left: Normal. Right: Penumbra A.

반그림자 B

힌트

This blending mode is called “Penumbra B” in English.

Penumbra A with source and destination layer swapped.

[image: ../../_images/Blending_modes_Penumbra_B_Sample_image_with_dots.png]

Left: Normal. Right: Penumbra B.

반그림자 C

힌트

This blending mode is called “Penumbra C” in English.

Creates a penumbra-like falloff using arc-tangent formula. This means most tones will be in the midtone ranges.

[image: ../../_images/Blending_modes_Penumbra_C_Sample_image_with_dots.png]

Left: Normal. Right: Penumbra C.

반그림자 D

힌트

This blending mode is called “Penumbra D” in English.

Penumbra C with source and destination layer swapped.

[image: ../../_images/Blending_modes_Penumbra_D_Sample_image_with_dots.png]

Left: Normal. Right: Penumbra D.

나머지

Modulo modes are a special class of blending modes which loop values when the value of the channel blend layer is less than the value of the channel in base layers. All modes in modulo modes retains the absolute of the remainder if the value is greater than the maximum value or the value is less than minimum value. Continuous modes assume if the calculated value before modulo operation is within the range between a odd number to even number, then values are inverted in the end result, so values are perceived to be wave-like.

Furthermore, this would imply that modulo modes are beneficial for abstract art, and manipulation of gradients.

나눗셈 나머지

힌트

This blending mode is called “Divisive Modulo” in English.

First, the base layer is divided by the sum of blend layer and the minimum possible value after zero. Then, performs a modulo calculation using the value found with the sum of the blend layer and the minimum possible value after zero.

[image: ../../_images/Blending_modes_Divisive_Modulo_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Divisive Modulo.

나눗셈 나머지 - 연속

힌트

This blending mode is called “Divisive Modulo - Continuous” in English.

First, base layer is divided by the sum of the blend layer and the minimum possible value after zero. Then, performs a modulo calculation using the value found with the sum of the blend layer and the minimum possible value after zero. As this is a continuous mode, anything between odd to even numbers are inverted.

[image: ../../_images/Blending_modes_Divisive_Modulo_Continuous_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Divisive Modulo - Continuous.

나머지

힌트

This blending mode is called “Modulo” in English.

Performs a modulo calculation using the sum of the blend layer and the minimum possible value after zero.

[image: ../../_images/Blending_modes_Modulo_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Modulo.

나머지 - 연속

힌트

This blending mode is called “Modulo - Continuous” in English.

Performs a modulo calculation using the sum of the blend layer and the minimum possible value after zero. As this is a continuous mode, anything between odd to even numbers are inverted.

[image: ../../_images/Blending_modes_Modulo_Continuous_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Modulo - Continuous.

나머지 시프트

힌트

This blending mode is called “Modulo Shift” in English.

Performs a modulo calculation with the result of the sum of the base and blend layers by the sum of the blend layer with the minimum possible value after zero.

[image: ../../_images/Blending_modes_Modulo_Shift_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Modulo Shift.

나머지 시프트 - 연속

힌트

This blending mode is called “Modulo Shift - Continuous” in English.

Performs a modulo calculation with the result of the sum of the base and blend layers by the sum of the blend layer with the minimum possible value after zero. As this is a continuous mode, anything between odd to even numbers are inverted.

[image: ../../_images/Blending_modes_Modulo_Shift_Continuous_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Modulo Shift - Continuous.

Negative

These are all blending modes which seem to make the image go negative.

Additive Subtractive

힌트

This blending mode is called “Additive Subtractive” in English.

Subtracts the square root of the lower layer from the upper layer.

[image: ../../_images/Blending_modes_Additive_Subtractive_Sample_image_with_dots.png]

Left: Normal. Right: Additive Subtractive.

역탄젠트

힌트

This blending mode is called “Arcus Tangent” in English.

Divides the lower layer by the top. Then divides this by Pi.
Then uses that in an Arc tangent function, and multiplies it by two.

[image: ../../_images/Blending_modes_Arcus_Tangent_Sample_image_with_dots.png]

Left: Normal. Right: Arcus Tangent.

Difference

힌트

This blending mode is called “Difference” in English.

Checks per pixel of which layer the pixel-value is highest/lowest, and then subtracts the lower value from the higher-value.

[image: ../../_images/Blending_modes_Difference_Sample_image_with_dots.png]

Left: Normal. Right: Difference.

등가

힌트

This blending mode is called “Equivalence” in English.

Subtracts the underlying layer from the upper-layer. Then inverts that. Seems to produce the same result as Difference.

[image: ../../_images/Blending_modes_Equivalence_Sample_image_with_dots.png]

Left: Normal. Right: Equivalence.

제외

힌트

This blending mode is called “Exclusion” in English.

This multiplies the two layers, adds the source, and then subtracts the multiple of two layers twice.

[image: ../../_images/Blending_modes_Exclusion_Sample_image_with_dots.png]

Left: Normal. Right: Exclusion.

반전

힌트

This blending mode is called “Negation” in English.

The absolute of the 1.0f value subtracted by the base subtracted by the blend layer. abs(1.0f - Base - Blend)

[image: ../../_images/Blending_modes_Negation_Sample_image_with_dots.png]

Left: Normal. Right: Negation.

2차

버전 4.2에 추가.

The quadratic blending modes are a set of modes intended to give various effects when adding light zones or overlaying shiny objects.

Freeze

힌트

This blending mode is called “Freeze” in English.

The Freeze blending mode. Inversion of the Reflect blending mode.

[image: ../../_images/Blending_modes_Q_Freeze_Light_blue_and_Orange.png]

Left: Normal. Right: Freeze.

동결-반사

힌트

This blending mode is called “Freeze-Reflect” in English.

Mix of Freeze and Reflect blending modes.

[image: ../../_images/Blending_modes_Q_Freeze_Reflect_Light_blue_and_Orange.png]

Left: Normal. Right: Freeze-Reflect.

Glow

힌트

This blending mode is called “Glow” in English.

The Reflect blending mode with source and destination layers swapped.

[image: ../../_images/Blending_modes_Q_Glow_Light_blue_and_Orange.png]

Left: Normal. Right: Glow.

발광-가열

힌트

This blending mode is called “Glow-Heat” in English.

Mix of Glow and Heat blending modes.

[image: ../../_images/Blending_modes_Q_Glow_Heat_Light_blue_and_Orange.png]

Left: Normal. Right: Glow_Heat.

가열

힌트

This blending mode is called “Heat” in English.

The Heat blending mode. Inversion of the Glow blending mode.

[image: ../../_images/Blending_modes_Q_Heat_Light_blue_and_Orange.png]

Left: Normal. Right: Heat.

가열-발광

힌트

This blending mode is called “Heat-Glow” in English.

Mix of Heat, and Glow blending modes.

[image: ../../_images/Blending_modes_Q_Heat_Glow_Light_blue_and_Orange.png]

Left: Normal. Right: Heat-Glow.

Heat-Glow and Freeze-Reflect Hybrid

힌트

This blending mode is called “Heat-Glow and Freeze-Reflect Hybrid” in English.

Mix of the continuous quadratic blending modes. Very similar to Overlay, and sometimes provides better result than Overlay.

[image: ../../_images/Blending_modes_Q_Heat_Glow_Freeze_Reflect_Light_blue_and_Orange.png]

Left: Normal. Right: Heat-Glow and Freeze-Reflect Hybrid.

반사

힌트

This blending mode is called “Reflect” in English.

Reflect is essentially the Color Dodge blending mode with quadratic falloff.

[image: ../../_images/Blending_modes_Q_Reflect_Light_blue_and_Orange.png]

Left: Normal. Right: Reflect.

반사-동결

힌트

This blending mode is called “Reflect-Freeze” in English.

Mix of Reflect and Freeze blending modes.

[image: ../../_images/Blending_modes_Q_Reflect_Freeze_Light_blue_and_Orange.png]

Left: Normal. Right: Reflect-Freeze.

브러시

One of the most important parts of a painting program, Krita has a very extensive brush system.

	브러시 엔진
	Bristle Brush Engine

	Chalk Brush Engine

	Clone Brush Engine

	Color Smudge Brush Engine

	Curve Brush Engine

	Deform Brush Engine

	Dyna Brush Engine

	Filter Brush Engine

	Grid Brush Engine

	Hatching Brush Engine

	MyPaint Brush Engine

	Particle Brush Engine

	Pixel Brush Engine

	Quick Brush Engine

	Shape Brush Engine

	Sketch Brush Engine

	Spray Brush Engine

	Tangent Normal Brush Engine

	Brush Settings
	브러시 모양

	Locked Brush Settings

	마스크된 브러시

	Opacity and Flow

	Options

	센서

	텍스처

브러시 엔진

Information on the brush engines that can be accessed in the brush editor.

사용 가능한 엔진:

	Bristle Brush Engine

	Chalk Brush Engine

	Clone Brush Engine

	Color Smudge Brush Engine

	Curve Brush Engine

	Deform Brush Engine

	Dyna Brush Engine

	Filter Brush Engine

	Grid Brush Engine

	Hatching Brush Engine

	MyPaint Brush Engine

	Particle Brush Engine

	Pixel Brush Engine

	Quick Brush Engine

	Shape Brush Engine

	Sketch Brush Engine

	Spray Brush Engine

	Tangent Normal Brush Engine

Bristle Brush Engine

[image: ../../../_images/bristlebrush.svg]A brush intended to mimic real-life brushes by drawing the trails of their lines or bristles.

브러시 끝 부분

Simply put:

	The brush tip defines the areas with bristles in them.

	Lower opacity areas have lower-opacity bristles. With this brush, this may give the illusion that lower-opacity areas have fewer bristles.

	The Size and 회전 dynamics affect the brush tip, not the bristles.

You can:

	Use different shapes for different effects. Be aware that complex brush shapes will draw more slowly though, while the effects aren’t always visible (since in the end, you’re passing over an area with a certain number of bristles).

	To decrease bristle density, you can also just use an autobrush and decrease the brush tip’s density, or increase its randomness.

[image: ../../../_images/Krita-tutorial7-B.I.1.png]

Bristle Options

The core of this particular brush-engine.

	Scale
	Think of it as pressing down on a brush to make the bristles further apart.

	Larger values basically give you larger brushes and larger bristle spacing. For example, a value of 4 will multiply your base brush size by 4, but the bristles will be 4 times more spaced apart.

	Use smaller values if you want a “dense” brush, i.e. you don’t want to see so many bristles within the center.

	Negative values have the same effect as corresponding positive values: -1.00 will look like 1.00, etc.

	무작위 오프셋
	Adds a jaggy look to the trailing lines.

	At 0.00, all the bristles basically remain completely parallel.

	At other values, the bristles are offset randomly. Large values will increase the brush size a bit because of the bristles spreading around, but not by much.

	Negative values have the same effect as corresponding positive values.

	기울이기
	Shear introduces an angle to your brush, as though you’re drawing with an oval brush (or the side of a round brush).

	밀도
	This controls the density of bristles. Scale takes a number of bristles and expands or compresses them into a denser area, whereas density takes a fixed area and determines the number of bristles in it. See the difference?

[image: ../../../_images/Krita-tutorial7-B.I.2-1.png]

	Mouse Pressure
	This one maps “Scale” to mouse speed, thus simulating pressure with a graphics tablet!

	Rather, it uses the “distance between two events” to determine scale. Faster drawing, larger distances.

	This doesn’t influence the “pressure” input for anything else (size, opacity, rotation etc.) so you still have to map those independently to something else.

	Threshold
	This is a tablet feature. When you turn this on, only bristles that are able to “touch the canvas” will be painted.

	Connect Hairs
	The bristles get connected. See for yourself.

	앤티에일리어싱
	This will decrease the jaggy-ness of the lines.

	Composite Bristles
	This “composes the bristle colors within one dab,” but explains that the effect is “probably subtle”.

[image: ../../../_images/Krita-tutorial7-B.I.2-2.png]

Ink Depletion

This simulated ink depletion over drawing time. The value dictates how long it will take. The curve dictates the speed.

	Opacity
	The brush will go transparent to simulate ink-depletion.

	Saturation
	The brush will be desaturated to simulate ink-depletion.

[image: ../../../_images/Krita-tutorial7-B.I.3-1.png]

	Soak Ink
	The brush will pick up colors from other brushes. You don’t need to have Ink depletion checked to activate this option, you just have to check Soak ink. What this does is cause the bristles of the brush to take on the colors of the first area they touch. Since the Bristle brush is made up of independent bristles, you can basically take on several colors at the same time.

참고

	It will only take colors in the unscaled area of the brush, so if you’re using a brush with 4.00 scale for example, it will only take the colors in the 1/4 area closest to the center.

	When the source is transparent, the bristles take black color.

[image: ../../../_images/Krita-tutorial7-B.I.3-2.png]

경고

Be aware that this feature is a bit buggy though. It’s supposed to take the color from the current layer, but some buggy behavior causes it to often use the last layer you’ve painted on (with a non-Bristle brush?) as source. To avoid these weird behaviors, stick to just one layer, or paint something on the current active layer first with another brush (such as a Pixel brush).

	Weighted saturation
	Works by modifying the saturation with the following:

	Pressure weight

	Bristle length weight

	강모 잉크 량 가중치

	잉크 고갈 곡선 가중치

Chalk Brush Engine

버전 4.0부터 폐지됨: This brush engine has been removed in 4.0. There are other brush engines such as pixel that can do everything this can…plus more.

Apparently, the Bristle brush engine is derived from this brush engine. Now, all of Krita's brushes have a great variety of uses, so you must have tried out the Chalk brush and wondered what it is for. Is it nothing but a pixel brush with opacity and saturation fade options?
As per the developers this brush uses a different algorithm than the Pixel Brush, and they left it in here as a simple demonstration of the capabilities of Krita's brush engines.

So there you go, this brush is here for algorithmic demonstration purposes. Don’t lose sleep because you can’t figure out what it’s for, it Really doesn’t do much. For the sake of description, here’s what it does:

[image: ../../../_images/Krita-tutorial7-C.png]
Yeah, that’s it, a round brush with some chalky texture, and the option to fade in opacity and saturation. That’s it.

Clone Brush Engine

[image: ../../../_images/clonebrush.svg]The clone brush is a brush engine that allows you to paint with a duplication of a section of a paint-layer. This is useful in manipulation of photos and textures. You have to select a source and then you can paint to copy or clone the source to a different area. Other applications normally have a separate tool for this, Krita has a brush engine for this.

Usage and Hotkeys

To see the source, you need to set the brush-cursor settings to brush outline.

The clone tool can now clone from the projection and it’s possible to change the clone source layer. Press the Ctrl + [image: mouseleft] shortcut to select a new clone source on the current layer.

설정

	Size

	혼합 모드

	Opacity and Flow

그리기 모드

	고치기
	This turns the clone brush into a healing brush: often used for removing blemishes in photo retouching, and maybe blemishes in painting.

	Perspective correction
	Only works when there’s a perspective grid visible.

경고

This feature is currently disabled.

	Source Point move
	This will determine whether you will replicate the source point per dab or per stroke. Can be useful when used with the healing brush.

	Source Point reset before a new stroke
	This will reset the source point everytime you make a new stroke. So if you were cloning a part in one stroke, having this active will allow you to clone the same part again in a single stroke, instead of using the source point as a permanent offset.

	Clone from all visible layers
	Tick this to force cloning of all layers instead of just the active one.

Color Smudge Brush Engine

[image: ../../../_images/colorsmudge.svg]The Color Smudge Brush is a brush engine that allows you to mix colors by smearing or dulling. A very powerful brush engine to the painter.

Options

	브러시 모양

	혼합 모드

	Opacity and Flow

	Size

	비율

	간격

	Paint Thickness

	Mirror

	회전

	분산

	그라디언트

	에어브러시

	텍스처

	Overlay

	명도, 채도, 값

Options Unique to the Color Smudge Brush

색상 비율

How much of the foreground color is added to the smudging mix. Works together with 번짐 길이 and 번짐 반지름.

[image: ../../../_images/brushengine_color_rate_smear.svg]
A variety of color smudge strokes in the Smear Mode with different opacities, smudge lengths and spacing. All are with 50% Color Rate. Left-hand set being the old algorithm and the right-hand set the new algorithm. The bottom two strokes are using the 색상 닷지 blending mode.

버전 5.0에 추가: The option Use new smudge algorithm greatly affects how the Color Rate works. With the old algorithm, the Color Rate will be affected by both smudge length and opacity, while with the new algorithm, Color Rate will only interact with Opacity.

At first glance, this may seem like it reduces nuance. But instead, the new algorithm simplifies brush creation, with it being far clearer which elements interact with Color Rate.

[image: ../../../_images/brushengine_color_rate_dulling.svg]
Same as figure above, but then in Dulling Mode.

Using the new algorithm, turning off the smudge length is all that’s needed to make a brush that is similar to the Pixel Brush Engine. This is useful as a starting point for brushes that only need a little smudge.

When using the gradient mode, the Color Rate will control the colored brush tip instead of a flat color.

Blending modes are applied when the color part is composed onto the smudge part. This effectively means that color smudge brushes with a blending mode other than Normal will be greatly affected by Color Rate in addition to 간격 and opacity.

번짐 길이

Affects smudging and allows you to set it to Sensors. Smudging is greatly affected by 간격 as well as Opacity. The former controls how many dabs are placed, and thus how many samples are made. This results in a smoother result for Smear Mode, and a more opaque result for Dulling Mode.

There are two major types:

	문지르기
	Copies the area underneath the previous position of the brush onto the new position, taking opacity into account. This tends to result in a smear-effect.

Great for making brushes that have a very impasto oil feel to them. It’s recommended to have a low spacing for Smear, as this will result in a less grainy looking smear.

[image: ../../../_images/brushengine_smudge_length_smear.svg]
A variety of color smudge strokes in the Smear Mode with different opacities, smudge lengths and spacing. Left-hand set being the old algorithm and the right-hand set the new algorithm. The bottom two strokes are using the 색상 닷지 blending mode, which does not have any meaningful effect, given the 색상 비율 is set to 0%.

	색 섞기
	Picks the color underneath the brush dab (using the Smudge Radius, if applicable), and first fills the whole dab with that before applying the color and the opacity. Named so because it dulls strong colors.

Using an arithmetic blending type, Dulling is great for more smooth type of painting. It’s recommended to increase the spacing on dulling brushes as much as possible without the stroke looking choppy, as it speeds up the brush without losing smudge quality. The resulting stroke can be made stronger by increasing the smudge radius or the opacity.

[image: ../../../_images/brushengine_smudge_length_dulling.svg]
Same as above, but then for the Dulling Mode.

	Strength
	Affects how much the smudge length takes from the previous dab its sampling. This means that smudge length at 100% will never decrease, but smudge lengths under that will decrease based on 간격 and Opacity.

	투명도 번짐
	Controls whether the transparency of the smeared pixels is taken into account when painting. This can be helpful to get a more opaque effect, as if laying down thick layers of paint, without losing the smudge effect.

[image: ../../../_images/brushengine_smudge_length_smear_alpha.png]

Different strokes showing how smear alpha functions.

	Smear Mode with Smear Alpha.

	Smear Mode without Smear Alpha.

	Dulling Mode with Smear Alpha.

	Dulling Mode without Smear Alpha.

	Dulling Mode without Smear Alpha, and 번짐 반지름 set to 100%.

	Use new smudge algorithm
	
버전 5.0에 추가.

The new smudge algorithm was initially introduced to allow lightness and gradient modes on the color smudge. But it allows for more: it is a little quicker, and it has a better separation between the 색상 비율 and the Smudge Length.

Common behaviors:

	Unchecking the smudge length function sets smudge length to 100% (not 0.00).

	Opacity: Below 50%, there is practically no smudging left: keep opacity over 50%.

Differences:

	Spacing with Smearing: the lower the spacing, the smoother the effect, so for smearing with a round brush you may prefer a value of 0.05 or less. Spacing affects the length of the smudge trail, but to a much lesser extent. The strength of the effect remains more or less the same however.

	Spacing with Dulling: the lower the spacing, the stronger the effect: lowering the spacing too much can make the dulling effect too strong (it picks up a color and never lets go of it). The length of the effect is also affected.

	Both Smearing and Dulling have a “smudge trail”, but in the case of Dulling, the brush shape is preserved. Instead, the trail determines how fast the color it picked up is dropped off.

번짐 반지름

The Smudge Radius allows you to sample a larger radius when using smudge-length in Dulling mode.

The slider is percentage of the brush-size. You can have it modified with Sensors.

[image: ../../../_images/brushengine_smudge_radius.png]

A variety of brush strokes using 50% color rate, 50% smudge length and 50% opacity, but different smudge radii. The top stroke is in smear mode and thus smudge radius is not in effect.

버전 5.0에서 변경: In versions prior to 5.0, Smudge Radius can go up to 3,00,00%, while the program’s internal value is 1/100 of the displayed value. Starting from 5.0, the displayed and the internal value of Smudge Radius are unified, they can only go up to 300%, as intended.

Overlay

Overlay is a toggle that determine whether the smudge brush will sample all layers (overlay on), or only the current one.

By default, the Color Smudge Brush only takes information from the layer it is on. However, if you want it to take color information from all the layers, you can turn on the Overlay mode.

Be aware though, that it does so by “picking up” bits of the layer underneath, which may mess up your drawing if you later make changes to the layer underneath.

Paint Thickness

버전 5.0에 추가.

This affects how strong the lightness modes affect the current color. Because the Color Smudge Brush smudges, what actually happens is that the lightness part is painted into a separate height map. This prevents the shadows and highlights of the current lightness brush tip from being mixed into the smudge, which would have resulted in all smudges becoming white or black. The height map is discarded when switching brush engines, layers or tools. Because this heightmap only exists for the layer currently being edited, lightness brushes and paint thickness cannot be used together with Overlay.

[image: ../../../_images/brushengine_paint_thickness_strength.png]

Image showing off different variations of Paint Thickness, with the top three strokes being in Smear Mode and the bottom three in Dulling Mode. Strengths are 100%, 50%, and 0% from top to bottom.

This has two modes, which change how the existing heightmap is interpreted:

	Overwrite (Smooth out when low) existing paint thickness
	Here the lightness value of the brushstroke overrides the value that was there before, effectively smoothing out previous paint if the thickness value is low. The Opacity setting will cause it to blend with the previous paint height, but that will also bring down the color. This mode is useful for a brush that can paint with thickness, but can also smooth out existing paint if you wish.

	Paint over existing paint thickness (controlled by smudge length)
	Here the lightness value blends with the previous values, based on the Smudge Length, as described above. It allows the kind of blending with previous paint height that Opacity allows in the Overwrite mode, but without affecting the color rate.

[image: ../../../_images/brushengine_paint_thickness_type.svg]
Image demonstrating the two modes, with the top strokes being Overwrite Existing Paint Thickness and the bottom strokes Paint over existing paint thickness. In both cases, a red stroke was laid with 100% paint thickness. Blue strokes were overlaid going from thin to thick. Notice how the Paint over existing type differs between 0% and 100% Smudge Length.

명도, 채도, 값

Identical to 명도, 채도, 값 in the Pixel Brush Engine, this will adjust the current foreground color before it is mixed in via 색상 비율. Introduced because this brush engine used to have a small rounding error leading to iridescent smears, which was fixed. Artists who liked this effect can now emulate it by enabling Hue, enabling Fuzzy Dab and disabling Pressure and finally setting Strength to 40%.

[image: ../../../_images/brushengine_smudge_hue_variance.png]

Top: without hue variance, Bottom: with hue variance.

Hue, Saturation and Value don’t affect brush-tips using the gradient mode.

브러시 끝 부분

The Color Smudge Brush has all the same 브러시 모양 as the Pixel Brush Engine!

[image: ../../../_images/Krita-tutorial5-I.4.png]
Just remember that the smudge effects are weaker when a brush tip’s opacity is lower, so for low-opacity brush tips, increase the opacity and smudge/color rates.

Scatter and other shape dynamics

The Color Smudge Brush shares a number of options with the Pixel Brush Engine.

However, because of the Smudge effects, the outcome will be different from the Pixel Brush. In particular, the Scatter option becomes much more significant.

[image: ../../../_images/Krita-tutorial5-I.5-1.png]
A few things to note:

	Scattering is proportional to the brush size. It’s fine to use a scattering of 500% for a tiny round brush, but for bigger brushes, you may want to get it down to 50% or less.

	You may notice the lines with the Smearing option. Those are caused by the fact that it picked up the hard lines of the rectangle.

	For scattering, the brush picks up colors within a certain distance, not the color directly under the paintbrush:

[image: ../../../_images/Krita-tutorial5-I.5-2.png]

Tutorial: Color Smudge Brushes

I recommend at least skimming over the first part to get an idea of what does what.

Smudging and blending

This part describes use cases with color rate off.

I won’t explain the settings for dynamics in detail, as you can find the explanations in the Pixel Brush tutorial.

Smudging effects

For simple smudging:

	Pick the Color Smudge Brush. You can use either Smearing or Dulling.

	Turn off Color Rate

	Smudge away

[image: ../../../_images/Krita-tutorial5-II.2.png]
When using lower opacity brush tips, remember to “compensate” for the less visible effects by increasing both Smudge Rate and Opacity, if necessary to maximum.

Some settings for Smearing

	For smoother smearing, decrease spacing. Remember that spacing is proportional to brush tip size. For a small round brush, 0.10 spacing is fine, but for mid-sized and large brushes, decrease spacing to 0.05 or less.

Some settings for Dulling

	Lowering the spacing will also make the smudging effect stronger, so find a right balance. 0.10 for most mid-sized round brushes should be fine.

	Unlike Smearing, Dulling preserves the brush shape and size, so it won’t “fade off” in size like Smearing brushes do. You can mimic that effect through the simple size fade dynamic.

Textured blending

In this case, what I refer to as “Blending” here is simply using one of the following two dynamics:

	Rotation set to Distance or Fuzzy

	
	And/or Scatter:
	
	For most mid-sized brushes you will probably want to lower the scatter rate to 50% or lower. Higher settings are okay for tiny brushes.

	Note that Scatter picks colors within a certain distance, not the color directly under the brush (see 브러시 모양).

	Optional: Pile on size and other dynamics and vary brush tips. In fact, the Color Smudge Brush is not a blur brush, so smudging is not a very good method of “smooth” blending. To blend smoothly, you’ll have better luck with:

	Building up the transition by painting with intermediate values, described later

	Or using the “blur with feathered selection” method that I’ll briefly mention at the end of this tutorial.

I’ve tried to achieve smooth blending with Color Smudge Brush by adding rotation and scatter dynamics, but honestly they looked like crap.

However, the Color Smudge Brush is very good at “textured blending”:

[image: ../../../_images/Krita-tutorial5-II.3.png]
Basically you can paint first and add textured transitions after.

채색

For this last section, Color Rate is on.

Layer options

Before we get started, notice that you have several possibilities for your set-up:

	Shading on the same layer

	Shading on a separate layer, possibly making use of alpha-inheritance. The brush blends with the transparency of the layer it’s on. This means:

	If the area underneath is more of less uniform, the output is actually similar as if shading on the same layer

	But if the area underneath is not uniform, then you’ll get fewer color variations.

	Shading on a separate layer, using Overlay mode. Use this only if you’re fairly sure you don’t need to adjust the layer below, or the colors may become a mess.

[image: ../../../_images/Krita-tutorial5-III.1-1.png]

Issue with transparency

The Color Smudge Brush blends with transparency. What this means is that when you start a new, transparent layer and “paint” on this layer, you will nearly always get less than full opacity.

Basically:

	It may look great when you’re coloring on a blank canvas

	But it won’t look so great when you add something underneath

[image: ../../../_images/Krita-tutorial5-III.1-2.png]
The solution is pretty simple though:

	
	Make sure you have the area underneath colored in first:
	
	With tinting, you already have the color underneath colored, so that’s done

	For painting, roughly color in the background layer first

	Or color in the shape on a new layer and make use of alpha-inheritance

	For the last solution, use colors that contrast highly with what you’re using for best effect. For example, shade in the darkest shadow area first, or the lightest highlights, and use the color smudge brush for the contrasting color.

[image: ../../../_images/Krita-tutorial5-III.1-3.png]

Soft-shading

Suppose you want more or less smooth color transitions. You can either:

	Color Rate as low as 10% for round brushes, higher with non fully opaque brush tips.

	Or set the Smudge Rate as low as 10% instead.

	Or a combination of the two. Please try yourself for the output you like best.

	Optional: turn on Rotation for smoother blending.

	Optional: turn on Scatter for certain effects.

	Optional: fiddle with Size and Opacity dynamics as necessary.

[image: ../../../_images/Krita-tutorial5-III.2-1.png]
This remains, in fact, a so-so way of making smooth transitions. It’s best to build up intermediate values instead. Here:

	I first passed over the blue area three times with a red color. I select 3 shades.

	I color picked each of these values with the Ctrl + [image: mouseleft] shortcut, then used them in succession.

[image: ../../../_images/Krita-tutorial5-III.2-2.png]

Painting: thick oil style

Many of the included color smudge brush presets produce a thick oil paint-like effect.
This is mainly achieved with the Smearing mode on. Basically:

	
	Smearing mode with high smudge and color rates
	
	Both at 0.50 are fine for normal round brushes or fully opaque predefined brushes

	Up to 1.00 each for brushes with less density or non fully-opaque predefined brushes

	Add Size/Rotation/Scatter dynamics as needed. When you do this, increase smudge and color rates to compensate for increased color mixing.

[image: ../../../_images/Krita-tutorial5-III.3-1.png]
One thing I really like to do is to set different foreground and background colors, then turn on Gradient ‣ Fuzzy. Alternatively, just paint with different colors in succession (bottom-right example).

[image: ../../../_images/Krita-tutorial5-III.3-2.png]
Here’s some final random stuff. With pixel brushes, you can get all sorts of frill designs by using elongated brushes and setting the dynamics to rotation. You won’t get that with Color Smudge Brushes. Instead, you’ll get something that looks more like… yarn. Which is cool too. Here, I just used oval brushes and Rotation ‣ Distance.

[image: ../../../_images/Krita-tutorial5-III.3-3.png]

Painting: Digital watercolor style

When I say “digital watercolor”, it refers to a style often seen online, i.e. a soft, smooth shading style rather than realistic watercolor. For this you mostly need the Dulling mode. A few things:

	Contrary to the Smearing mode, you may want to lower opacity for normal round brushes to get a smoother effect, to 70% for example.

	Vary the brush tip fade value as well.

	When using Scatter or other dynamics, you can choose to set smudge and color values to high or low values, for different outcomes.

[image: ../../../_images/Krita-tutorial5-III.4.png]

Blurring

You can:

	Paint then smudge, for mostly texture transitions

	Or build up transitions by using intermediate color values

If you want even smoother effects, well, just use blur. Gaussian blur to be exact.

[image: ../../../_images/Krita-tutorial5-III.5.png]
And there you go. That last little trick concludes this tutorial.

Curve Brush Engine

[image: ../../../_images/curvebrush.svg]The curve brush is a brush engine which creates strokes made of evenly spaced lines. It has, among other things been used as a replacement for pressure sensitive strokes in lieu of a tablet.

설정

First off, the line produced by the Curve brush is made up of 2 sections:

	The connection line, which is the main line drawn by your mouse.

	The curve lines I think, which are the extra fancy lines that form at curves. The curve lines are formed by connecting one point of the curve to a point earlier on the curve. This also means that if you are drawing a straight line, these lines won’t be visible, since they’ll overlap with the connection line. Drawing faster gives you wider curves areas.

[image: ../../../_images/Krita-tutorial6-I.1-1.png]
You have access to 3 settings from the Lines tab, as well as 2 corresponding dynamics:

	Line width: this applies to both the connection line and the curve lines.

	Line width dynamics: use this to vary line width dynamically.

	History size: this determines the distance for the formation of curve lines.

	If you set this at low values, then the curve lines can only form over a small distances, so they won’t be too visible.

	On the other hand, if you set this value too high, the curve lines will only start forming relatively “late”.

	So in fact, you’ll get maximum curve lines area with a mid-value of say… 40~60, which is about the default value. Unless you’re drawing at really high resolutions.

	Curves opacity: you can’t set different line widths for the connection line and the curve lines, but you can set a different opacity for the curve lines. With low opacity, this will produce the illusion of thinner curve lines.

	Curves opacity dynamics: use this to vary Curves opacity dynamically.

In addition, you have access to two checkboxes:

	Paint connection line, which toggles the visibility of the connection line.

	Smoothing, which… I have no idea actually. I don’t see any differences with or without it. Maybe it’s for tablets?

[image: ../../../_images/Krita-tutorial6-I.1-2.png]

Drawing variable-width lines

And here’s the only section of this tutorial that anyone cares about: pretty lineart lines! For this:

	Use the Draw Dynamically mode: I tend to increase drag to at least 50. Vary Mass and Drag until you get the feel that’s most comfortable for you.

[image: ../../../_images/Krita-tutorial6-I.2-1.png]

	Set line width to a higher value (ex.: 5), then turn line width dynamics on:

	If you’re a tablet user, just set this to Pressure (this should be selected by default so just turn on the Line Width dynamics). I can’t check myself, but a tablet user confirmed to me that it works well enough with Draw Dynamically.

	If you’re a mouse user hoping to get variable line width, set the Line Width dynamics to Speed.

[image: ../../../_images/Krita-tutorial6-I.2-2.png]

	Set Curves opacity to 0: This is the simplest way to turn off the Curve lines. That said, leaving them on will get you more “expressive” lines.

Additional tips:

	Zig-zag a lot if you want a lot of extra curves lines.

	Use smooth, sweeping motions when you’re using Draw Dynamically with Line Width set to Speed: abrupt speed transitions will cause abrupt size transitions. It takes a bit of practice, and the thicker the line, the more visible the deformities will be. Also, zoom in to increase control.

	If you need to vary between thin and thick lines, I suggest creating presets of different widths, since you can’t vary the base line width from the canvas.

Alternative:

	Use the Draw Dynamically mode

	Set Curves opacity to 100

	Optionally decrease History size to about 30

The curve lines will fill out the area they cover completely, resulting in a line with variable widths. Anyway, here are some comparisons:

[image: ../../../_images/Krita-tutorial6-I.2-3.png]
And here are examples of what you can do with this brush:

[image: ../../../_images/Krita-tutorial6-I.2-4.png]

Deform Brush Engine

[image: ../../../_images/deformbrush.svg]The Deform Brush is a brush that allows you to pull and push pixels around. It’s quite similar to the 유동화, but where liquify has higher quality, the deform brush has the speed.

Options

	브러시 모양

	왜곡 옵션

	혼합 모드

	Opacity and Flow

	Size

	회전

	에어브러시

왜곡 옵션

[image: ../../../_images/Krita_deform_brush_examples.png]

1: undeformed, 2: Move, 3: Grow, 4: Shrink, 5: Swirl Counter Clock Wise, 6: Swirl Clockwise, 7: Lens Zoom In, 8: Lens Zoom Out

These decide what strangeness may happen underneath your brush cursor.

	확장
	This bubbles up the area underneath the brush-cursor.

	Shrink
	This pinches the Area underneath the brush-cursor.

	Swirl Counter Clock Wise
	Swirls the area counter clock wise.

	Swirl Clock Wise
	Swirls the area clockwise.

	이동
	Nudges the area to the painting direction.

	색상 왜곡
	This seems to randomly rearrange the pixels underneath the brush.

	렌즈 확대
	Literally paints a enlarged version of the area.

	렌즈 축소
	Paints a minimized version of the area.

[image: ../../../_images/Krita_deform_brush_colordeform.png]

Showing color deform.

	Deform Amount
	Defines the strength of the deformation.

[image: ../../../_images/Krita_deform_brush_bilinear.png]

Bilinear Interpolation

	Bilinear Interpolation
	Smoothens the result. This causes calculation errors in 16bit.

	Use Counter
	Slows down the deformation subtlety.

[image: ../../../_images/Krita_deform_brush_useundeformed.png]

Without ‘use undeformed’ to the left and with to the right.

	Use Undeformed Image
	Samples from the previous version of the image instead of the current. This works better with some deform options than others. Move for example seems to almost stop working, but it works really well with Grow.

Dyna Brush Engine

[image: ../../../_images/dynabrush.svg]Dyna brush uses dynamic setting like mass and drag to draw strokes. The results are fun and random spinning strokes. To experiment more with this brush you can play with values in ‘dynamic settings’ section of the brush editor under Dyna Brush.

버전 4.0부터 폐지됨: This brush engine has been removed in 4.0. This engine mostly had smoothing results that the dyna brush tool has in the toolbox. The stabilizer settings can also give you further smoothing options from the tool options.

Options

	Brush Size (Dyna)

	혼합 모드

	Opacity and Flow

	에어브러시

Brush Size (Dyna)

Dynamics Settings

	Initial Width
	Initial size of the dab.

	질량
	How much energy there is in the satellite like movement.

	Drag
	How close the dabs follow the position of the brush-cursor.

	Width Range
	How much the dab expands with speed.

Shape

	Diameter
	Size of the shape.

	각도
	Angle of the shape. Requires Fixed Angle active to work.

	Circle
	Make a circular dab appear.

	Two
	Draws an extra circle between other circles.

	Line
	Connecting lines are drawn next to each other. The number boxes on the right allows you to set the spacing between the lines and how many are drawn.

	다각형
	Draws a black polygon as dab.

	Wire
	Draws the wireframe of the polygon.

	Paint Connection
	Draws the connection line.

Filter Brush Engine

[image: ../../../_images/filterbrush.svg]Where in other programs you have a ‘dodge tool’, ‘blur tool’ and ‘sharpen tool’, Krita has a special brush engine for this: The Filter Brush engine. On top of that, due to Krita’s great integration of the filters, a huge amount of filters you’d never thought you wanted to use for a drawing are possible in brush form too!

Options

The filter brush has of course some basic brush-system parameters:

	브러시 모양

	혼합 모드

	Opacity and Flow

	Size

	Mirror

	회전

Grid Brush Engine

[image: ../../../_images/gridbrush.svg]The grid brush engine draws shapes on a grid. It helps you produce retro and halftone effects.

If you’re looking to setup a grid for snapping, head to Grids and Guides Docker.

Options

	Brush Size

	Particle Type

	혼합 모드

	Opacity and Flow

	색상 옵션

Brush Size

	Grid Width
	Width of the cursor area.

	Grid Height
	Height of the cursor area.

	나누기
	Subdivides the cursor area and uses the resulting area to draw the particles.

	압력으로 분할
	The more you press, the more subdivisions. Uses Division as the finest subdivision possible.

	Scale
	Scales up the area.

	Vertical Border
	Forces vertical borders in the particle space, between which the particle needs to squeeze itself.

	Horizontal Border
	Forces a horizontal borders in the particle space, between which the particle needs to squeeze itself.

	Jitter Borders
	Randomizes the border values with the Border values given as maximums.

Particle Type

Decides the shape of the particle.

	Ellipse
	Fills the area with an ellipse.

	Rectangle
	Fills the area.

	Line
	Draws lines from the lower left to the upper right corner of the particle.

	픽셀
	Looks like an aliased line on high resolutions.

	Anti-aliased Pixel
	Fills the area with little polygons.

색상 옵션

	무작위 HSV
	Randomize the HSV with the strength of the sliders. The higher, the more the color will deviate from the foreground color, with the direction indicating clock or counter clockwise.

	Random Opacity
	Randomizes the opacity.

	Color Per Particle
	Has the color options be per particle instead of area.

	Sample Input Layer
	Will use the underlying layer as reference for the colors instead of the foreground color.

	Fill Background
	Fills the area before drawing the particles with the background color.

	Mix with background color
	Gives the particle a random color between foreground/input/random HSV and the background color.

Hatching Brush Engine

[image: ../../../_images/hatchingbrush.svg]When I first tried this brush, my impression of it was “plain parallel lines” (and the award for most boring brush goes to…). Fortunately, existing presets gave me an idea of the possibilities of this brush.

설정

Brush tip

The brush tip simply defines the area where the hatching will be rendered.

	Transparent brush tip areas give more transparent hatching, but as with a normal brush, passing over the area again will increase opacity.

	The hatching itself is mostly fixed in location, so drawing with a hatching brush usually acts more like “revealing” the hatching underneath than drawing with brushes of parallel lines. The exception is for Moiré pattern with Crosshatching dynamics on.

	Vary the brush shape or texture for a variety of effects. Decreasing the density of the autobrush will give a grainy texture to your hatching, for example.

	The Size dynamic affects the brush tip, not the hatching thickness.

[image: ../../../_images/Krita-tutorial8-A.I.1.png]

해칭 설정

Before going on: at the time of this writing, there is a bug that causes line thickness to not vary on default settings. To get around this, go to Hatching preferences and check Antialiased Lines. Pentalis is aware of this issue so the bug may get fixed soon.

The three options are:

	Antialiased lines: This controls aliasing. If changing line thickness isn’t working, check this option and it should work, because it switches to a different algorithm.

	Subpixel precision: I’m guessing this affects the rendering quality, but you won’t see much of a difference. Check this if you want to.

	Color background: Checking this will color in the background at the back of the hatching.

The output is slightly different depending on whether the first two options are checked, but the difference isn’t enough for you to worry about. I recommend just keeping the first two options checked.

[image: ../../../_images/Krita-tutorial8-A.I.2.png]

해칭 옵션

This is where the main hatching options go. They’re intuitive enough:

	Angle: The angle of the hatching.

	Separation: This is the distance between the centers of the lines.

	Use a value of 2 pixels or higher, or the lines won’t be distinct anymore.

	The Separations dynamic doesn’t actually assign random values to Separation, instead it will take the value in “Input-based intervals” to divide the grid further. “Input-based intervals” can take values between 2 and 7.

	Thickness: The line thickness.

	Actually, this is the thickness of the line + blank area, so the line itself has a thickness of half this value.

	If you use the same separation value and the same line thickness value, then the lines and the area between them will be of the same thickness.

	You can vary this value dynamically with the Thickness dynamics.

	If the line thickness isn’t changing for you, go to Hatching Preferences and check “Antialiased Lines”.

	Origin X and Origin Y: The hatching has a fixed location, painting acts as though you’re revealing the existing hatching underneath. To nudge the hatching, you can tweak these two values. You can get various grid effects this way.

[image: ../../../_images/Krita-tutorial8-A.I.3-1.png]
Finally, we have the hatching styles:

	No crosshatching: basic parallel lines

	Perpendicular plane only: grid lines

	-45 degrees plane then +45 degrees plane: see example.

	+45 degrees plane then -45 degrees plane: see example, actually not much different from the above, it’s mostly the order that changes when using dynamics.

	Moiré pattern: See example.

The Crosshatching dynamic only works if you have already chosen a crosshatching style. When that happens, the crosshatching only gets drawn according to the conditions of the dynamics (pressure, speed, angle…).

	With most hatching styles, using crosshatching dynamics basically gets you the same hatching style, minus the occasional line.

	The exception is with Moire, which will produce a different pattern.

[image: ../../../_images/Krita-tutorial8-A.I.3-2.png]

Use cases

If you don’t want the edges to be fuzzy, go to Brush Tip and set the Fade values to 1.00. I recommended doing the hatching on a separate layer, then erasing the extra areas.

Now for the uses:

	You can, of course, just use this for completely normal hatching. In versions I’m using, the default Separation is 1, which is too low, so increase Separation to a value between 2 to 10.

	If you find normal hatching too boring, increase the Thickness and set the Thickness dynamic to either Pressure (if you have a tablet) or Speed (if you’re using a mouse). Doesn’t that look more natural? (When using a mouse, pass over the areas where you want thicker lines again while drawing faster).

	Grittier texture: add some density and/or randomness to your autobrush for a grittier texture.

	You can also set Painting Mode to Build up, and Mode to Multiply, to make some colors have more depth. (see my grid example).

	Vary Origin X and Origin Y while using the same patterns.

	Use the Separations dynamic for more complex patterns. Add in Line Thickness and other dynamics for more effect.

	Now, the Moiré pattern is quite boring on its own, but it is much more interesting with Crosshatching dynamics set on Fuzzy.

	For more texture, set Line Thickness to Fuzzy, decrease Density a bit and increase Randomness and you get a nice gritty texture.

[image: ../../../_images/Krita-tutorial8-A.II.png]

MyPaint Brush Engine

[image: ../../../_images/mypaintbrush.svg]MyPaint [http://www.mypaint.org] is a free painting program that comes with a lot of specific brushes. Krita can use those brushes for painting using the MyPaint brush engine.

경고

You can create new brush presets using the MyPaint brush engine in Krita, but the presets are saved in Krita’s .kpp file format, not mypaints .myb format, so you cannot reuse those presets in MyPaint.

Dynamic Inputs

Dynamic Inputs are a way for MyPaint to get information of the external devices as a drawing tablet; for instance the pressure over the drawing tablet, the speed of pencil movement, the pencil tilt .. etc. They are equivalent to 센서 in Krita.

MyPaint has 9 inputs:

	
	Pressure
	The pressure handled by a tablet. Typically in the range 0.0 to 1.0.

	
	미세 속도
	How quickly the stylus is moving. This can vary quite a lot.

	
	대폭 속도
	Similar to fine speed but it changes very slowly.

	
	무작위
	Fast and random noise, changes with every brush stroke.

	
	Stroke
	This input goes slowly from 0.0 to 1.0 while the stroke is being applied. This is related to “stroke duration” and “stroke holdtime” settings.

	
	방향
	This input defines the angle of a stroke, in degrees.

	
	적위
	This input defines the declination of the stylus tilt. This is the same as tilt-elevation in Krita.

	
	Ascension
	Straight pen ascension. When the active tip points to it, it is 0. When the pen turns 90 degrees clockwise is +90. When it turns 90 degrees counterclockwise is -90. This is the same as tilt-direction in Krita.

	
	Custom
	This is a user-defined input. It is related to the “customized input” setting.

Parameters

Has the following parameters:

	Basic

	Color

	속도

	Dabs

	Opacity

	추적

	번짐

	Stroke

	사용자 정의 입력

Basic

Radius

This is to set the radius of the brush. Please note that all of the mypaint radii are logarithmic. For instance, if you are setting the radius of a preset to say, 2.0 then the actual radius of the preset is going to be e^(2.0) which is equal to 7.389. This makes the size of the brush equal to 14.78. So, we can say that mypaint_radius = log(actual_radius).

단단한 정도

Hardness defines the sharpness of the brushes.

[image: ../../../_images/hardness.png]

지우개

If this option is checked the brush will act as an eraser.

무작위 반지름

This option is used to generate a brush preset whose radii and opacity change randomly during the stroke. This should not be confused with the random dynamic option in the radius setting.

앤티에일리어싱

This option is used to smoothen the edges of the brush and remove the jagging effect. Most useful for very small presets.

Elliptical Dab: Angle

Sets the angle of the brush dabs. Gives the best results for brushes with a low ratio and a direction filter, and allows for strokes akin to a calligraphic pen.

Elliptical Dab: Ratio

This option is used to change the aspect ratio of dab.

[image: ../../../_images/elliptical_dab_ratio.png]

방향 필터

This option is used to make the dabs adhere to a specific vector direction. In simple words, at times you might find the dabs not following the vector path of your strokes, this setting helps us rectify that.

Color

Change color Hue

This option is used to shift the hue in a clockwise or anti-clockwise direction.

Change color Lightness

This option is used to change color luminance using the HSL color model.

Change color Value

This option is used to change color value (brightness, intensity) in HSV color model.

Change color Saturation HSL

This option is used to change color saturation using HSL color model.

Change color Saturation HSV

This option is used to change color saturation using HSV color model.

속도

미세 속도 감마

This option is used to change the reaction of the fine speed input to extreme physical speed.

대폭 속도 감마

This option is used to change the reaction of gross speed to extreme physical speed.

Fine Speed Slowness / Fine Speed Filter

This option describes how slow the input fine speed is following the real speed.

Gross Speed Slowness / Gross Speed Filter

This option describes how slow the input gross speed is following the real speed.

Offset by Speed

This option is used to change the position of dabs based on stroke speed.

Offset By Random [Jitter]

This option adds a random offset to the position where each dab is drawn.

Dabs

Dabs per Actual Radius

This option describes how many dabs to draw when the pointer moves the distance of the brush radius.

Dabs per Second

This option describes how many dabs to draw per second irrespective of any other parameter.

Opacity

불투명

Opaque describe the translucency or transparency of mypaint brushes.

선형 불투명

This option lets you correct the nonlinearity introduced by blending multiple dabs on top of each other.

곱하기 불투명

This makes opacity depend on pressure.

추적

느린 추적

Slow pointer tracking speed. Higher values remove jitter in cursor movements. Useful for drawing smooth outlines.

Slow Tracking per Dab

Similar to above but at a brushdab level.

잡음 추적

Add randomness to the mouse pointer. This usually generates many small lines in random directions.

번짐

번짐

This option lets you smudge, by picking a color from the canvas and mixing this with the brush color. The color slowly changes to the color you are painting on.

번짐 길이

This option controls how much the painting color is mixed with the colors from the canvas.

Smudge Radius logarithmic

This option modifies the radius of the circle where the color is picked up for smudging.

Stroke

Stroke Duration logarithmic

This option describes how far you have to move until the stroke input becomes 1.0

획 그리기 대기 시간

This option defines how long the stroke input stays at 1.0. After that it will go back towards 0.0 and then start increasing again.

획 그리기 임곗값

This option defines how much pressure is needed to start the stroke. This affects stroke input only. The MyPaint brush engine does not need any minimum pressure level to start drawing.

사용자 정의 입력

사용자 정의 입력

The idea of this input is that you make this input depend on a mixture of pressure/speed/whatever, and then make other settings depend on this ‘custom input’ instead of repeating this combination everywhere you need.

사용자 정의 입력 느림 정도

This option defines how slow the custom input setting actually follows the desired value.

Particle Brush Engine

[image: ../../../_images/particlebrush.svg]A brush that draws wires using parameters. These wires always get more random and crazy over drawing distance. Gives very intricate lines best used for special effects.

Options

	Brush Size

	혼합 모드

	Opacity and Flow

	에어브러시

Brush Size

	입자
	How many particles there’s drawn.

	불투명도 무게
	The Opacity of all particles. Is influenced by the painting mode.

	Dx Scale (Distance X Scale)
	How much the horizontal cursor distance affects the placing of the pixel. Is unstable on negative values. 1.0 is equal.

	Dy Scale (Distance Y Scale)
	How much the vertical cursor distance affects the placing of the pixel. Is unstable on negative values. 1.0 is equal.

	중력
	Multiplies with the previous particle’s position, to find the new particle’s position.

	Iterations
	The higher, the higher the internal acceleration is, with the furthest away particle from the brush having the highest acceleration. This means that the higher iteration is, the faster and more randomly a particle moves over time, giving a messier result.

Pixel Brush Engine

[image: ../../../_images/pixelbrush.svg]Brushes are ordered alphabetically. The brush that is selected by default when you start with Krita is the Pixel Brush. The pixel brush is the traditional mainstay of digital art. This brush paints impressions of the brush tip along your stroke with a greater or smaller density.

[image: ../../../_images/Krita_Pixel_Brush_Settings_Popup.png]
Let’s first review these mechanics:

	Select a brush tip. This can be a generated brush tip (round, square, star-shaped), a predefined bitmap brush tip, a custom brush tip or a text.

	Select the spacing: this determines how many impressions of the tip will be made along your stroke.

	Select the effects: the pressure of your stylus, your speed of painting or other inputs can change the size, the color, the opacity or other aspects of the currently painted brush tip instance – some applications call that a “dab”.

	Depending on the brush mode, the previously painted brush tip instance is mixed with the current one, causing a darker, more painterly stroke, or the complete stroke is computed and put on your layer. You will see the stroke grow while painting in both cases, of course!

Since 4.0, the Pixel Brush Engine has Multithreaded brush-tips, with the default brush being the fastest mask.

Available Options:

	브러시 모양

	혼합 모드

	Opacity and Flow

	Size

	비율

	간격

	Mirror

	부드러움

	Sharpness

	회전

	분산

	Source

	Mix

	에어브러시

	텍스처

	마스크된 브러시

Specific Parameters to the Pixel Brush Engine

어둡게

Allows you to Darken the source color with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_darken_01.png]
The color will always become black in the end, and will work with Plain Color, Gradient and Uniform random as source.

명도, 채도, 값

These parameters allow you to do an HSV adjustment filter on the Source and control it with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_HSV_01.png]
Works with Plain Color, Gradient and Uniform random as source.

Uses

[image: ../../../_images/Krita_2_9_brushengine_HSV_02.png]
Having all three parameters on Fuzzy will help with rich color texture. In combination with Mix, you can have even finer control.

Quick Brush Engine

[image: ../../../_images/quickbrush.svg]A Brush Engine inspired by the common artist’s workflow where a simple big brush, like a marker, is used to fill large areas quickly, the Quick Brush engine is an extremely simple, but quick brush, which can give the best performance of all Brush Engines.

It can only change size, blending mode and spacing, and this allows for making big optimisations that aren’t possible with other brush engines.

	혼합 모드

	간격

	Size

Brush

The only parameter specific to this brush.

	Diameter
	The size. This brush engine can only make round dabs, but it can make them really fast despite size.

	간격
	The spacing between the dabs. This brush engine is particular in that it’s faster with a lower spacing, unlike all other brush engines.

더 보기

Phabricator Task [https://phabricator.kde.org/T3492]

Shape Brush Engine

[image: ../../../_images/shapebrush.svg]An Al.chemy inspired brush-engine. Good for making chaos with!

Parameters

	Experiment Option

	혼합 모드

Experiment Option

	속도
	This makes the outputted contour jaggy. The higher the speed, the jaggier.

	Smooth
	Smoothens the output contour. This slows down the brush, but the higher the smooth, the smoother the contour.

	대체
	This displaces the shape. The slow the movement, the higher the displacement and expansion. Fast movements shrink the shape.

	굴곡 채우기
	This gives you the option to use a ‘non-zero’ fill rules instead of the ‘even-odd’ fill rule, which means that where normally crossing into the shape created transparent areas, it now will not.

	Hard Edge
	Removes the anti-aliasing, to get a pixelized line.

Sketch Brush Engine

[image: ../../../_images/sketchbrush.svg]A line based brush engine, based on the Harmony brushes. Very messy and fun.

Parameters

Has the following parameters:

	브러시 모양

	혼합 모드

	Opacity and Flow

	Size

	비율

	선 넓이

	Offset Scale

	밀도

	회전

	에어브러시

선 넓이

The width of the rendered lines.

[image: ../../../_images/Krita_2_9_brushengine_sketch_linewidth.png]

Offset Scale

When curve lines are formed, this value roughly determines the distance from the curve lines to the connection lines:

	This is a bit misleading, because a value of 0% and a value of 100% give similar outputs, as do a value of say 30% and 70%. You could think that the actual value range is between 50% and 200%.

	0% and 100% correspond to the curve lines touching the connection lines exactly.

	Above 100%, the curve lines will go further than the connection lines, forming a fuzzy effect.

[image: ../../../_images/Krita_2.9_brushengine_sketch_offset.png]
[image: ../../../_images/Krita-sketch_offset_scale2.png]

밀도

The density of the lines. This one is highly affected by the Brush-tip, as determined by the Distance Density toggle.

[image: ../../../_images/Krita_2.9_brushengine_sketch_density.png]

	Use Distance Density
	The further the line covered is from the center of the area of effect, the less the density of the resulting curve lines.

	자석화
	Magnetify is on by default. It’s what causes curve lines to form between two close line sections, as though the curve lines are attracted to them like magnets.
With Magnetify off, the curve line just forms on either side of the current active portion of your connection line. In other words, your line becomes fuzzier when another portion of the line is nearby, but the lines don’t connect to said previous portion.

	무작위 RGB
	Causes some slight RGB variations.

	Random Opacity
	The curve lines get random opacity. This one is barely visible, so for the example I used line width 12 and 100% opacity.

	Distance Opacity
	The distance based opacity. When you move your pen fast when painting, the opacity will be calculated based on the distance from the center of the effect area.

	간단한 모드
	This mode exists for performance reasons, and doesn’t affect the output in a visible way. Check this for large brushes or thick lines for faster rendering.

	Paint Connection Line
	What appears to be the connection line is usually made up of an actual connection line and many smaller curve lines. The many small curve lines make up the majority of the line. For this reason, the only time this option will make a visible difference is if you’re drawing with 0% or near 0% density, and with a thick line width. The rest of the time, this option won’t make a visible difference.

	Anti-aliasing
	This applies anti-aliasing to the lines, giving a smoother feel.

버전 5.1에 추가.

Spray Brush Engine

[image: ../../../_images/spraybrush.svg]A brush that can spray particles around in its brush area.

Options

	스프레이 구역

	Spray Shape

	브러시 모양 (Used as particle if spray shape is not active)

	Opacity and Flow

	Size

	혼합 모드

	Shape Dynamics

	색상 옵션

	회전

	에어브러시

스프레이 구역

Here you can set different properties related to the area where the particles are distributed and how they are distributed.

Area

	Diameter
	The size of the area.

	Aspect Ratio
	It’s aspect ratio: 1.0 is fully circular.

	각도
	The angle of the spray size: works nice with aspect ratios other than 1.0.

	Scale
	Scales the diameter up.

	간격
	Increases the spacing of the diameter’s spray.

	지터 움직임
	Jitters the spray area around for extra randomness.

입자

	Amount
	
	Count
	Use a specified number of particles.

	밀도
	Use a percentage for the number of particles.

	Distribution
	
버전 5.1에 추가.

Here you can set how the particles are distributed in the spray area. The particles are distributed using polar coordinates [https://en.wikipedia.org/wiki/Polar_coordinate_system], so you can set different distributions for the angle and the distance of the particles relative to the center of the spray area.

	Angular
	You can specify how the particles are distributed around the center using one of the following options:

	Uniform: Distributes the particles uniformly. Each angle is equally likely to receive a particle.

	Curve: You can set a custom curve that models how the particles should be distributed. The left side of the curve represents an angle of 0 degrees and the right side an angle of 360 degrees. Higher values in the vertical direction mean that there is a higher probability that a particle ends up at that particular angle. In the spray area the angle increases clockwise.

	Repeat: Have the curve repeat itself multiple times from 0 to 360 degrees. Without this, you would need to build a very complex curve with too many control points to achieve the same result.

	Radial
	You can specify how the particles are distributed from the center to the edge of the spray area using one of the following options:

	Uniform: Distributes the particles uniformly.

	Center-biased spread (legacy): This option ensures compatibility with the brushes made prior to version 5.1. Before, the particles were distributed uniformly in terms of distance from the center, but that ended up concentrating more particles in the center of the spray area from a 2d space perspective. For example, a circumference at a distance of 10 pixels from the center ended having roughly the same number of particles as a circumference at a distance of 100 pixels, while being 10 times smaller in length.

	Gaussian: distributes the particles using a gaussian or normal distribution [https://en.wikipedia.org/wiki/Normal_distribution].

	Standard deviation: Sets the standard deviation of the distribution. Higher values will make the particles more spread.

	Center-biased spread (legacy): This option ensures compatibility with the brushes made prior to version 5.1. See the previous point for more information.

	Cluster: This will allow you to quickly concentrate the particles towards the center or the edge of the spray area.

	Clustering amount: Positive values will make the particles concentrate towards the center of the spray area. Negative values will make the particles concentrate towards the border of the spray area. Values near 0 will make the particles spread more uniformly.

	Curve: You can set a custom curve that models how the particles should be distributed. The left side of the curve represents the center of the spray area and the right side represents its border. Higher values in the vertical direction mean that there is a higher probability that a particle ends up at that particular distance.

	Repeat: Have the curve repeat itself multiple times from the center of the spray area to its edge. Without this, you would need to build a very complex curve with too many control points to achieve the same result.

[image: ../../../_images/krita-spray-brush-engine-distribution.png]

Different distribution types on display:

	Uniform for both Angular and Radial, with Center-biased spread (legacy) turned on.

	Uniform for both Angular and Radial, with Center-biased spread (legacy) turned off.

	Clustered for Radial, with Clusting Amount: 0.0.

	Clustered for Radial, with Clusting Amount: -5.0.

	Clustered for Radial, with Clusting Amount: +5.0.

	Curve for Angular, using the default curve and 0 repeats.

	Curve for Angular, using the default curve and 5 repeats.

	Curve for Radial, using the default curve with 3 repeats.

	Curve for Angular using a hill shaped curve, 7 repeats, and Clustered for Radial, with Clusting Amount: -5.0.

	Gaussian for Radial, with Standard Deviation: 25.

	Gaussian for Radial, with Standard Deviation: 50.

	Gaussian for Radial, with Standard Deviation: 80.

Spray Shape

If activated, this will generate a special particle. If not, the brush-tip will be the particle.

	Shape
	Can be…

	Ellipse

	Rectangle

	Anti-aliased Pixel

	픽셀

	Image

	Width & Height
	Decides the width and height of the particle.

	Proportional
	Locks Width & Height to be the same.

	텍스처
	Allows you to pick an image for the Image shape.

Shape Dynamics

	Random Size
	Randomizes the particle size between 1x1 px and the given size of the particle in brush-tip or spray shape.

	Fixed Rotation
	Gives a fixed rotation to the particle to work from.

	Randomized Rotation
	Randomizes the rotation.

	Follow Cursor Weight
	How much the pressure affects the rotation of the particles. At 1.0 and high pressure it’ll seem as if the particles are exploding from the middle.

	Angle Weight
	How much the spray area angle affects the particle angle.

색상 옵션

	무작위 HSV
	Randomize the HSV with the strength of the sliders. The higher, the more the color will deviate from the foreground color, with the direction indicating clock or counter clockwise.

	Random Opacity
	Randomizes the opacity.

	Color Per Particle
	Has the color options be per particle instead of area.

	Sample Input Layer.
	Will use the underlying layer as reference for the colors instead of the foreground color.

	Fill Background
	Fills the area before drawing the particles with the background color.

	Mix with background color.
	Gives the particle a random color between foreground/input/random HSV and the background color.

Tangent Normal Brush Engine

[image: ../../../_images/tangentnormal.svg]The Tangent Normal Brush Engine is an engine that is specifically designed for drawing normal maps, of the tangent variety. These are in turn used in 3d programs and game engines to do all sorts of lightning trickery. Common uses of normal maps include faking detail where there is none, and to drive transformations (Flow Maps).

A Normal map is an image that holds information for vectors. In particular, they hold information for Normal Vectors, which is the information for how the light bends on a surface. Because Normal Vectors are made up of 3 coordinates, just like colors, we can store and see this information as colors.

Normals can be seen similar to the stylus on your tablet. Therefore, we can use the tilt-sensors that are available to some tablets to generate the color of the normals, which can then be used by a 3d program to do lighting effects.

In short, you will be able to paint with surfaces instead of colors.

The following options are available to the tangent normal brush engine:

	브러시 모양

	혼합 모드

	Opacity and Flow

	Size

	비율

	간격

	Mirror

	부드러움

	Sharpness

	회전

	분산

	에어브러시

	텍스처

Specific Parameters to the Tangent Normal Brush Engine

탄젠트 기울기

These are the options that determine how the normals are calculated from tablet input.

	탄젠트 인코딩
	This allows you to set what each color channel means. Different programs set different coordinates to different channels, a common version is that the green channel might need to be inverted (-Y), or that the green channel is actually storing the x-value (+X).

	기울기 옵션
	Allows you to choose which sensor is used for the X and Y.

	기울기
	Uses Tilt for the X and Y.

	방향
	Uses the drawing angle for the X and Y and Tilt-elevation for the Z, this allows you to draw flowmaps easily.

	회전
	Uses rotation for the X and Y, and tilt-elevation for the Z. Only available for specialized Pens.

	높이 민감도
	Allows you to change the range of the normal that are outputted. At 0 it will only paint the default normal, at 1 it will paint all the normals in a full hemisphere.

Usage

The Tangent Normal Map Brush Engine is best used with the Tilt Cursor, which can be set in Settings ‣ Configure Krita ‣ General ‣ Outline Shape ‣ Tilt Outline.

Normal Map authoring workflow

	Create an image with a background color of (128, 128, 255) blue/purple.

[image: ../../../_images/Krita-normals-tutorial_1.png]

Setting up a background with the default color.

	Set up group with a Phong Bumpmap filter mask. Use the Use Normal map checkbox on the filter to make it use normals.

[image: ../../../_images/Krita-normals-tutorial_2.png]

Creating a phong bump map filter layer, make sure to check ‘Use Normal map’.

[image: ../../../_images/Krita-normals-tutorial_3.png]

These settings give a nice daylight-esque lighting setup, with light 1 being the sun, light 3 being the light from the sky, and light 2 being the light from the ground.

	Make a Normalize filter layer or mask to normalize the normal map before feeding it into the Phong bumpmap filter for the best results.

	Then, paint on layers in the group to get direct feedback.

[image: ../../../_images/Krita-normals-tutoria_4.png]

Paint on the layer beneath the filters with the tangent normal brush to have them be converted in real time.

	Finally, when done, hide the Phong bumpmap filter layer (but keep the Normalize filter layer!), and export the normal map for use in 3d programs.

Drawing Direction Maps

Direction maps are made with the Direction option in the Tangent Tilt options. These normal maps are used to distort textures in a 3d program (to simulate for example, the flow of water) or to create maps that indicate how hair and brushed metal is brushed. Krita can’t currently give feedback on how a given direction map will influence a distortion or shader, but these maps are a little easier to read.

Just set the Tangent Tilt option to Direction, and draw. The direction your brush draws in will be the direction that is encoded in the colors.

Only editing a single channel

Sometimes you only want to edit a single channel. In that case set the blending mode of the brush to Copy <channel>, with <channel> replaced with red, green or blue. These are under the Misc section of the blending modes.

So, if you want the brush to only affect the red channel, set the blending mode to Copy Red.

[image: ../../../_images/Krita_Filter_layer_invert_greenchannel1.png]

The copy red, green and blue blending modes also work on filter-layers.

This can also be done with filter layers. So if you quickly want to flip a layer’s green channel, make an invert filter layer with Copy Green above it.

Mixing Normal Maps

For mixing two normal maps, Krita has the Combine Normal Map blending mode under Misc.

Brush Settings

Overall Brush Settings for the various brush engines.

Contents:

	브러시 모양

	Locked Brush Settings

	마스크된 브러시

	Opacity and Flow

	Options

	센서

	텍스처

브러시 모양

[image: ../../../_images/Krita_Pixel_Brush_Settings_Popup.png]

Auto Brush

The generic circle or square. These brush tips are generated by Krita through certain parameters.

형식

First, there are three mask-types, with each the circle and square shape:

	Default
	This is the ultimate generic type. The Fade parameter produces the below results. Of the three auto brushes, this is the fastest.

[image: ../../../_images/Krita_29_brushengine_brushtips_default.png]

	부드러움
	This one’s fade is controlled by a curve!

[image: ../../../_images/Krita_2_9_brushengine_brushtips_soft.png]

	가우시안
	This one uses the gaussian algorithm to determine the fade. Out of the three auto brushes, this is the slowest.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_gaussian.png]

Parameters

	Diameter
	The pixel size of the brush.

	비율
	Whether the brush is elongated or not.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_ratio.png]

	페이드
	this sets the softness of the brush. You can click the chain-symbol to lock and unlock these settings. Fade has a different effect per mask-type, so don’t be alarmed if it looks strange, perhaps you have the wrong mask-type.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_default2b.png]
With fade locked.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_default_3.png]
With fade separately horizontal and vertical.

	각도
	This changes the angle a which the brush is at.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_angle.png]

	Spikes
	This gives the amount of tips related to the ratio.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_spikes.png]

	밀도
	This determines how much area the brush-covers over its size: It makes it noisy. In the example below, the brush is set with density 0%, 50% and 100% respectively.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_density.png]

	Randomness
	This changes the randomness of the density. In the example below, the brush is set with randomness 0%, 50% and 100% respectively.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_randomness.png]

	간격
	This affects how far brushes are spaced apart. In the below picture, the three examples on the left are with spacing 0, 1 and 5.

	Auto (spacing)
	Ticking this will set the brush-spacing to a different (quadratic) algorithm. The result is fine control over the spacing. In the below picture, the three examples on right are with auto spacing, 0, 1 and 5 respectively.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_spacing.png]

	Smooth lines
	This toggles the super-smooth anti-aliasing. In the below example, both strokes are drawn with a default brush with fade set to 0. On the left without smooth lines, and the right with. Very useful for inking brushes. This option is best used in combination with Auto Spacing.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_default_2.png]

	Precision
	This changes how smooth the brush is rendered. The lower, the faster the brush, but the worse the rendering looks.
You’d want an inking brush to have a precision of 5 at all times, but a big filling brush for painting doesn’t require such precision, and can be easily sped up by setting precision to 1.

	Auto (precision)
	This allows you to set the precision linked to the size. The first value is the brush size at which precision is at last 5, and the second is the size-difference at which the precision will decrease.

For example: A brush with ‘’starting brush size’’ 10 and ‘’delta’’ 4, will have…

	precision 5 at size 10

	precision 4 at size 14

	precision 3 at size 18

	precision 2 at size 22

	precision 1 at sizes above 26.

Predefined Brushes

[image: ../../../_images/Krita_Predefined_Brushes.png]
If you have used other applications like GIMP or Photoshop, you will have used this kind of brush. Krita is (mostly) compatible with the brush tip definitions files of these applications:

	abr
	Gimp autobrush tip definitions.

	*.gbr
	Gimp single bitmap brush tip. Can be black and white or colored.

	*.gih
	Gimp Image Hose brush tip: contains a series of brush tips that are painted randomly or in order after each other. Can be black and white or colored. Krita does not yet support all the parameters yet.

	abr
	Photoshop brush tip collections. We support many of the features of these brush files, though some advanced features are not supported yet.

Note that the definition of ABR brushes has been reverse engineered since Adobe does not make the specification public. We strongly recommend every Krita user to share brush tips in GBR and GIH format and more complex brushes as Krita presets.

All predefined brush tips are shown in one selector. There are four more options that influence the initial bitmap brush tip you start painting with:

	Size
	Scales the brush tip. 1.0 is the native size of the brush tip. This can be fairly large! When painting with variable size (for instance governed by pressure), this is the base for the calculations.

	회전
	Initial rotation of the brush tip.

	간격
	Distance between the brush tip impressions.

Brush Mode

[image: the different modes demonstrated.]

Different modes shown with different brush tips.

	알파 마스크
	For colored brushes, don’t paint the actual colors, but make a grayscale brush tip that will be colored by your selected foreground/background color. Lighter areas will be interpreted as more transparent.

	색상 이미지
	Use the brush tip image exactly as it is. Especially useful for image stamps.

	광도 맵
	
버전 4.3에 추가: Combines the features of Alpha Mask and Image Stamp modes. Transparency is preserved as it is in Image Stamp mode, but colors or gray tones in the brush are replaced by the foreground color. The Lightness values of the brush tip image (if thinking in HSL mode) are preserved, so dark parts of the image are dark, and bright parts are bright. This allows image stamps where you can choose the color, but preserve highlights and shadows, and can even create an effect of thick paint in a brush stroke by simulating the highlights and shadows caused by the texture of the paint and brush stroke (sometimes called an “impasto” effect).

There are three sliders here, to control the exact feel of the current brush tip in Lightness or Gradient mode:

	Neutral point
	This is the lightness level that will be the same as your current foreground color. Higher values than this will be lighter versions of the current foreground color, and lower, darker versions of the current color.

	Brightness
	Makes the tip as a whole brighter or darker.

	Contrast
	Increase the contrast between dark and light areas in the tip.

	Gradient Map
	
버전 4.4에 추가: Use the lightness values of the brush tip image as a map to a gradient. Black maps to the left side of the gradient, and white to the right side of the gradient. The gradient used is the currently selected gradient in the main window, so you can change the gradient quickly and easily while painting. This mode allows image stamps with multiple colors that can be changed (great for flowers or other colorful vegetation), and can allow paint brushes that have multiple colors. Image adjustment sliders for Lightness Map mode can be used for this mode too. A tutorial for this mode is here: Gradient Map Brush Tips .

Locked Brush Settings

Normally, a changing to a different brush preset will change all brush settings. Locked presets are a way for you to prevent Krita from changing all settings. So, if you want to have the texture be that same over all brushes, you lock the texture parameter. That way, all brush-preset you select will now share the same texture!

Locking a brush parameter

[image: ../../../_images/Krita_2_9_brushengine_locking_01.png]
To lock an option, [image: mouseright] the little lock icon next to the parameter name, and set it to Lock. It will now be highlighted to show it’s locked:

[image: ../../../_images/Krita_2_9_brushengine_locking_02.png]
And on the canvas, it will show that the texture-option is locked.

[image: ../../../_images/Krita_2_9_brushengine_locking_04.png]

Unlocking a brush parameter

To unlock, [image: mouseright] the icon again.

[image: ../../../_images/Krita_2_9_brushengine_locking_03.png]
There will be two options:

	Unlock (Drop Locked)
	This will get rid of the settings of the locked parameter and take that of the active brush preset. So if your brush had no texture on, using this option will revert it to having no texture.

	Unlock (Keep Locked)
	This will keep the settings of the parameter even though it’s unlocked.

마스크된 브러시

버전 4.0에 추가.

Masked brush is new feature that is only available in the Pixel Brush Engine. They are additional settings you will see in the brush editor. Masked brushes allow you to combine two brush tips in one stroke. One brush tip will be a mask for your primary brush tip. A masked brush is a good alternative to texture for creating expressive and textured brushes.

[image: ../../../_images/Masking-brush1.jpg]

참고

Due to technological constraints, the masked brush only works in the wash painting mode. However, do remember that flow works as opacity does in the build-up painting mode.

	브러시 모양
	Like with normal brush tip you can choose any brush tip and change it size, spacing, and rotation. Masking brush size is relative to main brush size. This means when you change your brush size masking tip will be changed to keep the ratio.

	Blending mode (drop-down inside Brush tip):
	Blending modes changes how tips are combined.

[image: ../../../_images/Masking-brush2.jpg]

	Size
	The size sensor option of the second tip.

	Opacity and Flow
	The opacity and flow of the second tip. This is mapped to a sensor by default. Flow can be quite aggressive on subtract mode, so it might be an idea to turn it off there.

	비율
	This affects the brush ratio on a given brush.

	Mirror
	The Mirror option of the second tip.

	회전
	The rotation option of the second tip. Best set to “fuzzy dab”.

	분산
	The scatter option. The default is quite high, so don’t forget to turn it lower.

Difference from 텍스처:

	You don’t need seamless texture to make cool looking brush.

	Stroke generates on the fly, it always different.

	Brush strokes looks same on any brush size.

	Easier to fill some areas with solid color but harder to make it hard textured.

Opacity and Flow

Opacity and flow are parameters for the transparency of a brush.

[image: ../../../_images/Krita_Pixel_Brush_Settings_Flow.png]
They are interlinked with the painting mode setting.

[image: ../../../_images/Krita_2_9_brushengine_opacity-flow_02.png]

	Opacity
	The transparency of a stroke.

	흐름
	The transparency of separate dabs. Finally separated from Opacity in 2.9.

[image: ../../../_images/Krita_4_2_brushengine_opacity-flow_01.svg]
버전 4.2에서 변경: In Krita 4.1 and below, the flow and opacity when combined with brush sensors would add up to one another, being only limited by the maximum opacity. This was unexpected compared to all other painting applications, so in 4.2 this finally got corrected to the flow and opacity multiplying, resulting in much more subtle strokes. This change can be switched back in the Tools Settings, but we will be deprecating the old way in future versions.

The old behavior can be simulated in the new system by…

	Deactivating the sensors on opacity.

	Set the maximum value on flow to 0.5.

	Adjusting the pressure curve to be concave.

[image: ../../../_images/flow_opacity_adapt_flow_preset.gif]

그리기 모드

	Build-up
	Will treat opacity as if it were the same as flow.

	워시
	Will treat opacity as stroke transparency instead of dab-transparency.

[image: ../../../_images/Krita_2_9_brushengine_opacity-flow_03.png]
Where the other images of this page had all three strokes set to painting mode: wash, this one is set to build-up.

Options

에어브러시

[image: ../../../_images/Krita_2_9_brushengine_airbrush.png]
If you hold the brush still, but are still pressing down, this will keep adding color onto the canvas. The lower the rate, the quicker the color gets added.

Mirror

[image: ../../../_images/Krita_Pixel_Brush_Settings_Mirror.png]
This allows you to mirror the Brush tip with Sensors.

	Horizontal
	Mirrors the mask horizontally.

	Vertical
	Mirrors the mask vertically.

[image: ../../../_images/Krita_2_9_brushengine_mirror.jpg]
Some examples of mirroring and using it in combination with 회전.

회전

This allows you to affect Angle of your brush tip with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_rotation.png]
[image: ../../../_images/Krita_Pixel_Brush_Settings_Rotation.png]
In the above example, several applications of the parameter.

	Drawing Angle – A common one, usually used in combination with rake-type brushes. Especially effect because it does not rely on tablet-specific sensors. Sometimes, Tilt-Direction or Rotation is used to achieve a similar-more tablet focused effect, where with Tilt the 0° is at 12 o’clock, Drawing angle uses 3 o’clock as 0°.

	Fuzzy – Also very common, this gives a nice bit of randomness for texture.

	Distance – With careful editing of the Sensor curve, you can create nice patterns.

	Fade – This slowly fades the rotation from one into another.

	Pressure – An interesting one that can create an alternative looking line.

광도 강도

버전 4.4에 추가: This allows you to affect the Lightness Strength of your brush tip with Sensors. Only available with brush tips in Lightness Map mode.

[image: ../../../_images/lightness_strength_demo.png]
This changes the contrast of the brush tip, so that at 100%, the full effect of the lightness variation is visible in the brush, while at 0% the brush paints without any lightness variation. This allows a variable impasto effect with lightness brushes, and for variation in texture stamp brushes that use a lightness-enabled brush tip.

분산

This parameter allows you to set the random placing of a brush-dab. You can affect them with Sensors.

	X
	The scattering on the angle you are drawing from.

	Y
	The scattering, perpendicular to the drawing angle (has the most effect).

[image: ../../../_images/Krita_2_9_brushengine_scatter.png]

Sharpness

[image: ../../../_images/Krita_Pixel_Brush_Settings_Sharpness.png]
Puts a threshold filter over the brush mask. This can be used for brush like strokes, but it also makes for good pixel art brushes.

	Strength
	Controls the threshold, and can be controlled by the sensors below.

	Soften Edge
	Controls the extra non-fully opaque pixels. This adds a little softness to the stroke.

버전 4.2에서 변경: The sensors now control the threshold instead of the subpixel precision, softness slider was added.

	Align the brush preview outline to the pixel grid.
	Whether to have the brush outline align to the pixel grid. This is useful with some forms of pixel art.

버전 5.1에 추가.

Size

[image: ../../../_images/Krita_Pixel_Brush_Settings_Size.png]
This parameter is not the diameter itself, but rather the curve for how it’s affected.

So, if you want to lock the diameter of the brush, lock the Brush tip. Locking the size parameter will only lock this curve. Allowing this curve to be affected by the Sensors can be very useful to get the right kind of brush. For example, if you have trouble drawing fine lines, try to use a concave curve set to pressure. That way you’ll have to press hard for thick lines.

[image: ../../../_images/Krita_2_9_brushengine_size_01.png]
Also popular is setting the size to the sensor fuzzy or perspective, with the later in combination with a Perspective.

[image: ../../../_images/Krita_2_9_brushengine_size_02.png]

부드러움

This allows you to affect Fade with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_softness.png]
Has a slight brush-decreasing effect, especially noticeable with soft-brush, and is overall more noticeable on large brushes.

Source

Picks the source-color for the brush-dab.

	단색
	Current foreground color.

	그라디언트
	Picks active gradient.

	Uniform Random
	Gives a random color to each brush dab.

	Total Random
	Random noise pattern is now painted.

	패턴
	Uses active pattern, but alignment is different per stroke.

	Locked Pattern
	Locks the pattern to the brushdab.

Mix

Allows you to affect the mix of the Source color with Sensors. It will work with Plain Color and Gradient as source. If Plain Color is selected as source, it will mix between the currently selected foreground and background color. If Gradient is selected, it chooses a point on the gradient to use as painting color according to the sensors selected.

[image: ../../../_images/Krita_2_9_brushengine_mix_01.png]

Uses

[image: ../../../_images/Krita_2_9_brushengine_mix_02.png]

	Flow map
	The above example uses a Krita painted flowmap in the 3D program Blender.
A brush was set to Source ‣ Gradient and Mix ‣ Drawing angle. The gradient in question contained the 360° for normal map colors. Flow maps are used in several Shaders, such as brushed metal, hair and certain river-shaders.

그라디언트

Exactly the same as using Source ‣ Gradient with Mix, but only available for the Color Smudge Brush.

[image: ../../../_images/Krita-tutorial5-I.6-1.png]
You can either:

	Leave the default Foreground ‣ Background gradient setting, and just change the foreground and background colors

	Select a more specific gradient

	Or make custom gradients.

간격

[image: ../../../_images/Krita_Pixel_Brush_Settings_Spacing.png]
This allows you to affect 브러시 모양 with 센서.

[image: ../../../_images/Krita_2_9_brushengine_spacing_02.png]

	Isotropic spacing
	Instead of the spacing being related to the ratio of the brush, it will be on diameter only.

[image: ../../../_images/Krita_2_9_brushengine_spacing_01.png]

비율

Allows you to change the ratio of the brush and bind it to parameters. This also works for predefined brushes.

[image: ../../../_images/Krita_3_0_1_Brush_engine_ratio.png]

센서

	Pressure
	Uses the pressure in and out values of your stylus.

	지점에서의 압력
	Uses only pressure in values of your stylus. Previous pressure level in same stroke is overwritten only by applying more pressure. Lessening the pressure doesn’t affect PressureIn.

	X-tilt
	How much the brush is affected by stylus angle, if supported.

	Y-tilt
	How much the brush is affected by stylus angle, if supported.

	Tilt-direction
	How much the brush is affected by stylus direction. The pen point pointing towards the user is 0°, and can vary from -180° to +180°.

	Tilt-elevation
	How much the brush is affected by stylus perpendicularity. 0° is the stylus horizontal, 90° is the stylus vertical.

	속도
	How much the brush is affected by the speed at which you draw.

	Drawing Angle
	How much the brush is affected by which direction you are drawing in. Lock will lock the angle to the one you started the stroke with. Fan corners will try to smoothly round the corners, with the angle being the angles threshold it’ll round. Angle offset will add an extra offset to the current angle.

	회전
	How much a brush is affected by how the stylus is rotated, if supported by the tablet.

	거리
	How much the brush is affected over length in pixels.

	Time
	How much a brush is affected over drawing time in seconds.

	Fuzzy (Dab)
	Basically the random option.

	획 그리기 퍼지
	A randomness value that is per stroke. Useful for getting color and size variation in on speed-paint brushes.

	페이드
	How much the brush is affected over length, proportional to the brush size.

	Perspective
	How much the brush is affected by the perspective assistant.

	Tangential Pressure
	How much the brush is affected by the wheel on airbrush-simulating styli.

텍스처

This allows you to have textured strokes. This parameter always shows up as two parameters:

텍스처

	패턴
	Which pattern you’ll be using.

	Scale
	The size of the pattern. 1.0 is 100%.

[image: ../../../_images/Krita_2_9_brushengine_texture_05.png]

	Horizontal Offset & Vertical Offset
	How much a brush is offset, random offset sets a new per stroke.

[image: ../../../_images/Krita_2_9_brushengine_texture_04.png]

	Texturing mode
	All texture modes affect the alpha channel, with the exception of lightness map and gradient map, which
affect the color channels.

[image: ../../../_images/Krita_2_9_brushengine_texture_01.png]
[image: ../../../_images/Krita_4_4_brushengine_texture_lightness_gradient_demo.png]
In the following explanations, the sample strokes go from low strength on the left side to high strength on the
right side. The top stroke uses a hard brush tip and the bottom one a soft brush tip. On the left side of the
strokes there are two non-textured dots, just for comparison sake.

	Multiply
	Uses alpha multiplication to determine the effect of the texture. Has a soft feel.

[image: ../../../_images/multiply.png]

	Subtract
	Uses subtraction to determine the effect of the texture. Has a harsher, more texture feel.

[image: ../../../_images/subtract.png]

	광도 맵
	
버전 4.4에 추가.

Applies lightness values of the texture to the paint. Can be used to simulate paper/canvas, or for painting a texture, like reptile skin or tree bark.

[image: ../../../_images/lightness_map.png]

	그라디언트 맵
	
버전 4.4에 추가.

Maps gray/lightness values of the texture to the currently selected gradient. Useful for painting textures with multiple colors, like reptile skin, tree bark, stars, etc.

[image: ../../../_images/gradient_map.png]

	어둡게
	
버전 5.0에 추가.

This mode chooses the minimum alpha value between the brush tip and the texture. The effect is as if the texture
made holes in the opaque areas of the brush tip.

[image: ../../../_images/darken.png]

	Overlay
	
버전 5.0에 추가.

The texture is softly applied to the semi-transparent areas of the brush tip.
This mode produces a result similar to multiply but allowing for full coverage when high strength values are used.

[image: ../../../_images/overlay.png]

	색상 닷지
	
버전 5.0에 추가.

This mode produces features with somewhat hard edges on the brush tip by making it more opaque where the texture
values are brighter.

[image: ../../../_images/color_dodge.png]

	Burn
	
버전 5.0에 추가.

This mode produces holes with somewhat hard edges on the brush tip by making it more transparent where the texture
values are darker.

[image: ../../../_images/color_burn.png]

	선형 닷지
	
버전 5.0에 추가.

Similar to color dodge but the opacity of the brush tip is increased even more.

[image: ../../../_images/linear_dodge.png]

	선형 번
	
버전 5.0에 추가.

The result is similar to burn but with the opacity decreased a bit more. It also is similar to the subtract
mode but with the texture inverted.

[image: ../../../_images/linear_burn.png]

	강한 섞기(Photoshop)
	
버전 5.0에 추가.

This mode produces a result similar to burn or linear burn and allows to obtain full coverage when high strength values
are used. The resulting edges are very hard (in fact, aliased).

[image: ../../../_images/hard_mix_ps.png]

	Hard Mix Softer (Photoshop)
	
버전 5.0에 추가.

This mode tries to emulate hard mix (photoshop) while producing softer, antialiased, edges.

[image: ../../../_images/hard_mix_softer_ps.png]

	높이
	
버전 5.0에 추가.

This mode is similar to the subtract mode but with a higher range of possibilities when applying the strength.
Contrary to subtract, it allows to achieve full coverage with one stroke.

[image: ../../../_images/height.png]

	Linear Height
	
버전 5.0에 추가.

Same as height but combined with multiply to achieve softer transitions.

[image: ../../../_images/linear_height.png]

	Height (Photoshop)
	
버전 5.0에 추가.

As the height mode, this mode is similar to the subtract mode but with a higher range of possibilities when applying
the strength. Contrary to subtract, it allows to achieve full coverage with one stroke. This mode tries to
emulate the height mode present in Photoshop and it only differs from Krita’s height mode on how the strength
is mapped in the algorithm. When using a strength value of 0.1 the results are almost identical to the subtract
mode with a strength of 1.

[image: ../../../_images/height_ps.png]

	Linear Height (Photoshop)
	
버전 5.0에 추가.

Same as height (photoshop) but combined with multiply to achieve softer transitions.

[image: ../../../_images/linear_height_ps.png]

	Cutoff policy
	Cutoff policy will determine what range and where the strength will affect the textured outcome.

	Disabled
	Doesn’t cut off. Full range will be used.

	패턴
	Cuts the pattern off.

	Brush
	Cuts the brush tip off.

[image: ../../../_images/Krita_2_9_brushengine_texture_02.png]

	컷오프
	Cutoff is… the grayscale range that you can limit the texture to. This also affects the limit takes by the strength. In the below example, we move from the right arrow moved close to the left one, resulting in only the darkest values being drawn. After that, three images with larger range, and underneath that, three ranges with the left arrow moved, result in the darkest values being cut away, leaving only the lightest. The last example is the pattern without cutoff.

[image: ../../../_images/Krita_2_9_brushengine_texture_07.png]

	반전 패턴
	Invert the pattern.

[image: ../../../_images/Krita_2_9_brushengine_texture_06.png]

Brightness and Contrast

버전 3.3.1에 추가: Adjust the pattern with a simple brightness/contrast filter to make it easier to use. Because Subtract and Multiply work differently, it’s recommended to use different values with each:

[image: ../../../_images/Krita_3_1_brushengine_texture_07.png]

버전 4.4에 추가: Neutral Point adjustment:

	중립점
	Adjust the gray value that is considered neutral in the texture. 0.5 keeps the texture as is; higher values make the texture darker, and lower values make the texture lighter. Works a bit differently from the brightness option, and is mostly useful to adjust existing textures to work well with Lightness Map and Gradient Map modes (though it can have applications with the other two modes).

Strength

This allows you to set the texture to Sensors. It will use the cutoff to continuously draw lighter values of the texture (making the result darker).

버전 4.4에 추가: For Lightness Map and Gradient Map modes, Strength controls how much of the texture is applied compared to how much of the selected paint color comes through.

[image: ../../../_images/Krita_2_9_brushengine_texture_03.png]

더 보기

David Revoy describing the texture feature (old) [https://www.davidrevoy.com/article107/textured-brush-in-floss-digital-painting].

배열 복제

Allows you to create a set of clone layers quickly. These are ordered in terms of rows and columns. The default options will create a 2 by 2 grid. For setting up tiles of an isometric game, for example, you’d want to set the X offset of the rows to half the value input into the X offset for the columns, so that rows are offset by half. For a hexagonal grid, you’d want to do the same, but also reduce the Y offset of the grids by the amount of space the hexagon can overlap with itself when tiled.

	- Elements
	The amount of elements that should be generated using a negative of the offset.

	+ Elements
	The amount of elements that should be generated using a positive of the offset.

	X 오프셋
	The X offset in pixels. Use this in combination with Y offset to position a clone using Cartesian coordinates.

	Y 오프셋
	The Y offset in pixels. Use this in combination with X offset to position a clone using Cartesian coordinates.

	거리
	The line-distance of the original origin to the clones origin. Use this in combination with angle to position a clone using a polar coordinate system.

	Angle
	The angle-offset of the column or row. Use this in combination with distance to position a clone using a polar coordinate system.

새 문서 만들기

다음 방법으로 새 문서를 만들 수 있습니다.

	앱 위쪽에 있는 메뉴에서 파일을 클릭하십시오.

	그 다음 새로 만들기를 클릭하십시오. 또는 Ctrl + N 단축키를 눌러 이 작업을 수행할 수 있습니다.

	이제 아래 그림과 같이 새 문서 대화 상자가 표시됩니다.

[image: ../_images/Krita_newfile.png]
There are various sections in this dialog box which aid in creation of new document,
either using custom document properties or by using contents from clipboard and templates.
Following are the sections in this dialog box:

사용자 정의 문서

From this section you can create a document according to your requirements: you
can specify the dimensions, color model, bit depth, resolution, etc.

In the top-most field of the Dimensions tab, from the Predefined
drop-down you can select predefined pixel sizes and PPI (pixels per inch). You
can also set custom dimensions and the orientation of the document from the
input fields below the Predefined: drop-down. This can also be saved
as a new predefined preset for your future use by giving a name in the
Save Image Size as: input box and clicking on the Save
button. Below we find the Color section of the new document dialog box, where
you can select the color model and the bit-depth. Check Colors
for more detailed information regarding color.

On the Content tab, you can define a name for your new document.
This name will appear in the metadata of the file, and Krita will use it for
the auto-save functionality as well. If you leave it empty, the document will
be referred to as ‘Unnamed’ by default. You can select the background color and
the amount of layers you want in the new document. Krita remembers the amount
of layers you picked last time, so be careful.

Finally, there’s a description box, useful to note down what you are going to do.

클립보드에서 만들기

This section allows you to create a document from an image that is in your
clipboard, like a screenshot. It will have all the fields set to match the
clipboard image.

템플릿:

These are separate categories where we deliver special defaults. Templates are
just .kra files which are saved in a special location, so they can be pulled up
by Krita quickly. You can make your own template file from any .kra file, by
using File ‣ Create Template from Image… in the top menu.
This will add your current document as a new template, including all its
properties along with the layers and layer contents.

Once you have created a new document according to your preference, you should
now have a white canvas in front of you (or whichever background color you
chose in the dialog).

Pre-installed Python plugins

This page describes all plugins that are available in Krita by default (you don’t need to install them).

더 보기

If you want to see a selection of custom user-made Python plugins that you can additionally download and install, see User-made Python Plugins.

To learn how to manage your plugins, see Managing Python plugins.

If you want to know more about an individual plugin, you can access the plugin’s manual by going to Settings ‣ Configure Krita… menu, and then choosing the Python Plugin Manager tab. Then you can click on a specific plugin and the manual will appear in the bottom text area.

사용 편의성

섞기 도구 슬라이더 도커

Docker that allows you to choose a color from gradients between the current color and other selected colors.

Palette Docker

Docker that allows you to control palettes more easily. You can add swatches, groups and export the palette settings, or even the palette itself as a GIMP Palette or Inkscape SVG.

Quick Settings Docker

Docker that allows you to quickly set the opacity, flow and size from a predefined list.

브러시 10개

Plugin that assigns presets to one of ten configurable hotkeys. To use, go to Tools ‣ Scripts ‣ Ten Brushes, and a window will pop up with a preset chooser and ten boxes above it. Underneath the boxes is the hotkey the box is associated with.

Customize your shortcuts by editing the configurations in Settings ‣ Configure Krita ‣ Keyboard Shortcuts, and then change the “Activate Brush Preset” actions under “Ten Brushes”.

Workflow Improvements

만화 프로젝트 관리 도구

Plugin that simplifies comics creation.

	Organize and quickly access their pages.

	Export to multiple formats with proper metadata.

	Random suggestions for metadata to avoid spending time on finding the perfect title before starting the project.

일괄 내보내기 도구

Plugin for Game Developers and Graphic Designers.

	Batch export of assets to multiple sizes, file types and custom paths.

	Renaming layers quickly with the smart rename tool.

	Export all layers or only selected layers.

By default, the plugin exports the images in an export folder next to the Krita document and follows the structure of your layer stack.

Image/Document Actions

Assign Profile Dialog

Allows you to assign a profile to an image instead of converting it to that profile. The difference is that it allows only interpreting the colors by the new profile, but not change any of the values. It can be found in Tools ‣ Assign Profile to Image…, and will present a list of profiles for the current image’s color model.

Color Space

Allows you to select a document and convert its colors to a new color space, like RGBA, CMYKA or L*a*b.

Channels to Layers

Splits channels from a layer to sub-layers.

문서 도구

Allows you to select a document and scale, crop and rotate in one action.

필터 관리자

Quickly apply a filter on selected documents.

고대역 통과

Performs a high pass filter on the active document.

파일 동작

레이어 내보내기

Allows you to select a document and export its layers in an ordered and sensible manner.

Last Documents Docker

Script that shows the recently opened documents as a thumbnail image.

Python 스크립팅

Krita 스크립트 시작 도구

A script that helps set up the various files that Krita expects to see when it runs a script, namely:

	.desktop meta data file;

	the main directory for your plugin;

	__init__.py file;

	the main python file for your package;

	Manual.html file for your documentation;

Python 플러그인 가져오기 도구

Imports Python plugins from zip files. See Managing Python plugins.

Scripter

A small Python scripting console, allows to write code in an editor and run it, with feedback related to the output of the execution. You can also debug your code using the “Debug” button.

스크립트 10개

Similar to Ten Brushes, this plugin allows an assignment of Python scripts to ten configurable hotkeys.

도커

Krita에 있는 모든 패널과 그 패널들이 어떤 일을 하는지 설명합니다.

	모양 추가

	고급 색상 선택기

	Animation Curves Docker

	Animation Docker

	Animation Timeline Docker

	배열

	Artistic Color Selector Docker

	사전 설정 도커

	Brush Preset History Docker

	Channels

	색상 슬라이더

	Compositions

	Digital Color Mixer

	Gamut Masks Docker

	Grids and Guides Docker

	히스토그램 도커

	레이어

	로그 뷰어

	LUT 관리

	Onion Skin Docker

	미리 보기

	Palette Docker

	패턴 도커

	Recorder Docker

	Reference Images Docker

	모양 속성 도커

	작은 색상 선택기

	스냅샷 도커

	특정 색상 선택기

	Storyboard Docker

	작업 세트 도커

	터치 도커

	실행 취소 기록

	Symbol Libraries

	Wide Gamut Color Selector

모양 추가

[image: ../../_images/Krita_Add_Shape_Docker.png]
KOffice 모양을 벡터 레이어에 추가하는 도커입니다.

버전 4.0부터 폐지됨: 4.0에서 삭제되었고, Symbol Libraries로 대체되었습니다.

고급 색상 선택기

[image: ../../_images/advanced-color-selector.png]
As compared to other color selectors in Krita, Advanced color selector provides more control and options to the user. To open Advanced color selector choose Settings ‣ Dockers ‣ Advanced Color Selector. You can configure this docker by clicking on the little settings icon on the top left corner of the docker. Clicking on the settings icon will open a popup window with following tabs and options:

색상 선택기

Here you configure the main selector.

Show Color Selector

버전 4.2에 추가: This allows you to configure whether to show or hide the main color selector.

Type and Shape

[image: ../../_images/Krita_Color_Selector_Types.png]
Here you can pick the hsx model you’ll be using.
There’s a small blurb explaining the characteristic of each model, but let’s go into detail:

	HSV
	Stands for Hue, Saturation, Value. Saturation determines the difference between white, gray, black and the most colorful color. Value in turn measures either the difference between black and white, or the difference between black and the most colorful color.

	HSL
	Stands for Hue, Saturation, Lightness. All saturated colors are equal to 50% lightness. Saturation allows for shifting between gray and color.

	HSI
	This stands for Hue, Saturation and Intensity. Unlike HSL, this one determine the intensity as the sum of total rgb components. Yellow (1,1,0) has higher intensity than blue (0,0,1) but is the same intensity as cyan (0,1,1).

	HSY’
	Stands for Hue, Saturation, Luma, with Luma being an RGB approximation of true luminosity. (Luminosity being the measurement of relative lightness). HSY’ uses the Luma Coefficients, like Rec. 709 [https://en.wikipedia.org/wiki/Rec._709], to calculate the Luma. Due to this, HSY’ can be the most intuitive selector to work with, or the most confusing.

Then, under shape, you can select one of the shapes available within that color model.

참고

Triangle is in all color models because to a certain extent, it is a wildcard shape: All color models look the same in an equilateral triangle selector.

루마 계수

This allows you to edit the Luma coefficients for the HSY model selectors to your leisure. Want to use Rec. 601 [https://en.wikipedia.org/wiki/Rec._601] instead of Rec. 709? These boxes allow you to do that!

By default, the Luma coefficients should add up to 1 at maximum.

	Gamma
	The HSY selector is linearised, this setting allows you to choose how much gamma is applied to the Luminosity for the gui element. 1.0 is fully linear, 2.2 is the default.

Color Space

This allows you to set the overall color space for the Advanced Color Selector.

경고

You can pick only sRGB colors in advanced color selector regardless of the color space of advanced color selector. This is a bug.

Behavior

When docker resizes

This determines the behavior of the widget as it becomes smaller.

	Change to Horizontal
	This’ll arrange the shade selector horizontal to the main selector. Only works with the MyPaint shade selector.

	Hide Shade Selector.
	This hides the shade selector.

	Do nothing
	Does nothing, just resizes.

Zoom selector UI

If your have set the docker size considerably smaller to save space, this option might be helpful to you. This allows you to set whether or not the selector will give a zoomed view of the selector in a size specified by you, you have these options for the zoom selector:

	when pressing middle mouse button

	on mouse over

	never

The size given here, is also the size of the Main Color Selector and the MyPaint Shade Selector when they are called with the Shift + I and Shift + M shortcuts, respectively.

	Hide Pop-up on click
	This allows you to let the pop-up selectors called with the above hotkeys to disappear upon clicking them instead of having to leave the pop-up boundary. This is useful for faster working.

Shade selector

Shade selector options.
The shade selectors are useful to decide upon new shades of color.

Update Selector

This allows you to determine when the shade selector updates.

MyPaint Shade Selector

Ported from MyPaint, and extended with all color models.
Default hotkey is Shift + M.

Simple Shade Selector

This allows you to configure the simple shade selector in detail.

Color Patches

This sets the options of the color patches.

Both Color History and Colors From the Image have similar options which will be explained below.

	Show
	This is a radio button to show or hide the section. It also determines whether or not the colors are visible with the advanced color selector docker.

	Size
	The size of the color boxes can be set here.

	Patch Count
	The number of patches to display.

	방향
	The direction of the patches, Horizontal or Vertical.

	Allow Scrolling
	Whether to allow scrolling in the section or not when there are too many patches.

	Number of Columns/Rows
	The number of Columns or Rows to show in the section.

	Update After Every Stroke
	This is only available for Colors From the Image and tells the docker whether to update the section after every stroke or not, as after each stroke the colors will change in the image.

History patches

The history patches remember which colors you’ve drawn on canvas with. They can be quickly called with the H key.

Common Patches

The common patches are generated from the image, and are the most common color in the image. The hotkey for them on canvas is the U key.

Gamut masking

버전 4.2에 추가.

참고

Gamut masking is available only when the selector shape is set to wheel.

You can select and manage your gamut masks in the Gamut Masks Docker.

In the gamut masking toolbar at the top of the selector you can toggle the selected mask off and on (left button). You can also rotate the mask with the rotation slider (right).

External Info

HSI and HSY for Krita’s advanced color selector [https://wolthera.info/?p=726].

Animation Curves Docker

Krita’s Animation Curves Docker allows artists to animate the values of some properties over time.

When animating a complex cut, it’s not unusual to want to animate things that would be difficult or inefficient to do through drawing alone. In traditional pen-and-paper animation dating back to the 1920s, special lighting rigs and purpose-built devices like multiplane cameras were used to pull off special effects that changed animation forever! Likewise, Krita’s Animation Curves docker allows us to animate more than just the lines on your canvas, such as a layer’s opacity or the position, rotation and scale of a Transform Mask.

Because most things can be boiled down to numeric values (for example, opacity as a percentage or the position of a Transform Mask), and because computers are great with maths and automation, we can plot and visualize the change in values over time on a simple 2D graph. What’s more, we can also draw lines and curves that show the computer how we want it to calculate the values in between each of our plotted keyframe values; a technique known as interpolation or tweening.

[image: ../../_images/Animation_Curves_Docker.png]

Overview

As shown in the image above, Krita’s Animation Curves Docker can be thought of as different sections:

	Utilities – The left side of the toolbar gives animators quick access to all of the widgets that are critical to their workflow; transport controls (previous, play/pause, stop and next buttons), a frame counter, preview controls (speed and drop frames), buttons for adding and removing scalar keyframes, buttons for changing the interpolation mode and tangent mode of the selected keyframe, a box for setting the selected keyframe to a specific value, as well as buttons to help zoom and navigate the main graph view.

	Settings – While all of the high-traffic controls are presented directly, the right end of the toolbar also contains buttons for opening submenus for things like onion skins and settings that you can generally set and forget (for example, playback range, frame rate and autokey mode).

	Channels List – This area shows the various channels of the current layer that are currently being animated within the Animation Curves Docker. Each independent channel is associated with a unique color and its visibility within the graph view can be toggled by clicking on the eyeball icon.

	Graph View – Last but not least is the graph view, the big graph of values and times that we use to animate the value of parameters over time. When a keyframe is added to the current channel at the current time it will appear as a colored circle within the graph view. After clicking on the keyframe to select it, you can change the value by dragging the circle vertically or by entering a specific value into the value box on the toolbar. Similarly, you can change the time of the selected frame by dragging it horizontally. Finally, when the select keyframe is using bezier curve interpolation, selecting it will cause one or more curve handles to appear, which can be used to change the shape of the interpolation curve over time.

Animating Opacity

Starting with Krita 5, we can use the Animation Curves Docker to animate a layer’s opacity and, with the help of a Transform Mask, its position, rotation, scale and shear.

경고

Though the design is pretty similar to the Animation Timeline Docker, the Animation Curves Docker may be a bit confusing or intimidating when you first open it, especially if you haven’t done digital animation before.

Let’s look first at animating a layer’s opacity:

Say you want to animate something like an expanding cloud of dust that gradually becomes more transparent as it dissipates, or maybe a haunting ghost that seems to materialize out of thin air. These types of effects are pretty hard to get right by traditionally animated line drawings alone, and that’s exactly where the Animation Curves Docker can step in.

After selecting the layer that you want to animate the opacity of, you need to select the frame time you want the opacity to start changing at by clicking somewhere on the frame timing header at the top of the graph view. Just like the Animation Timeline Docker, we can click and drag anywhere on the timing header to “scrub” across your animation and preview the results.

Next we create our first scalar keyframe by clicking on the add keyframe button on the docker’s titlebar.

When you do this you’ll notice two things happen. First, a new opacity channel will appear in the channels list on the left-hand side, next to a colored mark that’s associated with the color of the keyframes and curves in the graph view. Second, a single keyframe will appear somewhere inside the graph view at the currently active time.

Of course it takes more than a single point to make a line or curve, so we have a little bit more work to do.

Just like our first keyframe, we need to make a second keyframe. Let’s change the active frame time again (by clicking or scrubbing across the timing header) and add another keyframe at that new time (by clicking on the add keyframe button). As you’d expect, a second keyframe has appeared at the new time and a straight line has appeared between them.

With the active time still over our new keyframe, you’ll find that as you change the opacity slider above the 레이어 the new keyframe that we’ve created will move up and down. Likewise, moving the keyframe up and down will cause the opacity at that time to change.

And just like that, when you press the play button you’ll see the opacity of the layer animate over time!

경고

Unlike traditional methods, animating with curves can cause values to change across every frame of your animation. This can be more demanding on your machine and cause the caching process to take a little bit more time, as it calculates and stores each frame.

Before we move on, let’s use interpolation curves instead of a straight line to change the timing and general feel of our opacity animation.

If you select the first keyframe (the one on the left-hand side) of your line segment and click on the bezier curve interpolation button in the utilities section of the titlebar, you’ll notice that the keyframe will appear as a hollow circle on the graph view. That hollow circle is a handle, and by clicking on it and dragging in different directions you can change the arc of the curve between your two keyframes.

Similarly, you can click on the linear interpolation button to change your curve back into a line, or the constant button to turn off interpolation altogether, causing values to jump suddenly between keyframes.

참고

It’s important to be aware of which animation frame is selected and active, as shown by the highlighted vertical line on the graph view. The keyframe that changes as you make adjustments elsewhere in the program will always be dependent on the active frame time!

Ok, it’s a bit tough to put in writing… But it’s not so bad once you get the hang of it!

Animating Transform Masks

Now let’s talk a bit about how we can use a Transform Masks to animate our layer’s position, rotation, scale and shear for “tweening” effects:

Animating a transform mask is a lot like animating opacity, but first we need to add a Transform Mask. (You can do this by [image: mouseright] on the layer that you want to animate, and then Add ‣ Transform Mask.)

Transform Masks allow us to transform (translate, rotate, scale, or shear) the layer that they are attached to, without affecting its original position. And (starting with Krita 5) they also allow us to animate a layer’s transform!

Much like how we animated opacity above, we need to add our first transformation keyframe. To do this, first make sure that you have your layer’s Transform Mask selected, and then click on the add keyframe button at the top of the docker.

경고

Remember (as of Krita 5.0) we can only directly animate the opacity curve of a layer. In order to animate a layer’s position, rotation, scale and shear, we need to attach a Transform Mask and animate it instead.

As such, when you have a regular paint layer selected the Animation Curves Docker will automatically add opacity keyframes, and when you have a transform mask selected the Animation Curves Docker will automatically add transformation keyframes.

Try to always keep in mind what type of layer you have selected when animating curves in Krita!

You should see a whole bunch of channels appear in the channels list, each with a unique name and color, as well as a number of corresponding keyframes.

If you want to you can edit these key frames directly in the graph view, but it’s probably more intuitive to do it directly on the canvas. So now, when you use the Transform Tool on your Transform Masks, you should see the various keyframes of each channel moving around in the graph view to reflect the changes.

팁

Animating a Transform Mask spawns a lot of channels but, depending on your goals, you may only want to work with a small number of them at a time. Hiding and soloing channels in the channels list can make it much easier to see and edit curves, especially since you can use the zoom to channel and zoom to curve buttons at the top of the docker to fit the graph view to the currently visible channels.

Navigating by click-dragging on the zoomable scrollbars and values header (on the left-hand side of the graph view) can also really help with editing curves!

Finally, click or scrub to a different frame time, add another keyframe, and use the Transform Tool on the same Transform Mask again.

Press the play button and (after a little bit of caching) there you have it, a layer with an animated Transform Mask!

제어

	Channels List

	[image: mouseleft] on Eye Icon: Toggle show/hide channel.

	Shift + [image: mouseleft] on Eye Icon: Solo channel.

	[image: mouseright] : Open layer or channel context menu. [Reset Channel(s)]

	Graph View

	[image: mouseleft] : Select keyframe.

	[image: mouseleft] + drag : Move frame(s).

	[image: mouseleft] double-click : Select all keyframes at time.

	Alt + [image: mouseleft] double-click : Select all keyframes of channel.

	Space + [image: mouseleft] : Pan.

	Space + [image: mouseright] : Zoom.

	Frame Timing Header

	[image: mouseleft] : Move to time and select frame of the active layer.

	[image: mouseleft] + drag : Scrub through time and select frame of the active layer.

	Value Header

	[image: mouseleft] + drag : Zoom graph view.

	Space + [image: mouseleft] + drag : Pan graph view.

버전 5.0부터 폐지됨: As of Krita 5.0, the features of the Animation Docker have been moved to the Animation Timeline Docker.

Animation Docker

[image: ../../_images/Animation_docker.png]
To have a playback of the animation, you need to use the animation docker.

The first big box represents the current Frame. The frames are counted with programmer’s counting so they start at 0.

Then there are two boxes for you to change the playback range here. So, if you want to do a 10 frame animation, set the end to 10, and then Krita will cycle through the frames 0 to 10.

The bar in the middle is filled with playback options, and each of these can also be hot-keyed. The difference between a keyframe and a normal frame in this case is that a normal frame is empty, while a keyframe is filled.

Then, there’s buttons for adding, copying and removing frames. More interesting is the next row:

	Onion Skin
	Opens the Onion Skin Docker if it wasn’t open before.

	자동 프레임 모드
	Will make a frame out of any empty frame you are working on. Currently automatically copies the previous frame.

	Drop frames
	This’ll drop frames if your computer isn’t fast enough to show all frames at once. This process is automatic, but the icon will become red if it’s forced to do this.

You can also set the speedup of the playback, which is different from the framerate.

Animation Timeline Docker

The Animation Timeline Docker is at the heart of Krita’s raster animation tools, providing everything you need to create, edit and preview traditional hand-drawn animations.

[image: ../../_images/Animation_Timeline_Docker.png]

Overview

As shown in the image above, Krita’s Animation Timeline Docker can be thought of as different sections:

	Utilities – The left side of the toolbar gives animators quick access to all of the widgets that are critical to their workflow; transport controls (previous, play/pause, stop and next buttons), a frame counter, preview controls (speed and drop frames), and buttons for quickly creating new frames and deleting unwanted ones.

	Settings – While all of the high-traffic controls are presented directly, the right end of the toolbar also contains buttons for opening submenus for things like Onion Skin Docker and settings that you can generally set and forget (for example: playback range, frame rate and autokey mode).

	Layer List – This area contains some subset of the layers of your current document. Similar to the 레이어, each layer has various properties that can also be toggled here (visibility, locking, onion skins, etc.). While the currently active layer is always shown here, layers can also be “pinned” to the timeline using the pin button to the left of each layer’s name, the Pin to Timeline menu action, or the Pin Existing Layer submenu so they will be visible even when inactive.

팁

Depending on your preference, newly created paint layers can start pinned or unpinned by setting the Automatically pin new layers to timeline option in Settings –> Configure Krita… –> General –> Miscellaneous.

	Active Layer:
	The active layer is the layer that you’re currently able to edit or draw on, shown as a highlighted row in the layer list. [image: mouseleft] a layer within the layer list will make it the currently active layer.

	Layer Menu:
	A small menu for manipulating animated layers at the top left of the layer list. You can create new layers, remove existing ones, as well as pin or unpin the active layer. (This menu also shows up when [image: mouseright] on layer headers inside of the Layer List.)

	Audio Menu:
	Another small menu at the top of the layer list for animating along with audio sources. This is also where you can open or close audio sources and control output volume/muting.

	Zoom Handle:
	This special widget allows you to zoom in and out on the frame table, centered around the current frame time. [image: mouseleft] + drag from within the zoom handle controls the zoom level.

	Frame Table – The frame table is a large grid of cells which can either hold a single keyframe or be empty. Each row of the frame table represents an animated layer and each column represents a frame time. Just like the layer list, the active layer is highlighted across the entire frame table. For those who are familiar with pen-and-paper animation, you can think of the frame table as Krita’s dope sheet or time sheet.

참고

It’s important to understand that frame timings are not based on units of time like seconds, but on frames, which can then be played back at any speed, depending on the animation’s frame rate and play speed settings.

Keyframes can be moved around the timeline by [image: mouseleft] + drag shortcut from one slot to another, even across layers. Furthermore, holding the Ctrl key while dragging creates a copy, and holding the Alt key while dragging creates a clone frame. Finally, [image: mouseright] anywhere in the frame table will bring up a context menu for adding, removing, copying, pasting or adjusting timing.

	Active Keyframe
	Right now, it’s only possible to view and draw on one keyframe at a time. This is known as the active keyframe, and is represented on the frame table as a block filled with diagonal stripes. Often, in simple animations, the active keyframe will be the frame on the active layer that is on or just before the current time. However, if the active keyframe has one or more clone frames all drawing, painting and editing will also affect all of its clones.

	Clone frames
	A clone frame of a keyframe is a reference to that keyframe at a different position. Clone frames share the exact same image data under the hood, and will have the same diagonal markings as the active frame when an active frame with clone frames is selected.

	Duplicate keyframe
	Not to be confused with Clone Frames, a duplicate frame is merely the Active Keyframe copied and pasted as a separate Keyframe. Where clone frames will automatically duplicate the changes you make to them to each cloned frame, a duplicated frame is just another keyframe that happens to have the same content as the source.

	현재 선택
	Frames highlighted in orange represent a selection or multiple selections. While multiple frames are selected, [image: mouseright] anywhere in the frame table will bring up a context menu that will allow for adding and removing keyframes or holds within the current selection. It’s also possible to have multiple separate (non-contiguous) selections if needed.

경고

Painting always happens only on the active keyframe, which is not necessarily part of your current selection on the timeline!

	Keyframe
	In Krita, we call the images that make up your animation keyframes. Each keyframe can also be assigned a Color Label, as a matter of personal organization and workflow.

	Blank Keyframe
	Within the frame table, keyframes that contain drawings are displayed as filled blocks within a cell, while a blank keyframe is shown as a hollow outline. Unlike some other tools, Krita automatically holds each keyframe until the next keyframe on that layer; these holds are shown as a colored line that’s drawn across all held frames.

	Frame Timing Header
	The frame timing header is a ruler at the top of the frame table. This header is divided into small notched sections which are based on the current frame rate (set in the animation settings submenu at the right end of the toolbar). While each frame is marked with a single line, each second is marked by a subtle double-line. Major notches are also marked by a frame number.

	Cached Frames
	The frame timing header also shows important information about which frames are currently cached. When something is said to be “cached”, that means that it is stored in your device’s working memory (RAM) for extra fast access. Cached frames are shown by the header with a small light-gray rectangle in each column. While this information isn’t always critical for us artists, it’s helpful to know that Krita is working behind the curtains to cache our animation frames for the smoothest possible experience when scrubbing through or playing back your animation.

	Current Time Scrubber:
	A highlighted column in the frame table which controls the current frame time and, as such, what is currently displayed in the viewport.

	Zoomable Scrollbar
	Not only can the scrollbars on the Animation Timeline Docker be used to pan the frame table by dragging left and right, it can also be used to quickly zoom in and out by dragging up and down. Pan and zoom in one flick of a wrist!

	Onion Skins Docker – While technically a separate docker, the Onion Skin Docker is used in conjunction with the Animation Timeline docker to help animators see how their animation changes between neighboring keyframes. The onion skins menu button on the Animation Timeline Docker can be used to quickly toggle the visibility of the Onion Skins Docker.

Animating

In order to begin animating with Krita, we first need to turn our paint layer into an animated layer by adding our first keyframe. In our case we will start with a blank keyframe, but if you’ve already drawn something on the paint layer and would like to transfer it to your new keyframe you can create a duplicate keyframe instead.

To make a new, blank keyframe, [image: mouseright] any square on the timeline docker and select Create Blank Frame. A blank frame (one that you haven’t yet drawn anything in) appears as a hollow outline instead of a solid box, making that frame active and drawing on the canvas will make it appear as a solid, colored rectangle. To move a keyframe around, you can drag and drop it into another empty frame slot, even across animation layers.

The currently selected layer will automatically be shown on the timeline. However, while animating you may find that you want to keep another layer “pinned”, making it visible in the Animation Timeline Docker regardless of which layer is selected. There are a few ways to do this in Krita, but it doesn’t get any simpler than [image: mouseleft] on the little pushpin icon next to the layer’s name.

It’s not much of an animation with only one frame, so to add another new frame you can do the same thing we did last time by selecting Create Blank Frame from the [image: mouseright] menu or by double- [image: mouseleft] on a particular frame slot. For the sake of this lesson, however, we will mix it up by creating a duplicate keyframe by scrubbing to a different time and press the Create Duplicate Keyframe button on toolbar at the top of the Animation Timeline Docker.

As you can see, there are quick a few convenient ways to add or remove keyframes from your animation in Krita, depending on your personal preference, input devices and workflow!

Now that we have more than one keyframe, we can do different drawings in each and play back our simple animation by press the Play/Pause button on the toolbar at the top of the docker. Another crucial technique for animating is manually switching between frames at your own pace to inspect the frame-by-frame movement of your animation as you work, also known as “scrubbing”. Like everything else, we’ve made sure that there are a few different ways to scrub through you animation, but one of my favorites is to simply [image: mouseleft] + drag between different times on the Frame Timing Header at the top of the frame table.

I know that’s a lot of info to digest, but all you really need to know to get started is how to create new keyframes and scrub through your animation to check your progress. From there, all that’s left is the hard but rewarding work of drawing lots and lots (and lots) of animation frames!

팁

	There are a couple subtle features built into the docker’s transport controls that you might find useful. For example, press the Stop button while your animation is playing will jump back to whatever frame you started playing from, and press it again when your animation is not playing will jump back to the first frame of your animation. Similarly, the next keyframe button will jump the selection to the next available keyframe on the active layer, but if there is no next keyframe on that layer it will use the timing of your animation to estimate where you may want to place your next keyframe, and jump to that position. While a bit advanced, nuances like this mean that the Animation Timeline Docker’s buttons (and keybind-able actions) almost always do something useful for animators.

	It’s possible to add multiple keyframes by [image: mouseright] inside the frame table and selecting the Keyframes ‣ Insert Multiple Keyframes pop-up submenu item. With this option you can specify the number of frames to add with the option of built in timing for quickly creating a series of 1s, 2s, 3s, etc. These settings are saved between uses.

	You can also change the color of keyframes within the frame table so that you can easily identify important frames or distinguish between different sections of your animation. The current color selection is remembered for new frames so that you can easily make a set of colored frames and then switch to another color. (By the way, it’s even possible to quickly jump between frames of the same color by assigning a keyboard shortcut to Previous/Next Matching Keyframe.)

	[image: mouseright] within the Frame Timing Header instead of the frame table gives you access to a few more option which allow you to add or remove entire columns of frames or holds at a time, as well as reset your animation cache if needed. For example, selecting the Keyframe Columns ‣ Insert Keyframe Column Left pop-up submenu item will add new frames to each layer that’s currently visible in the Timeline Docker.

[image: ../../_images/Timeline_insertkeys.png]

	To delete frames, [image: mouseright] the frame and press Remove Keyframe. This will delete all selected frames. Similarly, selecting Remove Frame and Pull will delete the selected frames and pull or shift all subsequent frames back/left as much as possible.

제어

	Layer List

	[image: mouseleft] : Select active layer.

	[image: mouseright] : Layers Menu (add/remove/show layers, etc.).

	Frame Timing Header

	[image: mouseleft] : Move to time and select frame of the active layer.

	[image: mouseleft] + drag : Scrub through time and select frame of the active layer.

	[image: mouseright] : Frame Columns Menu (insert/remove/copy/paste columns and hold columns).

	Frames Table

	[image: mouseleft] : Selects a single frame or slot and switches time, but does not switch active layer.

	Space + [image: mouseleft] : Pan.

	Space + [image: mouseright] : Zoom.

	Frames Table (On Empty Slot).

	[image: mouseright] : Frames menu (insert/copy/paste frames and insert/remove holds).

	[image: mouseleft] + drag : Select multiple frames and switch time to the last selected, but does not switch active layer.

	Shift + [image: mouseleft] : Select all frames between the active and the clicked frame.

	Ctrl + [image: mouseleft] : Select individual frames together. [image: mouseleft] + drag them into place.

	Frames Table (On Existing Frame)

	[image: mouseright] : Frames menu (remove/copy/paste frames and insert/remove holds).

	[image: mouseleft] + drag : Move a frame or multiple frames.

	Ctrl + [image: mouseleft] + drag : Copy a frame or multiple frames.

	Alt + [image: mouseleft] + drag : Clone a frame or multiple frames.

	Shift + [image: mouseleft] + drag : Move selected frame(s) and all the frames to the right of it. (This is useful for when you need to clear up some space in your animation, but don’t want to select all the frames to the right of a particular frame!)

배열

벡터 모양의 정렬 및 배열을 위한 도커입니다. Shape Selection Tool 도구가 활성화되었을 때 이 도커에 다음과 같은 동작이 활성화됩니다:

	정렬
	선택된 모든 객체를 배열합니다.

	왼쪽 정렬

	수평 가운데

	오른쪽 정렬

	위쪽 정렬

	수직 가운데

	아래쪽 정렬

	등분
	객체가 고르게 분배되었는지 확인할 수 있습니다.

	왼쪽 가장자리를 기준으로 등분합니다.

	수평 중앙을 기준으로 등분합니다.

	오른쪽 가장자리를 기준으로 등분합니다.

	위쪽 가장자리를 기준으로 등분합니다.

	수직 중앙을 기준으로 등분합니다.

	아래쪽 가장자리를 기준으로 등분합니다.

	간격 띄우기
	객체 사이의 간격을 동일하게 합니다.

	객체의 수평 간격을 동일하게 합니다.

	객체 사이의 수직 간격을 동일하게 합니다.

	정렬
	벡터 객체의 순서를 변경할 수 있습니다.

	맨 앞으로 가져오기

	앞으로 가져오기

	뒤로 보내기

	맨 뒤로 보내기

	그룹하기
	벡터 객체를 그룹, 그룹 해제하는 단추입니다.

Artistic Color Selector Docker

A color selector inspired by traditional color wheel and workflows.

Usage

[image: ../../_images/Krita_Artistic_Color_Selector_Docker.png]

Artistic color selector with a gamut mask.

Select hue and saturation on the wheel (5) and value on the value scale (4). [image: mouseleft] changes foreground color (6). [image: mouseright] changes background color (7).

The blip shows the position of current foreground color on the wheel (black&white circle) and on the value scale (black&white line). Last selected swatches are outlined.

Parameters of the wheel can be set in 색상환 설정 menu (2). Selector settings are found under Selector settings menu (3).

Gamut Masking

You can select and manage your gamut masks in the Gamut Masks Docker.

In the gamut masking toolbar (1) you can toggle the selected mask off and on (left button). You can also rotate the mask with the rotation slider (right).

색상환 설정

[image: ../../_images/Krita_Artistic_Color_Selector_Docker_3.png]

Color wheel preferences.

	Sliders 1, 2, and 3
	Adjust the number of steps of the value scale, number of hue sectors and saturation rings on the wheel, respectively.

	연속 모드
	The value scale and hue sectors can also be set to continuous mode (with the infinity icon on the right of the slider). If toggled on, the respective area shows a continuous gradient instead of the discrete swatches.

	Invert saturation (4)
	Changes the order of saturation rings within the hue sectors. By default, the wheel has gray in the center and most saturated colors on the perimeter. Invert saturation puts gray on the perimeter and most saturated colors in the center.

	Reset to default (5)
	Loads default values for the sliders 1, 2, and 3. These default values are configured in selector settings.

Selector settings

[image: ../../_images/Krita_Artistic_Color_Selector_Docker_2.png]

Selector settings menu.

	Selector Appearance (1)
	
	배경색 표시기 표시
	Toggles the bottom-right triangle with current background color.

	번호가 매겨진 값 스케일 표시
	If checked, the value scale includes a comparative gray scale with lightness percentage.

	Color Space (2)
	Set the color model used by the selector. For detailed information on color models, see Color Models.

	Luma Coefficients (3)
	If the selector’s color space is HSY, you can set custom Luma coefficients and the amount of gamma correction applied to the value scale (set to 1.0 for linear scale; see Gamma and Linear).

	Gamut Masking Behavior (4)
	The selector can be set either to Enforce gamut mask, so that colors outside the mask cannot be selected, or to Just show the shapes, where the mask is visible but color selection is not limited.

	기본 선택기 단계 설정
	Values the color wheel and value scale will be reset to default when the Reset to default button in 색상환 설정 is pressed.

External Info

	HSI and HSY for Krita’s advanced colour selector by Wolthera van Hövell tot Westerflier [https://wolthera.info/?p=726].

	The Color Wheel, Part 7 by James Gurney [https://gurneyjourney.blogspot.com/2010/02/color-wheel-part-7.html].

사전 설정 도커

[image: ../../_images/Krita_Brush_Preset_Docker.png]
이 도커는 현재 사용 중인 브러시를 전환하거나, 브러시 태그를 붙일 수 있습니다.

[image: mouseleft] 로 아이콘을 클릭해서 브러시를 전환하세요!

태그 붙이기

[image: mouseright] 로 브러시에 태그를 붙이거나 지울 수 있습니다.

Brush Preset History Docker

The brush preset history docker keeps track of the last used presets.

Options

You can access several features when [image: mouseright] on a preset.

	Forget “Preset Name”
	Remove this preset from the list.

	Clear History
	Clears the list.

	History Behaviour
	Change how the history behaves:

	Static Position
	All presets keep their positions.

	Move to Top on Use
	Move the last used preset to the top.

	반복 사용 시 버블 위로
	Move presets to the top depending on how often you use them.

	Configure Number of Brushes Shown…
	How many of the last used presets you want to keep track of. By default this number is 10.

Channels

[image: ../../_images/Krita_Channels_Docker.png]
The channel docker allows you to turn on and off the channels associated with the color space that you are using. Each channel has an enabled and disabled checkbox. You cannot edit individual layer channels from this docker.

Editing Channels

If you want to edit individual channels by their grayscale component, you will need to manually separate a layer. This can be done with a series of commands with the layer docker.

	Select the layer you want to break apart.

	Go to Image ‣ Separate Image.

	Select the following options and click OK:

	Source: Current Layer.

	Alpha Options: Create separate separation from alpha channel.

	Output to Grayscale, not color: unchecked.

	Hide your original layer.

	Select All of the new channel layers and put them in a group layer (Layer ‣ Quick Group).

	Select the Red layer and change the blending mode to “Copy Red” (these are in the Misc. category).

	Select the Green layer and change the blending mode to “Copy Green”.

	Select the Blue layer and change the blending mode to “Copy Blue” .

	Make sure the Alpha layer is at the bottom of the group.

	Enable Inherit Alpha for the Red, Green, and Blue layers.

Here is a video to see this process [https://www.youtube.com/watch?v=lWuwegJ-mIQ&feature=youtu.be] in Krita 3.0.

When working with editing channels, it can be easier to use the Isolate Layer feature to only see the channel. Right-click on the layer to find Isolate Layer.

색상 슬라이더

버전 4.1부터 폐지됨: Replaced by the 특정 색상 선택기 in 5.1

색상, 채도 그리고 밝기 슬라이더가 있는 작은 도커입니다.

[image: ../../_images/Color-slider-docker.png]
설정 ‣ Krita 설정… ‣ 색상 선택기 설정 ‣ 색상 슬라이더에서 도커의 설정을 변경할 수 있습니다.

여기서 추가할 슬라이더를 선택할 수 있으므로 여러 개의 밝기 슬라이더를 함께 선택할 수도 있습니다.

Compositions

The compositions docker allows you to save the configurations of your layers being visible and invisible, allowing you to save several configurations of your layers.

[image: ../../_images/Composition-docker.png]

	Adding new compositions
	You do this by setting your layers as you wish, then pressing the plus sign.
If you had a word in the text-box to the left, this will be the name of your new composition.

	Activating composition
	Double-click the composition name to switch to that composition.

..versionadded::4.4

	Rearranging compositions
	You can rearrange compositions by using the up/down buttons.

	Removing compositions
	The minus sign. Select a composition, and hit this button to remove it.

	Exporting compositions
	The file sign. Will export all checked compositions.

버전 4.4에 추가: It is also possible to render animations for each selected composition. This will use the settings last used in the render animation dialog, simplifying the export process.

	Updating compositions
	[image: mouseright] a composition to overwrite it with the current configuration.

	Rename composition
	[image: mouseright] a composition to rename it.

Digital Color Mixer

[image: ../../_images/Krita_Digital_Color_Mixer_Docker.png]
This docker allows you to do simple mathematical color mixing.

It works as follows:

You have on the left side the current color.

Next to that there are six columns. Each of these columns consists of three rows:
The lowest row is the color that you are mixing the current color with. Ticking this button allows you to set a different color using a palette and the mini-color wheel. The slider above this mixing color represent the proportions of the mixing color and the current color. The higher the slider, the less of the mixing color will be used in mixing. Finally, the result color. Clicking this will change your current color to the result color.

At the bottom there’s another slider, which will allow you to create a specific gradient to mix between, regardless of the current foreground color.

버전 5.1에 추가: To reset everything to default, press the Reset button that is overlaid on the color swatch.

Gamut Masks Docker

[image: ../../_images/Krita_Gamut_Mask_Docker.png]

버전 4.2에 추가: Docker for gamut masks selection and management.

Usage

[image: mouseleft] an icon (1) to apply a mask to color selectors.

Gamut Masks can be imported and exported in Managing Resources.

Management Toolbar

	Create new mask (2)
	Opens the mask editor with an empty template.

	Edit mask (3)
	Opens the currently selected mask in the editor.

	Duplicate mask (4)
	Creates a copy of the currently selected mask and opens the copy in the editor.

	Delete mask (5)
	Deletes the currently selected mask.

Gamut Masks are a type of resource. As such, they can be saved, tagged, reordered and added to bundles. They are stored inside *.kgm files, which are ZIP files consisting of a mimetype (application/x-krita-gamutmask), a preview.png and an SVG file describing the mask.

편집

If you choose to create a new mask, edit, or duplicate selected mask, the mask template document will be opened as a new view (1).

There you can create new shapes and modify the mask with standard vector tools (Vector Graphics).

Fill in the fields at (2).

	Title (Mandatory)
	The name of the gamut mask.

	설명
	A description.

Preview the mask in the artistic color selector (4), save the mask (5), or cancel editing (3).

경고

	The shapes need to be added to the layer named maskShapesLayer (which is selected by default).

	The shapes need have solid background to show correctly in the editor.

	A template with no shapes cannot be saved.

참고

The mask is intended to be composed of basic vector shapes. Although interesting results might arise from using advanced vector drawing techniques, not all features are guaranteed to work properly (e.g. grouping, vector text, etc.).

[image: ../../_images/Krita_Gamut_Mask_Docker_2.png]

External Info

	Color Wheel Masking, Part 1 by James Gurney [https://gurneyjourney.blogspot.com/2008/01/color-wheel-masking-part-1.html].

	The Shapes of Color Schemes by James Gurney [https://gurneyjourney.blogspot.com/2008/02/shapes-of-color-schemes.html].

	Gamut Masking Demonstration by James Gourney (YouTube) [https://youtu.be/qfE4E5goEIc].

Grids and Guides Docker

This docker controls the look and the visibility of both the Grid and the Guides decorations. It also features a checkbox to quickly toggle snapping on or off.

Grids

Grids in Krita can currently only be orthogonal and diagonal. There is a single grid per canvas, and it is saved within the document. Thus it can be saved in a Templates.

	격자 표시
	Shows or hides the grid.

	Snap to Grid
	Toggles grid snapping on or off. This can also be achieved with the Shift + S shortcut.

	Type
	The type of Grid.

	Rectangle
	An orthogonal grid.

	X and Y spacing
	Sets the width and height of the grid in pixels.

	Subdivision
	Groups cells together as larger squares and changes the look of the lines it contains. A subdivision of 2 will make cells appear twice as big, and the inner lines will become subdivisions.

	등거리
	A diagonal grid. Isometric doesn’t support snapping.

	Left and Right Angle
	The angle of the lines. Set both angles to 30° for true isometric.

	Cell spacing
	Determines how much both sets of lines are spaced.

	격자 오프셋
	Offsets the grid’s starting position from the top-left corner of the document, in pixels.

	Main Style
	Controls the look of the grid’s main lines.

	Div Style
	Controls the look of the grid’s “subdivision” lines.

[image: ../../_images/Grid_sudvision.png]
The grid’s base size is 64 pixels. With a subdivision of 2, the main grid lines are 128 px away from one another, and the intermediate lines have a different look.

안내선

Guides are horizontal and vertical reference lines. You can use them to place and align layers accurately on the canvas.

[image: ../../_images/guides.png]

Creating Guides

To create a guide, you need both the rulers and the guides to be visible.

	Rulers. (View ‣ Show Rulers)

	Guides. (View ‣ Show Guides)

To create a guide, move your cursor over a ruler and drag in the direction of the canvas. A line will appear. Dragging from the left ruler creates a vertical guide, and dragging from the top ruler creates a horizontal guide.

Editing Guides

Place your cursor above a guide on the canvas. If the guides are not locked, your cursor will change to a double arrow. In that case, click and drag to move the guide.
To lock and unlock the guides, open the Grid and Guides Docker. Ensure that the Guides tab is selected. From here you can lock the guides, enable snapping, and change the line style.

참고

Currently, it is not possible to create or to move guides to precise positions. The only way to achieve that for now is to zoom in on the canvas, or to use the grid and snapping to place the guide.

Removing Guides

Click on the guide you want to remove and drag it outside of the canvas area. When you release your mouse or stylus, the guide will be removed.

히스토그램 도커

히스토그램은 이미지에 사용되는 특정 채널 값의 양을 보여주는 차트입니다. 히스토그램은 이미지의 색상을 기술적으로 표현하여 필터를 선택할 때 도움을 줍니다.

[image: ../../_images/Histogram_docker.png]
레이어 ‣ 히스토그램에서 사용할 수 있었으나 지금은 도커로 정착되었습니다.

외부 링크:

	위키백과: 이미지 히스토그램(영어) [https://en.wikipedia.org/wiki/Image_histogram].

레이어

[image: ../../_images/Krita_Layers_Docker.png]
레이어 도커는 Krita의 레이어 관리 핵심 개념 중 하나입니다. 레이어를 추가, 저장, 이름 바꾸기, 복제하는 등 여러 동작이 가능합니다.

At the top there are four controls. Two of them are layer properties, the blending mode and the opacity. But there are also two smaller buttons. One is the filter option. This allows you to filter all existing layers by either color label, or since Krita 5.0 by layer name.

The second button allows you to adjust some extra display options of the layer docker.

The first slider controls the thumbnail size of the layers and how much layers indent when they are grouped. Some people prefer large thumbnails with a lot of indentation, others want the visuals to take up the least amount of space.

버전 5.2에 추가.

Then there’s the blending info options. The dropdown has four options:

	None
	No extra information is shown.

	Simple
	This will only display the opacity or the blending mode when they’re not 100% and ‘Normal’.

	Balanced
	This will display both the opacity and the blending mode for layers where either the opacity is below 100%, or the blending mode is not ‘normal’.

	Detailed
	This will always show the opacity and blending options for all layers.

The opacity slider below the dropdown allows you to control the opacity of the extra blending info label.

Then there’s Checkbox for Selecting Layers, which enables the extra checkboxes between the visibility icon and the label. This is useful for situations where you may not have access to a Ctrl or Shift key to select multiple layers, such as on a tablet.

레이어 스택

여기서 활성화된 레이어를 선택할 수 있습니다. Shift와 Ctrl 키를 사용해 여러 레이어를 선택하거나 끌어다 놓을 수 있습니다. 레이어 표시 여부 변경, 상태 편집, 알파 상속 및 레이어 이름을 바꿀 수 있습니다. 그룹을 열거나 닫을 수 있고, 그룹 안의 레이어를 끌어다 놓을 수 있고, 다시 정렬 하거나, 그룹에 넣을 수 있습니다.

	이름
	레이어 이름을 편집하려면 두 번 [image: mouseleft]하면 되고, Enter 키를 누르면 편집을 종료합니다.

	Color Label
	레이블을 사용하면 레이어의 색상을 설정할 수 있습니다. 레이어에서 [image: mouseright] 상황에 맞는 메뉴에서 색상을 할당할 수 있습니다. 적용한 색상으로 레이어를 필터할 수 있습니다.

	혼합 모드
	레이어의 혼합 모드를 설정합니다.

	불투명도
	레이어의 불투명도를 설정합니다.

	보이기
	눈 아이콘입니다. 클릭하면 레이어가 숨겨집니다.

	상태 편집(또는 레이어 잠금)
	자물쇠 아이콘입니다. 클릭하면 레이어를 편집하는 것을 막아 많은 양의 레이어를 관리할 때 유용합니다.

	알파 잠금
	레이어의 알파가 편집되는 것을 막습니다. 좀 더 쉽게 말하면 레이어의 투명성이 바뀌는 것을 막아줍니다. 이미지 색칠에 유용합니다.

	통과 모드
	그룹 레이어에서만 활성화되며, 그룹 레이어 외부에도 혼합 모드가 영향을 미치게 합니다. 현재는 마스크에는 동작하지 않으며, 통과 모드로 설정된 그룹 레이어에서 통과모드를 무시합니다.

	알파 상속
	이 레이어를 같은 레이어 그룹의 투명 마스크로 사용합니다. 자세한 설명은 Introduction to Layers and Masks를 참조하십시오.

	레이어 열기, 닫기
	(화살표 아이콘) 클릭하면 하위 레이어에 접근할 수 있습니다. 마스크나 그룹에서 찾을 수 있습니다.

	어니언 스킨
	animated layers에서만 활성화되며, 어니언 스킨을 끄고 켤 수 있습니다.

	레이어 스타일
	레이어 스타일을 할당한 레이어에서만 활성화됩니다. 버튼을 사용해서 빠르게 레이어 스타일을 끄고 켤 수 있습니다.

	Thumbnail Image
	This shows a miniature image with the layer contents. If you Ctrl + [image: mouseleft] on it then you can make a selection from the contents of that layer (see Hot keys and Sticky Keys section below).

여러 레이어의 속성을 한 번에 편집하려면 속성 옵션을 누르거나 F3 키를 누르십시오. 선택된 모든 레이어의 이름을 변경하려면 먼저 이름 앞의 체크 상자를 클릭해야 합니다. 이 경우 Krita가 이름에 자동으로 숫자를 붙여 줍니다. 가시성, 불투명도, 잠금 상태 등과 같은 다른 레이어 특성도 변경할 수 있습니다.

버전 5.0에 추가: By drag-and-dropping colors from the palette onto the layer stack, you can quickly create a fill layer.

[image: ../../_images/Krita-multi-layer-edit.png]

아래쪽 단추

이 단추는 레이어 작업을 수행합니다.

	추가
	기본적으로는 새 칠하기 레이어 추가로 동작하지만 작은 화살표를 눌러 나오는 하위 메뉴에서 다른 유형의 레이어를 선택할 수 있습니다.

	복제
	활성화된 모든 레이어를 복제합니다. 빠르게 사용하려면:kbd:Ctrl + [image: mouseleft] + 드래그 단축키를 사용하십시오 .

	레이어 위로 이동.
	선택한 레이어를 위로 이동합니다. 이 단추로 그룹 레이어에 넣거나 꺼낼 수도 있습니다.

	레이어 아래로 이동.
	선택한 레이어를 아래로 이동합니다. 이 단추로 그룹 레이어에 넣거나 꺼낼 수도 있습니다.

	레이어 속성.
	Will open the layer properties window. The button to the side will open up the [image: mouseright] context menu for the currently selected layer. This is useful when you don’t have access to a [image: mouseright] button.

	삭제
	선택한 레이어를 삭제합니다. 작업물의 손실을 방지하기 위해서 표시되는 레이어만 삭제할 수 있습니다.

단축키 및 고정키

	Shift 키를 누르고 선택하면 연속하는 레이어들을 선택합니다.

	Ctrl 키는 다른 레이어에 간섭 없이 레이어를 선택, 선택 해제할 수 있습니다.

	Ctrl + [image: mouseleft] + 드래그 단축키는 드래그 동작으로 선택된 레이어를 복제할 수 있습니다.

	Ctrl + E 단축키는 아래 레이어와 병합합니다. 또한 선택된 레이어를 병합할 경우 레이어 스타일과 선택 마스크를 유지합니다. Ctrl + E 단축키로 마스크를 포함한 단일 레이어를 병합할 경우 마스크가 레이어에 포함됩니다.

	Ctrl + Shift + E 단축키는 모든 레이어를 병합합니다.

	
	R + [image: mouseleft] shortcut allows you to select the top layer with content below the cursor as the active layer. In addition to this, you can set shortcuts for 4 other modes:
	
	“Select All Layers (Replace Selection)” allows you to select all layers with content below the cursor as the currently selected layers.

	“Select All Layers (Add to Selection)” allows you to select all layers that have content below the cursor and add them to the selected layers.

	“Select from Menu (Replace Selection)” allows you to select a layer from a pop-up menu or all layers in the menu as the active layer or active layers.

	“Select from Menu (Add to Selection)” allows you to select all layers in the menu as the new active layer or active layers. The latter two modes are similar to using Ctrl + [image: mouseright] to select a layer in Photoshop.

	Ins 키는 새 레이어를 추가합니다.

	Shift + Ins key for adding a new vector layer.

	Ctrl + G 단축키는 그룹 레이어를 만듭니다. 여러 레이어를 선택하면 선택한 레이어가 그룹 레이어에 들어갑니다.

	Ctrl + Shift + G 단축키는 빠른 클리핑 그룹을 생성합니다, 선택된 레이어를 그룹에 추가하고, 상단에 알파 상속이 활성화된 새 레이어를 추가하여 바로 페인팅할 수 있습니다!

	Ctrl + Alt + G 단축키로 그룹 안의 레이어를 그룹 해제할 수 있습니다.

	Alt + [image: mouseleft] 단축키로 레이어를 격리해서 볼 수 있습니다. 다시 한 번 단축키를 누를 때까지 유지됩니다.

	Page Up과 Page Down 단축키로 레이어간 전환이 가능합니다.

	Ctrl + Page Up과 Ctrl + Page Down 단축키로 선택된 레이어를 위 아래로 옮길 수 있습니다.

	Ctrl + [image: mouseleft] over a layer’s thumbnail to replace the current selection with a new one created from the contents of that layer.

	Ctrl + Shift + [image: mouseleft] over a layer’s thumbnail to add a new selection created from the contents of that layer to the current selection.

	Ctrl + Alt + [image: mouseleft] over a layer’s thumbnail to subtract a new selection created from the contents of that layer from the current selection.

	Ctrl + Shift + Alt + [image: mouseleft] over a layer’s thumbnail to intersect the current selection with a new selection created from the contents of that layer.

로그 뷰어

The log viewer docker allows you to see debug output without access to a terminal. This is useful when trying to get a tablet log or to figure out if Krita is spitting out errors while a certain thing is happening.

The log docker is used by pressing the enable logging button at the bottom.

경고

When enabling logging, this output will not show up in the terminal. If you are missing debug output in the terminal, check that you didn’t have the log docker enabled.

The docker is composed of a log area which shows the debug output, and four buttons at the bottom.

Log Output Area

The log output is formatted as follows:

	White
	This is just a regular debug message.

	Yellow
	This is a info output.

	주황색
	This is a warning output.

	Red
	This is a critical error. When this is bolded, it is a fatal error.

Options

There’s four buttons at the bottom:

	로그 사용하기
	Enable the docker to start logging. This caries over between sessions.

	Clear the Log
	This empties the log output area.

	Save the Log
	Save the log to a text file.

	Configure Logging
	Configure which kind of debug is added. By default only warnings and simple debug statements are logged. You can enable the special debug messages for each area here.

	일반

	Resource Management

	이미지 코어

	레지스트리

	도구

	타일 엔진

	필터

	플러그인 관리

	사용자 인터페이스

	File Loading and Saving

	Mathematics and Calculations

	이미지 렌더링

	스크립팅

	Input Handling

	Actions

	Tablet Handing

	GPU 캔버스

	Metadata

	색 관리

LUT 관리

[image: ../../_images/LUT_Management_Docker.png]
The Look Up Table (LUT) Management docker controls the high dynamic range (HDR) painting functionality.

	OpenColorIO 사용
	Use Open Color IO instead of Krita’s internal color management. Open Color IO is a color management library. It is sometimes referred to as OCIO. This is required as Krita uses OCIO for its HDR functionality.

	Color Engine
	Choose the engine.

	Configuration
	Use an OCIO configuration file from your computer.

참고

Some system locals don’t allow you to read the configuration files. This is due to a bug in OCIO. If you are using Linux you can fix this. If you start Krita from the terminal with the LC_ALL=C krita flag set, you should be able to read the configuration files.

	Input Color Space
	What the color space of the image is. Usually sRGB or Linear.

	Display Device
	The type of device you are using to view the colors. Typically sRGB for computer screens.

	보기
	–

	구성 요소
	Allows you to study a single channel of your image with LUT.

	노출
	Set the general exposure. On 0.0 at default.
There’s the Y key to change this on the fly on canvas.

	Gamma
	Allows you to set the gamma. This is 1.0 by default. You can set this to change on the fly in canvas shortcuts.

	Lock color
	Locks the color to make sure it doesn’t shift when changing exposure. May not be desired.

	Set white and black points
	This allows you to set the maximum and minimum brightness of the image, which’ll adjust the exposure and gamma automatically to this.

Onion Skin Docker

[image: ../../_images/Onion_skin_docker.png]
To make animation easier, it helps to see both the next frame as well as the previous frame sort of layered on top of the current. This is called onion-skinning.

[image: ../../_images/Onion_skin_01.png]
Basically, they are images that represent the frames before and after the current frame, usually colored or tinted.

You can toggle them by clicking the lightbulb icon on a layer that is animated (so, has frames), and isn’t fully opaque. (Krita will consider white to be white, not transparent, so don’t animated on an opaque layer if you want onion skins.)

버전 4.2에서 변경: Since 4.2 onion skins are disabled on layers whose default pixel is fully opaque. These layers can currently only be created by using background as raster layer in the content section of the new image dialog. Just don’t try to animate on a layer like this if you rely on onion skins, instead make a new one.

The term onionskin comes from the fact that onions are semi-transparent. In traditional animation animators would make their initial animations on semitransparent paper on top of an light-table (of the special animators variety), and they’d start with so called keyframes, and then draw frames in between. For that, they would place said keyframes below the frame they were working on, and the light table would make the lines of the keyframes shine through, so they could reference them.

Onion-skinning is a digital implementation of such a workflow, and it’s very useful when trying to animate.

[image: ../../_images/Onion_skin_02.png]
The slider and the button with zero offset control the master opacity and visibility of all the onion skins. The boxes at the top allow you to toggle them on and off quickly, the main slider in the middle is a sort of ‘master transparency’ while the sliders to the side allow you to control the transparency per keyframe offset.

Tint controls how strongly the frames are tinted, the first screen has 100%, which creates a silhouette, while below you can still see a bit of the original colors at 50%.

The Previous Frame and Next Frame color labels allows you set the colors.

미리 보기

[image: ../../_images/Krita_Overview_Docker.png]
이 도커는 이미지의 전체 미리 보기를 표시합니다. 이 도커를 사용해 빠르게 탐색하고 확대할 수 있습니다. 사각형 표시를 드래그해서 빠르게 시점을 이동할 수 있습니다.

기본적인 탐색 동작 뿐만 아니라 줌 슬라이더를 사용해서 빠르게 표시 화면의 크기를 조정할 수 있습니다.

버전 4.2에 추가: 거울 단추를 누르면 캔버스를 좌우 반전해서 볼 수 있습니다. (하지만 이미지 자체를 뒤집는 것은 아닙니다) 그리고 회전 슬라이더를 사용해 이미지의 시점을 회전할 수 있습니다. 시점을 처음 시점으로 재설정하려면 슬라이더를 [image: mouseright] 한 후 ‘0’을 입력하십시오.

버전 4.4.3에 추가: 버전 4.4.3부터 회전을 각도 선택기의 원형 게이지나 스핀 상자로 설정할 수 있으며, 원형 게이지를 두 번 클릭해서 초기화할 수 있습니다.

버전 5.0에 추가: If you check the “pin navigation controls” button, the controls (zoom, rotation, etc.) will always be visible. On the other hand, if the button is unchecked, the controls will automatically hide when the mouse goes outside the docker, and automatically shown when it goes over the docker.

Palette Docker

The palette docker displays various color swatches for quick use. It also supports editing palettes and organizing colors into groups, as well as arbitrary positioning of swatches.

버전 4.2에 추가: The palette docker was overhauled in 4.2, allowing for grid ordering, storing palette in the document and more.

[image: ../../_images/Palette-docker.png]
You can choose from various default palettes or you can add your own colors to the palette.

To choose from the default palettes click on the icon in the bottom left corner of the docker, it will show a list of pre-loaded color palettes.
You can click on one and to load it into the docker, or click on import resources to load your own color palette from a file. Creating a new palette can be done by pressing the +. Fill out the name input, pressing Save and Krita will select your new palette for you.

Since 4.2 Krita’s color palettes are not just a list of colors to store, but also a grid to organize them on. That’s why you will get a grid with ‘transparency checkers’, indicating that there is no entry. To add an entry, just click a swatch and a new entry will be added with a default name and the current foreground color.

	Selecting colors is done by [image: mouseleft] on a swatch.

	Pressing the delete icon will remove the selected swatch or group. When removing a group, Krita will always ask whether you’d like to keep the swatches. If so, the group will be merged with the default group.

	Double [image: mouseleft] a swatch will call up the edit window where you can change the color, the name, the id and whether it’s a spot color. On a group this will allow you to set the group name.

	[image: mouseleft] drag will allow you to drag and drop swatches and groups to order them.

	[image: mouseright] on a swatch will give you a context menu with modify and delete options.

	Pressing the + icon will allow you to add a new swatch.

	The drop down contains all the entries, id numbers and names. When a color is a spot color the thumbnail is circular. You can use the dropdown to search on color name or id.

	By drag-and-dropping colors from the palette onto the layer stack, you can quickly create a fill layer.

	By drag-and-dropping colors from the palette onto the canvas you can fill the current layer with that color. The filling options used are taken from the fill tool but if Alt is pressed when the color is dropped then all the layer (or the portion inside the current selection) will be filled.

Pressing the Folder icon will allow you to modify the palette. Here you can add more columns, modify the default group’s rows, or add more groups and modify their rows.

	팔레트 이름
	Modify the palette name. This is the proper name for the palette as shown in the palette chooser dropdown.

	파일 이름
	This is the file name of the palette, which should be file system friendly. (Avoid quotation marks, for example).

	Column Count
	The amount of columns in this palette. This counts for all entries. If you accidentally make it smaller than the amount of entries that take up columns, you can still make it bigger until the next restart of Krita.

	Where is the palette stored:
	Whether to store said palette in the document or resource folder.

	리소스 폴더
	The default, the palette will be stored in the resource folder.

	문서
	The palette will be removed from the resource folder and stored in the document upon save. It will be loaded into the resources upon loading the document.

버전 5.0부터 폐지됨: This has been disabled for now.

	Add group
	Add a new group. On clicking you will be asked for a name and a set of rows.

	그룹 설정
	Here you can configure the groups. The dropdown has a selection of groups. The default group is at top.

	Row Count
	The amount of rows in the group. If you want to add more colors to a group and there’s no empty areas to click on anymore, increase the row count.

	그룹 이름 바꾸기
	Rename the group.

	그룹 삭제
	Delete the group. It will ask whether you want to keep the colors. If so, it will merge the group’s contents with the default group.

The edit and new color dialogs ask for the following:

	Color
	The color of the swatch.

	이름
	The Name of the color in a human readable format.

	ID
	The ID is a number that can be used to index colors. Where Name can be something like “Pastel Peach”, ID will probably be something like “RY75”. Both names and ids can be used to search the color in the color entry dropdown at the bottom of the palette.

	스폿 색상
	Currently not used for anything within Krita itself, but spot colors are a toggle to keep track of colors that represent a real world paint that a printer can match. Keeping track of such colors is useful in a printing workflow, and it can also be used with python to recognize spot colors.

Krita’s native palette format is since 4.0 *.kpl. It also supports importing…

	Gimp Palettes (.gpl)

	Microsoft RIFF palette (.riff)

	Photoshop Binary Palettes (.act)

	PaintShop Pro palettes (.psp)

	Photoshop Swatches (.aco)

	Scribus XML (.xml)

	Swatchbooker (.sbz)

	Adobe Swatch Exchange (.ase)

	Adobe Color Books (.acb)

패턴 도커

[image: ../../_images/Krita_Patterns_Docker.png]
이 도커는 전역 패턴을 선택할 수 있습니다. 파일 열기 단추를 사용해서 패턴을 가져올 수 있습니다. 사용 가능한 단축키는 다음과 같습니다:

	[image: mouseright] 패턴의 태그를 설정할 수 있습니다.

	[image: mouseright] 전역 패턴을 선택할 수 있습니다.

	Ctrl + 스크롤 표시되는 패턴의 크기를 조정할 수 있습니다.

Recorder Docker

You may have seen artists show little progress movies of their work. This is called a time lapse! Normally a time lapse is recorded using outside software, like OBS, and then sped up around 16 times, and they are used to convey the whole amount of effort that went into an image. The recorder docker simplifies making a time lapse, by taking a snapshot every stroke and then letting you render it to a video file with ffmpeg. Because this docker relies on FFMpeg, it cannot be used on Android.

The recorder docker makes a snapshot of the canvas every few seconds, or at the end of every stroke. You can tell it’s turned on because there will be a recording symbol in the status bar, which is red when it’s making snapshots and white when it’s on standby.

Because it stores the snapshots, that means you can take breaks, close the image, turn off the computer, come back a month later. However, snapshots can take up quite a bit of space, so if you are running out of space, don’t forget to check the temporary folder!

At the end, you can turn the snapshots into a video file, ready for your favorite video sharing site.

참고

Some people also call time lapses ‘speed paints’, but these are not the same thing. A speed paint is when you try to draw an image in a far shorter time than is usual for you. For example, drawing a whole landscape in 15 to 30 minutes. People like to record their speed paints, and because both speed paints and time lapses are videos, people often confuse them.

Similarly, this tool should also not be confused with Macro Recording, which is when you tell the program to record all your actions into a file, and have it play those back at a later date. Krita currently does not have this functionality.

Docker Options

[image: ../../_images/recorder_docker.png]

	Recordings Directory:
	The directory where the snapshots are kept. Note the Manage Recordings button, which will assist you in selecting old recordings to remove.

	Capture Interval:
	The minimum capture interval. The recorder docker takes a picture when the image changes, but will wait for this capture interval to pass before making a new snap shot. This means quick strokes will not each require a new snapshot. Increase this if you want less snapshots to be recorded during a painting session, or if you are experiencing slowdowns.

	Format:
	The file format to use for the snap shots. *.jpg is faster, but *.png is better for very sharp images.

	Quality:
	Control the quality of the JPEG snapshots. The lower the quality, the lower the file size, but too low and you will get a messy looking recording.

	압축:
	Control the compression of the PNG snapshots. Greater value will produce smaller files, but will take more processing power. This is recommended to be set to be between 1 and 3 for a good balance between speed and file size.

	Resolution:
	Lower the resolution of the snapshot. This can drastically reduce size without losing too much quality.

	Record in Isolate Mode.
	Record when layer isolate mode is on. As isolate mode hides all the other layers, it can result in a lot of flickering during the resulting time lapse. Only turn this on when you are not in the habit of switching layers often when in isolate mode.

	자동으로 녹화
	Start recording the instant an image is created or loaded. This option is useful for those who want to record each of their drawings.

Finally, there’s Record and Export. The former starts and stops recording. The latter lets you render the current drawing’s timelapse.

[image: ../../_images/recorder_docker_snapshot_manager.png]

The recordings manager window. This is a list of recordings you have, and how much space they take. You can select recordings to delete them.

내보내기 옵션

Compare these options with the one on the 애니메이션 렌더 page, as they do largely the same things.

	Recording info:
	Shows what kind of frames and how many frames are taken into account when creating the final video file. Pressing Open Record Directory will allow you to open the folder where the recordings are located in your file browser.

	입력 FPS:
	How many frames per second should go in. For example, to make your time lapse twice faster, this value should be double that of the Video fps.

	비디오 FPS:
	The actual FPS of the video.

	Extend End Result
	Whether to hold the last frame and how long to hold the last frame of the recording. This allows a viewer to take a good long at the end result.

버전 5.1에 추가.

	Enable Result Preview
	Whether to add a copy of the last frame to the start and how long to hold this frame. This will show viewers what kind of image is being drawn here.

버전 5.0에 추가.

	크기 조정:
	Scale the final video.

	FFMpeg:
	The location of the ffmpeg executable.

	Render As:
	Select the render setting to use. MP4 x264 is sufficient for most drawings and will be accepted on most video sharing sites.

	비디오 위치:
	Where to put the resulting video.

	Video Duration:
	The final video length in seconds. This will change as you change the FPS settings.

After Export

	Watch it:
	This will open the resulting file in the default video player on your system.

	Show in folder:
	This will open the folder where the file is located in your file browser.

	Remove recordings:
	Remove the snapshots from your computer.

Reference Images Docker

버전 4.0부터 폐지됨: This docker was removed in Krita 4.0 due to crashes on Windows. The reference images tool in 4.1 replaces it..

[image: ../../_images/400px-Krita_Reference_Images_Browse_Docker.png]
[image: ../../_images/400px-Krita_Reference_Images_Image_Docker.png]
This docker allows you to pick an image from outside of Krita and use it as a reference. Even better, you can pick colors from it directly.

The docker consists of two tabs: Browsing and Image.

브라우징

Browsing gives you a small file browser, so you can navigate to the map where the image you want to use as reference is located.

There’s an image strip beneath the browser, allowing you to select the image which you want to use. Double click to load it in the Image tab.

Image

This tab allows you to see the images you selected, and change the zoom level. Clicking anywhere on the image will allow you to pick the merged color from it. Using the cross symbol, you can remove the icon.

모양 속성 도커

[image: ../../_images/Krita_Shape_Properties_Docker.png]

버전 4.0부터 폐지됨: 이 도커는 더 이상 사용되지 않으며 Shape Edit Tool에 포함되었습니다.

이 도커는 벡터 레이어의 사각형, 원형에서만 동작합니다. 사각형의 모서리를 둥글게 하거나 원의 공식의 각도 같은 세부 조정에 사용합니다.

작은 색상 선택기

[image: ../../_images/Krita_Small_Color_Selector_Docker.png]
This is Krita’s most simple color selector. On the left there’s a bar with the hue, and on the right a square where you can pick the value and saturation.

버전 4.2에 추가: The small color selector is the only selector which can show HDR values. When your build of Krita is HDR enabled and you are on Windows, you can drag the slider at the bottom to increase the ‘nits’ of the colors in the small selector. This is the direct value of the brightness of the colors, and you need a value above 100 (100 being the maximum value used for the brightest value of sRGB colors), to have an HDR color. The small color selector will also select wide gamut values.

스냅샷 도커

현재 문서의 스냅샷(복사본)을 생성하고 나중에 저장해 놓은 상태로 돌아올 수 있는 도커입니다.

[image: ../../_images/snapshot-docker.png]
도커의 주 부분에는 저장된 스냅샷의 목록이 표시됩니다. 도커의 아래쪽에는 단추 세 개가 있습니다. 왼쪽부터 스냅샷 생성, 선택한 스냅샷으로 전환, 그리고 선택한 스냅샷 삭제입니다. 스냅샷 생성을 눌러 현재 문서 상태의 스냅샷을 생성할 수 있습니다. 선택한 스냅샷으로 전환을 클릭하면 선택한 스냅샷으로 전환합니다. 전환하면 실행 취소 내역이 모두 삭제됩니다. 만약 현재 상태를 저장하고 싶다면 전환하기 전에 다른 스냅샷을 만드십시오. 선택한 스냅샷 삭제를 클릭하면 선택한 스냅샷을 삭제합니다. 스냅샷의 이름을 편집하려면 스냅샷을 두 번 클릭하십시오.

문서를 닫으면 모든 스냅샷이 사라지니 주의하십시오. 스냅샷의 내용을 보관하려면 따로 파일을 저장하거나 내보내기를 사용해야 합니다.

특정 색상 선택기

[image: ../../_images/Krita_Specific_Color_Selector_Docker.png]
[image: ../../_images/Krita_Specific_Color_Selector_Docker_2.png]
The specific color selector allows you to choose specific colors within a color space.

Color Space Chooser Dropdown

Fairly straightforward. This color space chooser dropdown allows you to pick the color space, the bit depth and the ICC profile in which you are going to pick your color.

Sliders

These change per color space.
If you chose 16bit float or 32 bit float, these will go from 0 to 1.0, with the decimals deciding the difference between colors. When you choose 8 bit integer or 16 bit integer, a button with percentage sign (%) will appear besides the dropdown, which will allow you to input values in percentages.

Hex Color Selector

This is only available for the color spaces with a depth of 8 bit.
This allows you to input hex color codes, and receive the RGB, CMYK, LAB, XYZ or YCrCb equivalent, and the other way around!

HSV Color Selector

버전 5.1에 추가.

In RGB color spaces, the toggle button allows you to switch into HSV mode and choose using the Hue, Saturation and Value sliders.

[image: ../../_images/Krita_Specific_Color_Selector_Docker_3.png]

Storyboard Docker

[image: ../../_images/Storyboard_thumbnailonly_view.png]
A storyboard is a series of drawings and directions that outlines a film as a set of
scenes. These scenes may be accompanied with text that can provide additional context
such as dialog, action descriptions, or pertinent details needed for production.
Storyboarding is used extensively during the planning phase of a film to achieve a
better understanding of the overall production and its needs. Storyboards are
also useful for teams to discuss the scene-by-scene flow of a film or make any
necessary changes before entering the production phase.

Krita’s Storyboard Docker allows the user to develop a story by creating and managing scenes. This includes the
addition, removal, or adjustment of a scene. Users can also insert additional scenes between other scenes
when necessary, or reorder scenes via drag-and-drop. The storyboard’s visual content exists within Krita’s
internal animation system, which gives users the ability to preview the sequence using the Animation Timeline’s
transport controls. The storyboard docker also supports exporting the contents of a storyboard
to a document. The current supported formats for export are SVG and PDF.

Toolbar Buttons

[image: ../../_images/Storyboard_uper_buttons.png]

	내보내기
	A drop down menu with export options available for the current storyboard.
This can be used to export the storyboard to a desired format. You can specify
the layout of the exported file using the export dialog options. This might be useful
when discussing ideas and planning the animation with teammates or if you want to show
your animation ideas to a potential client. Krita currently supports exporting
storyboards to .pdf or .svg formats. For additional details see Exporting Storyboard

	Comment
	A drop down menu which consists of a list of comments for storyboard items which includes a
Delete Comment button and an Add Comment button. You can add comment sections to all entries,
remove comment sections, or change their visibility from the drop down menu. The order
of comments can be changed using drag-and-drop. Actions within this menu will apply to
every entry within the storyboard docker.

[image: ../../_images/Storyboard_comment.png]

	Lock
	This option is used to freeze the docker in its current state. When this option is enabled thumbnails, comments,
duration and frame number do not change. Reordering of scenes using drag and drop is also be disabled. This can be used
to preserve the state of the storyboard docker even when modifying the contents of the image.

	배열
	A drop-down menu which provides options for changing View and Mode settings. These settings change the
arrangement of scenes withhin the docker. For additional details, see Storyboard View and Modes

[image: ../../_images/Storyboard_arrange.png]

Storyboard Scene

A storyboard scene represents an individual scene in a larger production. There can be multiple keyframes within
the duration of a single scene, with the thumbnail representing the first keyframe of a given scene. Each
scene has a header with editable fields – such as scene names and durations. Storyboard scenes can be inserted before or
after any other scene. The order of scenes can be changed at any time using drag-and-drop. Changing the order of
scenes will be reflected appropriately in the timeline, where keyframes will be reordered to accommodate the new
desired scene order.

	Frame Number
	This shows the starting frame number of the scene. This field cannot be edited.

	이름
	The scene name. Double- [image: mouseleft] to make it editable, and press the Enter key to finish editing.

	Duration in Seconds
	A spin-box. This will set the duration of the scene in seconds.

	Duration in Frames
	A spin-box. This will set the duration of the scene in frames. Frames represent the division of seconds, which is dependent on the users’ desired Frame Rate setting.

	Thumbnail
	A thumbnail representing the contents of a scene. Unlike the comments, it cannot be edited inside the docker directly. Instead, changes must be made within the canvas after selection.

	항목 추가
	A button on the lower left corner of the thumbnail that adds a new scene after the duration of the current scene. The new scene will start with a duration of 1 frame, which is the smallest possible length of a scene.

	항목 삭제
	A button on the lower right corner of the thumbnail that deletes the current scene. The keyframe contents of the deleted scene will be transferred to the scene just before. This is used to prevent accidental data loss.

	Comment Name
	Name of the comment field. This field is uneditable directly but can be edited from the Comment menu.

	Comment Field
	The comment content. Double- [image: mouseleft] to make it editable, and press the Enter key to finish editing.

Storyboard View and Modes

The View and Mode options for the Storyboard Docker are available via the Arrange menu.
These options allow the user to change the visual arrangement or elements of the scenes.

	보기
	Options that filter which parts of the scene to show within the Storyboard Docker.

	Thumbnail Only : Show only the thumbnail portion of a scene.

[image: ../../_images/Storyboard_thumbnailonly_view.png]

	Comments Only : Show only the comments section of a scene.

[image: ../../_images/Storyboard_commentonly_view.png]

	All : Show all elements of a scene.

[image: ../../_images/Storyboard_grid_mode.png]

	Mode
	Allows the user to change the visual arrangement of scenes within the Storyboard Docker.

	Row : Scenes are arranged in a row-wise fashion. The scene’s comments are on the right side of the thumbnail.

[image: ../../_images/Storyboard_row_mode.png]

	Column : Scenes are arranged in column-wise fashion. The scene’s comments are below the thumbnail.

[image: ../../_images/Storyboard_column_mode.png]

	Grid : Scenes are arranged in a grid. In this mode, if you change the size of the docker, the grid is rearranged to accommodate more scenes in the docker.

[image: ../../_images/Storyboard_grid_mode.png]

Using Storyboard docker

	Adding Scenes
	There are two ways to add scenes :

	[image: mouseright] and choose either Add Scene After or Add Scene Before

	Press the Add Button at the lower left corner of thumbnail of the scene, this is the same as Add Scene After.

	Deleting Scenes
	There are two ways to delete scenes :

	[image: mouseright] and Remove Scene.

	Delete button at the lower right corner of thumbnail of scene, this is the same as Remove Scene.

참고

Deleting scene in storyboard does not delete the keyframes at the scene’s frame. Instead the duration of the deleted scene gets added to the previous scene. This is prevent accidental data loss upon removing a scene.

	Reordering Scenes
	Scenes can be reordered using drag and drop. All the keyframes within the duration of that scene will move upon reordering.

	Managing Comment Fields
	The storyboard docker allows for the management of multiple optional comment fields. While some projects might require only one comment field for dialog per scene, some might require additional fields that describe character actions or camera directions. The Comment menu allows the user to configure these comment fields.

	To make a new comment field, go to Comment menu and click on the plus button at the bottom-left. A new comment field will be added to the menu. Change its name and press Enter. Every scene will now have the new comment field available to edit.

	To delete a comment field, select it and press the Delete button at the bottom-right corner of the Comment menu.

	To toggle visibility of a comment field click on the eye icon.

	To rearrange the order of comment fields use drag and drop in the Comment menu.

	Adding Comments
	To add a comment to a comment field in a scene, double click on the comment’s area to make it editable. When finished, click outside of the area to save it.

	Changing duration
	Use the spin-box’s up and down button to change duration by one. Double click to make the field editable by typing.

	Working with multiple layers
	When working with multiple layers, if you want to change only one of the scene thumbnails when drawing on canvas, you should insert keyframes at that scene’s time in the current layer.
An easy way to do this is to turn the Auto Frame mode on in the animation docker. That way any changes that you make with the scene selected will insert a keyframe at the scene’s time in the current layer and thus would change the thumbnail for that scene.

Exporting Storyboard

Storyboards that you’ve created in Krita can be easily exported as either PDF or SVG files.

Clicking on the Export button at the upper-left corner of the Storyboard Docker will bring you to the storyboard export menu for the chosen format.
Within this menu you have various options covering essentials like page size, board layout and font size.
When using our procedural board layout modes (rows, columns, and grid), ot