

Welcome to the Krita 5.2 Manual!

Krita is a sketching and painting program designed for digital artists. Our vision for Development of Krita is —

Krita is a free and open source cross-platform application that offers an
end-to-end solution for creating digital art files from scratch. Krita is
optimized for frequent, prolonged and focused use. Explicitly supported fields
of painting are illustrations, concept art, matte painting, textures, comics
and animations. Developed together with users, Krita is an application that
supports their actual needs and workflow. Krita supports open standards and
interoperates with other applications.

Krita’s tools are developed keeping the above vision in mind. Although it has
features that overlap with other raster editors its intended purpose is to
provide robust tool for digital painting and creating artworks from scratch. As
you learn about Krita, keep in mind that it is not intended as a replacement
for Photoshop. This means that the other programs may have more features than
Krita for image manipulation tasks, such as stitching together photos, while
Krita’s tools are most relevant to digital painting, concept art, illustration,
and texturing. This fact accounts for a great deal of Krita’s design.

You can download this manual as an EPUB [https://docs.krita.org/en/epub/KritaManual.epub].

	
[image: _images/Hero_userManual.jpg]

User Manual

Discover Krita’s features through an
online manual. Guides to help you
transition from other applications.

	
[image: _images/Hero_tutorials.jpg]

Tutorials and How-tos

Learn through developer and user
generated tutorials to see Krita
in action.

	
[image: _images/Hero_getting_started.jpg]

Getting Started

New to Krita and don’t know where to start?

	
[image: _images/Hero_reference.jpg]

Reference Manual

A quick run-down of all of the tools that
are available.

	
[image: _images/Hero_general.jpg]

General Concepts

Learn about general art and technology
concepts that are not specific to Krita.

	
[image: _images/Hero_faq.jpg]

Krita FAQ

Find answers to the most common questions
about Krita and what it offers.

	
[image: _images/Hero_resources.jpg]

Resources

Textures, brush packs, and python plugins
to help add variety to your artwork.

	
[image: _images/Hero_index.jpg]

Index

An index of the manual for searching
terms by browsing.

User Manual

Discover Krita’s features through an online manual. Guides to help you transition from other applications.

Contents:

	Getting Started
	Installation

	Starting Krita

	Basic Concepts

	Navigation

	Introduction Coming From Other Software
	Introduction to Krita coming from Photoshop

	Introduction to Krita coming from Paint Tool SAI

	Drawing Tablets
	What are Tablets?

	Supported Tablets

	Drivers and Pressure Sensitivity

	Where it can go wrong: Windows

	Wacom Tablets

	Loading and Saving Brushes
	The Brush settings drop-down

	Making a Brush Preset

	Sharing Brushes

	On-Canvas Brush Editor

	Mirror Tools
	Mirroring along a rotated line

	Painting with Assistants
	Types

	Setting up Krita for technical drawing-like perspectives

	Working with Images
	What do Images Contain?

	Metadata

	Image size

	Author and Description

	Cropping and resizing the canvas

	Resizing the canvas

	Saving, Exporting and Opening Files

	Saving, AutoSave and Backup Files
	Saving

	AutoSave

	Backup Files

	Templates
	Animation Templates

	Comic Templates

	Design Templates

	DSLR templates

	Texture Templates

	Introduction to Layers and Masks
	Managing layers

	Types of Layers

	How are layers composited in Krita?

	Inherit Alpha or Clipping layers

	Masks and Filters

	Selections
	Creating Selections

	Editing Selections

	Removing Selections

	Display Modes

	Global Selection Mask (Painting a Selection)

	Selection from layer transparency

	Pixel and Vector Selection Types

	Common Shortcuts while Using Selections

	Python Scripting
	Managing Python plugins

	Introduction to Python Scripting

	How to make a Krita Python plugin

	Tag Management
	Adding a New Tag for a Brush

	Assigning an Existing Tag to a Brush

	Changing a Tag’s Name

	Deleting a Tag

	Soft Proofing
	Out of Gamut Warning

	Vector Graphics
	What are vector graphics?

	Tools for making shapes

	Arranging Shapes

	Editing shapes

	Working together with other programs

	Snapping

	Animation with Krita
	Workflow

	Introduction to animation: How to make a walk cycle

	Japanese Animation Template
	Basic structure of its layers

	Its layer contents

	Basic steps to make animation

	Gamut Masks
	Selecting a gamut mask

	In the color selector

	Editing/creating a custom gamut mask

	Importing and exporting

Getting Started

Welcome to the Krita Manual! In this section, we’ll try to get you up to speed.

If you are familiar with digital painting, we recommend checking out the Introduction Coming From Other Software category, which contains guides that will help you get familiar with Krita by comparing its functions to other software.

If you are new to digital art, just start with Installation, which deals with installing Krita, and continue on to Starting Krita, which helps with making a new document and saving it, Basic Concepts, in which we’ll try to quickly cover the big categories of Krita’s functionality, and finally, Navigation, which helps you find basic usage help, such as panning, zooming and rotating.

When you have mastered those, you can look into the dedicated introduction pages for functionality in the User Manual, read through the overarching concepts behind (digital) painting in the General Concepts section, or just search the Reference Manual for what a specific button does.

Contents:

	Installation

	Starting Krita

	Basic Concepts

	Navigation

Installation

Windows

Windows users can download Krita from the website, the Windows Store, or Steam.
The versions on the Store and Steam cost money, but are functionally identical [https://krita.org/en/item/krita-available-from-the-windows-store/] to the
(free) website version. Unlike the website version, however, both paid versions
get automatic updates when new versions of Krita comes out. After deduction of
the Store fee, the purchase cost supports Krita development.

	Website:
	The latest version is always on our website [https://krita.org/download/].

The page will try to automatically recommend the correct architecture (64- or 32-bit), but you can select “All Download Versions” to get more choices. To determine your computer architecture manually, go to Settings ‣ About. Your architecture will be listed as the System Type in the Device Specifications section.

Krita by default downloads an installer EXE, but you can also download a portable ZIP file version instead. Unlike the installer version, this portable version does not show previews in Windows Explorer automatically. To get these previews with the portable version, also install Krita’s Windows Shell Extension (available on the download page).

These files are also available from the KDE download directory [https://download.kde.org/stable/krita/].

	Windows Store:
	For a small fee, you can download Krita from the Windows Store [https://www.microsoft.com/store/productId/9N6X57ZGRW96]. This version requires Windows 10.

	Steam:
	For a small fee, you can also download Krita from Steam [https://store.steampowered.com/app/280680/Krita/].

	Epic Store
	For a small fee, you can also download Krita from the Epic Store [https://www.epicgames.com/store/en-US/p/krita].

To download a portable version of Krita go to the KDE [https://download.kde.org/stable/krita/] download directory and get the ZIP file instead of the setup.exe installer.

Note

Krita requires Windows 8.1 or newer. The Store version requires Windows 10.

Linux

Many Linux distributions package the latest version of Krita. Sometimes you will have to enable an extra repository. Krita runs fine under most desktop environments such as KDE, Gnome, LXDE, Xfce etc. – even though it is a KDE application and needs the KDE libraries. You might also want to install the KDE system settings module and tweak the GUI theme and fonts used, depending on your distributions.

Nautilus/Nemo file extensions

Since April 2016, KDE’s Dolphin file manager shows KRA and ORA thumbnails by default, but Nautilus and its derivatives need an extension. We recommend Moritz Molch’s extensions for XCF, KRA, ORA and PSD thumbnails [https://moritzmolch.com/1749].

AppImages

For Krita 3.0 and later, first try out the AppImage from the official website [https://krita.org/en/download/krita-desktop/]. 90% of the time this is by far the easiest way to get the latest Krita. Just download the AppImage, and then use the file properties or the bash command chmod to make the AppImage executable. Double-click it, and enjoy Krita. (Or run it in the terminal with
./appimagename.appimage)

	Open the terminal into the folder you have the AppImage.

	Make it executable:

chmod a+x krita-3.0-x86_64.appimage

	Run Krita!

./krita-3.0-x86_64.appimage

AppImages are ISOs with all the necessary libraries bundled inside, that means no fiddling with repositories and dependencies, at the cost of a slight bit more disk space taken up (And this size would only be bigger if you were using Plasma to begin with).

Ubuntu and Kubuntu

It does not matter which version of Ubuntu you use, Krita will run just fine. However, by default, only a very old version of Krita is available. You should either use the AppImage, Flatpak or the Snap available from Ubuntu’s app store. We also maintain a PPA for getting the latest builds of Krita, you can read more about the PPA and install instructions here [https://launchpad.net/~kritalime/+archive/ubuntu/ppa].

OpenSUSE

The latest stable builds are available from KDE:Extra repo:

	https://download.opensuse.org/repositories/KDE:/Extra/

Note

Krita is also in the official repos, you can install it from Yast.

Fedora

Krita is in the official repos, you can install it by using packagekit (Add/Remove Software) or by writing the following command in terminal.

dnf install krita

You can also use the software center such as gnome software center or Discover to install Krita.

Debian

The latest version of Krita available in Debian is 3.1.1. To install Krita type the following line in terminal:

apt install krita

Arch

Arch Linux provides krita package in the Extra repository. You can install Krita by using the following command:

pacman -S krita

You can also find Krita pkgbuild in arch user repositories, but it is not guaranteed to contain the latest git version.

Flatpak

We also have Flatpak for nightlies and stable builds, these builds are not maintained by the core developers themselves. You can either get the builds from the KDE community website [https://binary-factory.kde.org] or from the Flathub Maintainers [https://flathub.org/apps/details/org.kde.krita]. The KDE community website only offers nightly builds of Flatpak.

To install Flatpak build from the software center just open the Flatpakrepo files with Discover or the software center provided by your distribution:

Flathub Repo [https://flathub.org/repo/flathub.flatpakrepo]

KDE Flatpak Repo [https://distribute.kde.org/kdeapps.flatpakrepo]

After adding one of the above repos you can then search for Krita and the software center will show you the Flatpak version for installation.

If you prefer doing it from terminal you can use the following commands to install Krita’s Flatpak build

For KDE Flatpak Repo:

flatpak --user remote-add --if-not-exists kdeapps --from https://distribute.kde.org/kdeapps.flatpakrepo

flatpak --user install kdeapps org.kde.krita-nightly

For installing it from Flathub Repo:

flatpak --user remote-add --if-not-exists flathub https://flathub.org/repo/flathub.flatpakrepo

flatpak --user install flathub org.kde.krita

Snaps

There are snap packages provided by the Ubuntu snap developers, these are generally not up to date. The Krita Developers do not provide or build the snap packages themselves. To install Krita as a snap package, first install snapd application. Snapd is installed by default on Ubuntu distributions.

If you are on Ubuntu distribution then Krita’s snap package may show up in the software center, or you can run the following command in terminal

sudo snap install krita

Note

The Flatpak and Snap builds are not tested by the core developers of Krita, so you may encounter some bugs while running Krita installed from them.

macOS

You can download the latest binary from our
website [https://krita.org/download/krita-desktop/].
The binaries work only with macOS version 10.12 and newer.

Source

While it is certainly more difficult to compile Krita from source than it is to install from prebuilt packages, there are certain advantages that might make the effort worth it:

	You can follow the development of Krita on the foot. If you compile Krita regularly from the development repository, you will be able to play with all the new features that the developers are working on.

	You can compile it optimized for your processor. Most pre-built packages are built for the lowest-common denominator.

	You will be getting all the bug fixes as soon as possible as well.

	You can help the developers by giving us your feedback on features as they are being developed, and you can test bug fixes for us. This is hugely important, which is why our regular testers get their name in the about box just like developers.

Of course, there are also some disadvantages: when building from the current development source repository you also get all the unfinished features. It might mean less stability for a while, or things shown in the user interface that don’t work. But in practice, there is seldom really bad instability, and if it is, it’s easy for you to go back to a revision that does work.

So… If you want to start compiling from source, begin with the latest build instructions from the guide here.

If you encounter any problems, or if you are new to compiling software, don’t hesitate to contact the Krita developers. There are three main communication channels:

	irc: web.libera.chat, channel #krita

	mailing list [https://mail.kde.org/mailman/listinfo/kimageshop]

	Krita Artists [https://krita-artists.org]

Starting Krita

When you start Krita for the first time there will be no canvas or new document open by default. You will be greeted by a welcome screen, which will have option to create a new file or open existing document. To create a new canvas you have to create a new document from the File menu or by clicking on New File under start section of the welcome screen. This will open the new file dialog box. If you want to open an existing image, either use File ‣ Open… or drag the image from your computer into Krita’s window.

[image: ../../_images/Starting-krita.png]

Creating a New Document

A new document can be created as follows.

	Click on File from the application menu at the top.

	Then click on New. Or you can do this by pressing the Ctrl + N shortcut.

	Now you will get a New Document dialog box as shown below:

[image: ../../_images/Krita_newfile.png]
Click on the Custom Document section and in the Dimensions tab choose A4 (300ppi) or any size that you prefer from the Predefined drop down. To know more about the other sections such as create document from clipboard and templates see Create New Document.

Make sure that the color profile is RGB and depth is set to 8-bit integer/channel in the color section. For advanced information about the color and color management refer to Colors.

How to use brushes

Now, on the blank white canvas, just left click with your mouse or draw with the pen on a graphic tablet. If everything’s correct, you should be able to draw on the canvas! The brush tool should be selected by default when you start Krita, but if for some reason it is not, you can click on this [image: toolfreehandbrush] icon from the toolbox and activate the brush tool.

Of course, you’d want to use different brushes. On your right, there’s a docker named Brush Presets (or on top, press the F6 key to find this one) with all these cute squares with pens and crayons.

If you want to tweak the presets, check the Brush Editor in the toolbar. You can also access the Brush Editor with the F5 key.

[image: ../../_images/Krita_Brush_Preset_Docker.png]
Tick any of the squares to choose a brush, and then draw on the canvas. To change color, click the triangle in the Advanced Color Selector docker.

Erasing

There are brush presets for erasing, but it is often faster to use the eraser toggle. By toggling the E key, your current brush switches between erasing and painting. This erasing method works with most of the tools. You can erase using the line tool, rectangle tool, and even the gradient tool.

Saving and opening files

Now, once you have figured out how to draw something in Krita, you may want to save it. The save option is in the same place as it is in all other computer programs: the top-menu of File, and then Save. Select the folder you want to have your drawing, and select the file format you want to use (.kra is Krita’s default format, and will save everything). And then hit Save. Some older versions of Krita have a bug and require you to manually type the extension.

If you want to show off your image on the internet, check out the Saving For The Web tutorial.

Check out Navigation for further basic information, Basic Concepts for an introduction as Krita as a medium, or just go out and explore Krita!

Basic Concepts

If this is your first foray into digital painting, this page should give you a brief introduction to the basic but important concepts required for getting started with digital painting in Krita.

Although very lengthy, this page tries to give a brief overview of some of the Krita’s most important functionality; it tries to help you grasp the functions of various menu and buttons in Krita without going into minute details.

Contents

	Basic Concepts

	Raster and Vector

	Images, Views and Windows

	Image

	View

	Dockers

	Window

	Canvas in Krita

	Layers and Compositing

	Tools

	Brush Engines

	Colors

	Transparency

	Blending modes

	Masks

	Filters

	Filter Brush Engine

	Filter Layers, Filter Masks and Layer Styles

	Transformations

	Deform Brush Engine

	Transform Masks

	Animation

	Assistants, Grids and Guides

	Customization

Raster and Vector

Even though Krita is regarded primarily a raster based application, it has some vector editing capabilities as well. If you are new to digital painting medium, it is necessary that you first get yourself acquainted with the concepts of raster and Vector based images.

In digital imaging, a pixel (Picture Element) is a basic and lowest element of an Image. It is basically a grid of points each displaying specific color. Raster editing is manipulating and editing these pixels. For example when you take a 1-pixel brush which is colored black and painting on the white canvas in Krita you are actually changing the color of the pixel beneath your brush from white to black. When you zoom in and see a brush stroke you can notice many small squares with colors, these are pixels:

[image: ../../_images/Pixels-brushstroke.png]
In contrast to raster images, vector graphic images are based on mathematical expressions. They are independent of the pixels. For example, when you draw a rectangle on a vector layer in Krita you are actually drawing paths passing through points that are called nodes, which are located on specific coordinates on the ‘x’ and ‘y’ axes. When you re-size or move these points the computer calculates and redraws the path and displays the newly formed shape to you. Hence, you can re-size the vector shape to any extent without any loss in quality. In Krita, everything which is not on a vector layer is raster based.

Images, Views and Windows

In a painting program, there are three major containers that make up your work-space.

Image

The most important one is the Image.

This is an individual copy of the image that you can open or create via the file dialog. Krita allows you to open the file as a new copy via the File menu, or to save it as a new file, or make an incremental copy.

An image contains data regarding layers, color space of image and layers, canvas size and metadata such as creator, date created and DPI et cetera. Krita can open multiple images at once, you can switch between them via the Window menu.

Because the image is a working copy of the image on the hard drive, you can do a lot of little saving tricks with it:

	New
	Makes a new image. When you press Save, you make a new file on the hard drive.

	Open…
	Makes an internal copy of an existing image. When you press Save, you will overwrite the original existing image with your working copy.

	Open existing Document as Untitled Document…
	Similar to Open…, however, Save will request you to specify a saving location: you’re making a new copy. This is similar to Import… in other programs.

	Create Copy From Current Image
	Similar to Open existing Document as Untitled Document… but with the currently selected image.

	Save Incremental Version
	Allows you to quickly make a snapshot of the current image by making a new file with a version number added to it.

These options are great for people doing production work, who need to switch between files quickly or have backup files in case they do something extreme. Krita also has a file backup system in the form of auto-saves, backup files and crash recovery. You can configure the option for these features in the general settings.

You view the image via a View.

View

A view is a window onto your image. Krita allows you to have multiple views, and you can manipulate the view to zoom, rotate and mirror and modify the color of the way you see an image without editing the image itself. This is very useful for artists, as changing the way they view the image is a common way to diagnose some common mistakes, like a drawing which is skewed towards one side. Mirroring with the M key makes such skewing easy to identify.

If you have trouble drawing certain curves you will enjoy using rotation for drawing, and of course, there is zooming in and out for precision and rough work.

[image: ../../_images/Krita_multiple_views.png]

Multiple views of the same image in Krita

Multiple views are possible in Krita via Window ‣ New view ‣ image name. You can switch between them via the Window menu, or the Ctrl + Tab shortcut, or keep them in the same area when subwindow mode is active in the settings, via Window ‣ Tile.

Dockers

Dockers are little subwindows in Krita’s interface. They contain useful tools, like the color selector, layer stack, tool options, et cetera.

[image: ../../_images/Dockers.png]
The image above shows some dockers in Krita.

All the views and the dockers are held inside Windows.

Window

If you’ve used a computer before, you know what windows are: They are big containers for your computer programs.

Krita allows you to have multiple windows via Window ‣ New Window. You can then drag this to another monitor for multi-monitor use.

The image below shows an example of multiple windows in Krita.

[image: ../../_images/Multi-window.png]

Canvas in Krita

When you create a new document in Krita for the first time you will see a rectangular white area. This is called a canvas. You can see it in the image below. The area marked by a red rectangle is a canvas.

[image: ../../_images/Canvas-krita.png]
When you save the painting as JPG, PNG et cetera or take a print out of the painting, only the content inside this area is taken into consideration. Anything beyond it is ignored. Krita does store information beyond this area, you just won’t be able to see it.
This data is stored in the Layers.

Layers and Compositing

Like a landscape painter will first paint the sky and then the furthest away elements before slowly working his way to the foreground elements, computers will do the same with all the things you tell them to draw. So, if you tell them to draw a circle after a square on the same spot, the circle will always be drawn later. This is called the Drawing Order.

The layer stack is a way for you to separate elements of a drawing and manipulate the drawing order by showing you which layers are drawn when and allowing you to change the order they are drawn in and also apply all sorts of other effects. This is called Compositing.

This allows you to have line art above the colors, or trees before the mountains, and edit each without affecting the other.

Krita has many layer-types, each layer type is unique and has its own use case:

	Paint Layers
	These are raster layers, and the most common and default layer type in Krita, you will be painting on these.

	Vector Layers
	This is a layer type on which you draw vector graphics. Vector graphics are typically more simple than raster graphics and with the benefit that you can deform them with less blurriness.

	Group Layers
	These allow you to group several layers via drag and drop, so you can organize, move, apply masks and perform other actions on them together.

	Clone Layers
	These are copies of the layer you selected when making them. They get updated automatically when changing the original.

	File Layers
	These refer to an existing image outside Krita and update as soon as the outside image updates. Useful for logos and emblems that change a lot.

	Fill Layers
	These layers are filled with something that Krita can make up on the fly, like colors or patterns.

	Filter Layer
	These layers help us to apply some filters which will affect a composite image made from all the layers beneath them.

You can manipulate the content of the layers with Tools.

Tools

Tools help you manipulate the image data. The most common one is of course, the freehand brush, which is the default when you open Krita. There are roughly five types of tools in Krita:

	Paint Tools
	These are tools for painting on paint layers. They describe shapes, like rectangles, circles and straight lines, but also freehand paths. These shapes then get used by the Brush engines to make shapes and drawing effects.

	Vector Tools
	This is the upper row of tools, which are used to edit vectors. Interestingly enough, all paint tools except the freehand brush allow you to draw shapes on the vector layers. The resulting object won’t use the brush preset for outline unlike the ones made with paint tools on normal layer.

	Selection Tools
	Selections allow you to edit a very specific area of the layer you are working on without affecting the others. The selection tools allow you to draw or modify the current selection. This is like using masking-fluids in traditional painting method, but whereas using masking fluids and film is often messy and delicate, selections are far easier to use.

	Guide Tools
	These are tools like grids and assistants.

	Transform Tools
	These are tools that allow you to transform your layer or object on the canvas.

All tools can be found in the toolbox, and information about individual tools can be found in the tools section of the manual.

Brush Engines

Brush engines, as mentioned before, take a path and tablet information and add effects to it, making a stroke.

Engine is a term Krita developers use to describe a complex interacting set of code, that is the core for certain functionality and is highly configurable. In short, like the engine of your car drives your car, and the type of engine and its configuration affects how you use your car, the brush engine drives the look and feel of the brush, and different brush engines have different results.

Krita has a LOT of different brush engines, all with different effects.

[image: ../../_images/Krita_example_differentbrushengines.png]

Left: pixel brush, Center: color smudge brush, Right: sketch brush.

For example, the pixel-brush engine is simple and allows you to do most of your basic work, but if you do a lot of painting, the color smudge brush engine might be more useful. Even though it’s slower to use than the Pixel Brush engine, its mixing of colors allows you to work faster when you need to blend and mix colors.

If you want something totally different from that, the sketch brush engine helps with making messy lines, and the shape brush engine allows you to make big flats quickly. There are a lot of cool effects inside Krita’s brush engines, so try them all out, and be sure to check the chapters on each.

You can configure these effects via the Brush Settings drop-down, which can be quickly accessed via the F5 key. These configurations can then be saved into presets, which you can quickly access with the F6 key or the Brush Presets docker.

Brushes draw with colors, but how do computers understand colors?

Colors

Humans can see a few million colors, which are combinations of electromagnetic waves (light) bouncing off a surface, where the surface absorbs some of it.

[image: ../../_images/Krita_basics_primaries.png]

Subtractive CMY colors on the left and additive RGB colors on the right. This difference means that printers benefit from color conversion before printing.

When painting traditionally, we use pigments which also absorb the right light-waves for the color we want it to have, but the more pigments you combine, the more light is absorbed, leading to a kind of murky black. This is why we call the mixing of paints subtractive, as it subtracts light the more pigments you put together. Because of that, in traditional pigment mixing, our most efficient primaries are three fairly light colors: Cyan blue and Magenta red and Yellow (CMY).

A computer also uses three primaries and uses a specific amount of each primary in a color as the way it stores color. However, a computer is a screen that emits light. So it makes more light, which means it needs to do additive mixing, where adding more and more colored lights result in white. This is why the three most efficient primaries, as used by computers are Red, Green and Blue (RGB).

Per pixel, a computer then stores the value of each of these primaries, with the maximum depending on the bit-depth. These are called the components or channels depending on whom you talk to.

[image: ../../_images/Krita_basic_channel_rose.png]

This is the red-channel of an image of a red rose. As you can see, the petals are white here, indicating that those areas contain full red. The leaves are much darker, indicating a lack of red, which is to be expected, as they are green.

Though by default computers use RGB, they can also convert to CMYK (the subtractive model), or a perceptual model like LAB. In all cases this is just a different way of indicating how the colors relate to each other, and each time it usually has 3 components. The exception here is grayscale, because the computer only needs to remember how white a color is. This is why grayscale is more efficient memory-wise.

In fact, if you look at each channel separately, they also look like grayscale images, but instead white just means how much Red, Green or Blue there is.

Krita has a very complex color management system, which you can read more about here.

Transparency

Just like Red, Green and Blue, the computer can also store how transparent a pixel is. This is important for compositing as mentioned before. After all, there’s no point in having multiple layers if you can’t have transparency.

Transparency is stored in the same way as colors, meaning that it’s also a channel. We usually call this channel the alpha channel or alpha for short. The reason behind this is that the letter ‘α’ is used to represent it in programming.

Some older programs don’t always have transparency by default. Krita is the opposite: it doesn’t understand images that don’t track transparency, and will always add a transparency channel to images. When a given pixel is completely transparent on all layers, Krita will instead show a checkerboard pattern, like the rose image shown above.

Blending modes

Because colors are stored as numbers you can do math with them. We call this Blending Modes or Compositing Modes.

Blending modes can be done per layer or per brush stroke, and thus are also part of the compositing of layers.

	Multiply
	A commonly used blending mode is for example Multiply
which multiplies the components, leading to darker colors. This allows you to simulate the subtractive mixing, and thus makes painting shadows much easier.

	Addition
	Another common one is Addition, which adds one layer’s components to the other, making it perfect for special glow effects.

	Erasing
	Erasing is a blending mode in Krita. There is no eraser tool, but you can toggle on the brush quickly with the E key to become an eraser. You can also use it on layers. Unlike the other blending modes, this one only affects the alpha channel, making things more transparent.

	Normal
	The Normal blend mode just averages between colors depending on how transparent the topmost color is.

Krita has 76 blending modes, each doing slightly different things. Head over to the Blending Modes to learn more.

Because we can see channels as grayscale images, we can convert grayscale images into channels. Like for example, we can use a grayscale image for the transparency. We call these Masks.

Masks

Masks are a type of sub-effect applied to a layer, usually driven by a grayscale image.

The primary types of mask are Transparency Masks, which allow you to use a grayscale image to determine transparency, where black makes everything transparent and white makes the pixel fully opaque.

You can paint on masks with any of the brushes, or convert a normal paint-layer to a mask. The big benefit of masks is that you can make things transparent without removing the underlying pixels. Furthermore, you can use masks to reveal or hide a whole group layer at once!

For example, we have a white ghost lady here:

[image: ../../_images/Krita_ghostlady_1.png]
But you can’t really tell whether she’s a ghost lady or just really really white. If only we could give the idea that she floats.
We right-click the layer and add a transparency mask. Then, we select that mask and draw with a black and white linear gradient so that the black is below.

[image: ../../_images/Krita_ghostlady_2.png]
Wherever the black is, there the lady now becomes transparent, turning her into a real ghost!

The name mask comes from traditional masking fluid and film. You may recall the earlier comparison of selections to traditional masking fluid. Selections too are stored internally as grayscale images, and you can save them as a local selection which is kind of like a mask, or convert them to a transparency mask.

Filters

We mentioned earlier that you can do math with colors. But you can also do math with pixels, or groups of pixels or whole layers. In fact, you can make Krita do all sorts of little operations on layers. We call these operations Filters.

Examples of such operations are:

	Desaturate
	This makes all the pixels turn gray.

	Blur
	This averages the pixels with their neighbors, which removes sharp contrasts and makes the whole image look blurry.

	Sharpen
	This increases the contrast between pixels that had a pretty high contrast to begin with.

	Color to Alpha
	A popular filter which makes all of the chosen color transparent.

[image: ../../_images/Krita_basic_filter_brush.png]

Different filter brushes being used on different parts of the image.

Krita has many more filters available: you can read about them here.

Filter Brush Engine

Because many of these operations are per pixel, Krita allows you to use the filter as part of the Filter Brush Engine.

In most image manipulation software, these are separate tools, but Krita has it as a brush engine, allowing much more customization than usual.

This means you can make a brush that desaturates pixels, or a brush that changes the hue of the pixels underneath.

Filter Layers, Filter Masks and Layer Styles

Krita also allows you to let the Filters be part of the layer stack, via Filter Layer and Filter Masks. Filter Layers affect all the layers underneath it in the same hierarchy. Transparency and transparency masks on Filter Layers affect where the layer is applied.

Masks, on the other hand, can affect one single layer and are driven by a grayscale image. They will also affect all layers in a group, much like a transparency mask.

We can use these filters to make our ghost lady look even more ethereal, by selecting the ghost lady’s layer, and then creating a clone layer. We then right-click and add a filter mask and use Gaussian blur set to 10 or so pixels. The clone layer is then put behind the original layer, and set to the blending mode ‘Color Dodge’, giving her a definite spooky glow. You can keep on painting on the original layer and everything will get updated automatically!

[image: ../../_images/Krita_ghostlady_3.png]
Layer Effects or Layer Styles are filter masks popularized by Photoshop's that are a little faster than regular masks, but not as versatile. They are available by right-clicking a layer and selecting ‘layer style’.

Transformations

Transformations are kind of like filters, in that these are operations done on the pixels of an image. We have a regular image and layer wide transformations in the image and layer top menus, so that you may resize, flip and rotate the whole image.

We also have the Crop Tool, which only affects the canvas size, and the Move Tool which only moves a given layer.
However, if you want more control, Krita offers a Transform Tool.

[image: ../../_images/Krita_transforms_free.png]
With this tool you can rotate and resize on the canvas, or put it in perspective. Or you can use advanced transform tools, like the warp, cage and liquify, which allow you to transform by drawing custom points or even by pretending it’s a transforming brush.

Deform Brush Engine

Like the filter brush engine, Krita also has a Deform Brush Engine, which allows you to transform with a brush. This deform is like a much faster version of the Liquefy transform tool mode, but in exchange, its results are of much lower quality.

[image: ../../_images/Krita_transforms_deformvsliquefy.png]

Apple transformed into a pear with liquefy on the left and Deform brush on the right.

Furthermore, you can’t apply the deform brush as a non-destructive mask.

Transform Masks

Like filters, transforms can be applied as a non-destructive operation that is part of the layer stack. Unlike filter and transparency masks however, Transform Masks can’t be driven by a grayscale image, for technical reasons. You can use transform masks to deform clone and file layers as well.

Animation

[image: ../../_images/Introduction_to_animation_walkcycle_02.gif]
From version 3.0 onwards, Krita got raster animation support. You can use the timeline, animation and onionskin dockers, plus Krita’s amazing variety of brushes to do raster based animations, export those, and then turn them into movies or GIFs.

Assistants, Grids and Guides

With all this technical stuff, you might forget that Krita is a painting program. Like how when working with traditional medium, as an illustrator, you can have all sorts of equipment to make drawing easier, Krita also offers a variety of tools:

[image: ../../_images/Krita_basic_assistants.png]

Krita’s vanishing point assistants in action.

	Grids and Guides Docker
	A very straightforward guiding tool which shows grids or guiding lines that can be configured.

	Snapping
	You can snap to all sorts of things. Grids, guides, extensions, orthogonals, image centers and bounding boxes.

	Painting with Assistants
	Because you can hardly put a ruler against your tablet to help you draw, the assistants are there to help you draw concentric circles, perspectives, parallel lines and other easily forgotten but tricky to draw details. Krita allows you to snap to these via the tool options as well.

These guides are saved into Krita’s native format, which means you can pick up your work easily afterward.

Customization

This leads to the final concept: customization.

In addition to rearranging the dockers according to your preferences, Krita provides and saves your configurations as Workspaces. This is the button at the top right.

You can also configure the toolbar via Settings ‣ Configure Toolbars…, as well as the shortcuts under both Settings ‣ Configure Krita… ‣ Shortcuts and Settings ‣ Configure Krita… ‣ Canvas Input Settings.

Navigation

Interface

Krita’s interface is very flexible and provides an ample choice for the artist to arrange the elements of the workspace. An artist can snap and arrange the elements, much like snapping together Lego blocks. Krita provides a set of construction kit parts in the form of Dockers and Toolbars. Every set of elements can be shown, hidden, moved and rearranged, that lets the artist to easily customize their own user interface experience.

A Tour of the Krita Interface

As we’ve said before, the Krita interface is very malleable and the way that you choose to configure the work surface may not resemble those shown below, but we can use these as a starting point.

[image: ../../_images/Interface-tour.svg]
	A – Traditional File or action menu found in most windowed applications.

	B – Toolbar – This is where you can choose your brushes, set parameters such as opacity and size and other settings.

	C – Sidebars for the Movable Panels/Dockers. In some applications, these are known as Dockable areas. Krita also allows you to dock panels at the top and/or bottom as well.

	D – Status Bar – This space shows the preferred mode for showing selection i.e. marching ants or mask mode, your selected brush preset, Color Space, image size and provides a convenient zoom control.

	E – Floating Panel/Docker – These can be “popped” in and out of their docks at any time in order to see a greater range of options. A good example of this would be the Preset Docker or the Palette Docker.

Your canvas sits in the middle and unlike traditional paper, or even most digital painting applications, Krita provides the artist with a scrolling canvas of infinite size (not that you’ll need it of course!). The standard navigation tools are as follows:

Navigating the Canvas

Many of the canvas navigation actions, like rotation, mirroring and zooming have default keys attached to them:

	Panning
	This can be done through either [image: mousemiddle], or by holding Space + [image: mouseleft] and the directional keys.

	Zooming
	Discrete zooming can be done through + and - keys. Using the Ctrl + Space or Ctrl + [image: mousemiddle] shortcuts allows for direct zooming with the stylus.

	Mirroring
	You can mirror the view can be quickly done via M key. Mirroring is a great technique that seasoned digital artists use to quickly review the composition of their work to ensure that it “reads” well, even when flipped horizontally.

New in version 5.1: If you use Alt + M, mirroring will use the cursor position as the center to mirror around instead of the middle of the view. There is also a Mirror Canvas available in the Shortcut Settings to assign a shortcut to.

	Rotating
	You can rotate the canvas without transforming. It can be done with the Ctrl + [shortcut or 4 key and the other way with Ctrl +] shortcut or 6 key. Quick mouse based rotation is done with the Shift + Space and Shift + [image: mousemiddle] shortcuts. To reset rotation use the 5 key.

You can also find these under View ‣ Canvas.

Dockers

Krita subdivides many of its options into functional panels called Dockers (also known as Docks).

Dockers are small windows that can contain, for example, things like the layer stack, Color Palette or list of Brush Presets. Think of them as the painter’s palette, or his water, or his brush kit. They can be activated by choosing the Settings menu and the Dockers sub-menu. There you will find a long list of available options.

Dockers can be removed by clicking the x in the upper-right of the docker-window.

Dockers, as the name implies, can be docked into the main interface. You can do this by dragging the docker to the sides of the canvas (or top or bottom if you prefer).

Dockers contain many of the “hidden”, and powerful, aspects of Krita that you will want to explore as you start delving deeper into the application.

You can arrange the dockers in almost any permutation and combination according to the needs of your workflow, and then save these arrangements as Workspaces.

Dockers can be prevented from docking by pressing the Ctrl key before starting to drag the docker.

Sliders

Krita uses these to control values like brush size, opacity, flow, Hue, Saturation, etc… Below is an example of a Krita slider.

[image: ../../_images/Krita_Opacity_Slider.png]
The total range is represented from left to right and blue bar gives an indication of where in the possible range the current value is. Clicking anywhere, left or right, of that slider will change the current number to something lower (to the left) or higher (to the right).

To input a specific number, hold [image: mouseleft] on, or [image: mouseright] the slider. A number can now be entered directly for even greater precision.

Pressing the Shift key while dragging the slider changes the values at a smaller increment, and pressing the Ctrl key while dragging the slider changes the value in whole numbers or multiples of 5.

Changed in version 5.1: Shift while dragging will now also enable “relative mode”, which means that the cursor can be dragged outside the slider area.

Toolbars

[image: ../../_images/Krita_Toolbar.png]
Toolbars are where some important actions and menus are placed so that they are readily and quickly available for the artist while painting.

You can learn more about the Krita Toolbars and how to configure them in over in the Toolbars section of the manual.
Putting these to effective use can really speed up the Artist’s workflow, especially for users of Tablet-Monitors and Tablet-PCs.

New in version 5.0: In addition to shortcuts and the toolbar, you can also search and quickly through all actions via the action search bar, which is accessed with Ctrl + Enter.

Workspace Chooser

The button on the very right of the Toolbar is the workspace chooser. This allows you to load and save common configurations of the user interface in Krita. There are a few common workspaces that come with Krita.

[image: ../../_images/workspace-chooser-button.svg]

Pop-up Palette

[image: ../../_images/Krita-popuppalette.png]
Pop-up Palette is a feature unique to Krita, designed to increase the productivity of the artist. It is a circular menu for quickly choosing brushes, foreground and background colors, recent colors while painting. To access the palette you have to just [image: mouseright] on the canvas. The palette will spawn at the position of the brush tip or cursor.

By tagging your brush presets you can add particular sets of brushes to this palette. For example, if you add some inking brush presets to inking tag you can change the tags to inking in the pop-up palette, and you’ll get all the inking brushes in the palette.

You can tag brush presets via the Preset Docker, check out the resource overview page to know more about tagging in general.

If you call up the pop-up palette again, you can click the tag icon, and select the tag. In fact, you can make multiple tags and switch between them.
When you need more than ten presets, go into Settings ‣ Configure Krita… ‣ General ‣ Miscellaneous ‣ Number of Palette Presets and change the number of presets from 10 to something you feel comfortable.

Introduction Coming From Other Software

Krita is not the only digital painting application in the world. Because we know our users might be approaching Krita with their experience from using other software, we have made guides to illustrate differences.

Contents:

	Introduction to Krita coming from Photoshop
	Introduction

	Krita Basics

	What Krita Has Over Photoshop

	What Krita Does Not Have

	Conclusion

	Introduction to Krita coming from Paint Tool SAI
	How do you do that in Krita?

	What do you get extra when using Krita?

	What does Krita lack compared to Paint Tool SAI?

	Conclusion

Introduction to Krita coming from Photoshop

Introduction

This document gives an introduction to Krita for users who have been using Photoshop. The intention is to make you productive in Krita as fast as possible and ease the conversion of old habits into new ones.
This introduction is written with Krita version 2.9 and Photoshop CS2 and CS3 in mind. But even though things may change in the future, the basics will most likely remain the same.
The first thing to remember is that Krita is a 2D paint application while Photoshop (PS) is an image manipulation program. This means that PS has more features than Krita in general, but Krita has the tools that are relevant to digital painting. When you get used to Krita, you will find that Krita has some features that are not part of PS.

Krita Basics

This chapter covers how you use Krita in the basic operations compared to PS.

View and Display

Navigation

In Krita you can navigate your document using all these methods:

	‘Mouse wheel’: [image: mousescroll] down and up for zoom, and press [image: mousemiddle] down to pan your document.

	‘Keyboard’: with the + and - keys on your numpad keyboard.

	As in Photoshop, Painter, Manga Studio: use the Ctrl + Space shortcut to zoom, and the Space key to pan.

Note

If you add use the Alt key and so do a Ctrl + Alt + Space shortcut you’ll have a discrete zoom.

Rotation

Rotate the canvas with the Shift + Space, or Ctrl + [and Ctrl +] shortcuts or with the 4 or 6 keys. Reset the rotation with the 5 key.

Mirror

Press the M key to see your drawing or painting mirrored in the viewport.

Move and Transform

Moving and Transformation of contents is done using tools in Krita. You can then find them in the toolbar.
If you are familiar with the way to move layers in PS by holding down the Ctrl key, you can do the same in Krita by pressing the T key for the move tool (think ‘T’ranslate) or the Ctrl + T shortcut for transform tool.

Press the B key to go back to the brush tool when the transformation or translation is done.
To find how to make advanced deformations using the Transform tool, do not right-click on the on-canvas widget: all the option are in the Tool Options docker.

Changes can be applied with the Enter key for the Transform tool.

Note

Move tool changes are auto-applied.

Selections

Like in PS, you can use the Alt or Shift keys during a selection to remove or add selection to the active selection. In addition, you can hold Alt + Shift to intersect. Krita also offers sub tools for this, and you can select them in the Tool Options if a select tool is active. These sub tools are represented as icons.

Note

You cannot press the Ctrl key to move the content of the selection (you have to press the T key or select the Move Tool).

Some other tips:

	If you want to convert a layer to a selection (to select the visible pixels), right-click on the layer docker, and choose Select Opaque.

	If you use a polygonal selection tool, or a selection which needs to be ‘closed’, you will be able to do it or by doing double-click, or by using a Shift + [image: mouseleft] shortcut.

You can scale selection. To do this, choose Select ‣ Scale.

Note

Also, in the Select menu there are more classical options to grow, shrink, feather, border, etc.

If you enable Show Global Selection Mask (Select menu) you can scale/rotate/transform/move or paint on selection like on regular grayscale layer.

	Ctrl + H: Show / Hide selection (same shortcut)

	Ctrl + A: Select All

	Ctrl + Shift + A: deselect All (and not the Ctrl + D shortcut as in PS)

Note for Gimp user: Krita auto-expands and auto defloats new layers created from a selection after pressing the Ctrl + C and Ctrl + V shortcuts, so you do not have to worry about not being able to paint outside the pasted element.

Note

This doesn’t work as intended right now. Intersect is a selection mode which uses the T key as the shortcut. However, the T key is also used to switch to the Move tool, so this shortcut is not functional right now. You have to use the button on the Tool Options.

Layer Handling

The most common default shortcuts are very similar in PS and Krita:

	Ctrl + J: duplicate

	Ctrl + E: merge down

	Ctrl + Shift + E: flattens all (not the Ctrl + Shift + M shortcut as in PS)

	Ins: insert a new paint layer

	Ctrl + G: create new layer group and move selected layers to this group

Groups and Blending Mode (Composite Mode):

The group blending mode in Krita has priority over child layers and overrides it. This can be surprising for Photoshop users. On Photoshop you can use groups to just clean your layer stack and keep blending mode of your layer compositing through all the stack. In Krita the compositing will happen at first level inside the group, then taking into account the blending mode of the group itself.
Both systems have pros and cons. Krita’s way is more predictable according to some artists, compositing-wise. The PS way leads to a cleaner and better ordered layer stack visually wise.

Multi Layer Transform or Move

You can select multiple layers on the stack by holding down the Shift key as in PS, and if you move the layer inside a group you can move or transform the whole group – including doing selection on the group and cut all the sub layers inside on the fly. You can not apply filters to group to affect multiple layers.

Clipping Masks

Krita has no clipping mask, but there is a simpler workaround involving layer groups and Inherit alpha (see the alpha icon). Place a layer with the shape you want to clip the other with at the bottom of a group and layers above with the Inherit alpha option. This will create the same effect as the “clipping mask” PS feature, and also keeps the layer stack cleaner than the clipping mask implementation does.

This process of arranging groups for inherit alpha can be done automatically by Ctrl + Shift + G shortcut. It creates a group with base layer and a layer above it with the Inherit alpha option checked by default.

Pass-through mode

This is available in Krita, but not implemented as a blending mode. Rather, it is an option next to ‘inherit alpha’ on group layers.

Smart Layers

Instead of having smart layers that you can do non-destructive transforms on, Krita has the following set of functionality:

	File Layers
	These are layers which point to an outside file, and will get automatically updated if the outside file changes. Starting from version 4.0 users can convert an existing layer into a file layer by [image: mouseright] clicking on it and doing Convert ‣ to File Layer or by going to Layer ‣ Convert ‣ to File Layer. It will then open a save prompt for the file location and when done will save the file and replace the layer with a file layer pointing at that file.

	Clone Layers
	These are layers that are an ‘instance’ of the layer you had selected when creating them. They get updated automatically when the original layer updates.

	Transform Masks
	These can be used to non-destructive transform all layer types, including the file and clone layers.

	Filter Masks
	Like adjustment layers, these can apply filters non-destructively to all layer types, including file and clone layers.

Layer styles

You can apply Photoshop layer-styles in Krita by right-clicking any given layer type and selecting ‘layer style’ from the context menu. Krita can open and save ASL files, but not all layer style functionality is there yet.

Other

Layers and groups can be exported. See the Layer top menu for this and many other options.

Note

Krita has at least 5 times more blending modes than PS. They are sorted by categories in the drop-down menu. You can use the checkbox to add your most used to the Favorite categories.

Paint tools

This is Krita’s strong point. There are many paint tools, and they have a lot of options.

Tools

In Krita, there is a totally different paradigm for defining what ‘tools’ are compared to PS. Unlike in PS, you will not find the brush, eraser, clone, blur tool, etc. Instead, you will find a way to trace your strokes on the canvas: freehand, line, rectangle, circle, multiple brush, etc. When you have selected the ‘way to trace’ you can choose the way to paint: erasing / cloning / blurring, etc are all part of way to paint managed by the brush-engines options. These brush engine options are saved into so-called presets, which you can find on Brush presets. You can fine tune, and build your own presets using the Edit Brush Settings icon on the top toolbar.

Erasing

In Krita, the eraser is not its own tool; it is a Blending mode (or Composite mode). You can toggle between erase mode and paint mode by pressing the E key, individually for each of your brushes.

Useful shortcuts

	Shift: Grow or Shrink the brush size (or the [and] keys).

	/: Switch last preset selected and current (ex: a pencil preset, and an eraser preset).

	K and L: Increment Darker and Lighter value of the active color.

	I and O: Increment opacity plus or minus.

	D: Reset color to black/foreground and white/background.

	X: Switch background and foreground colors.

	Shift + I / Shift + N / Shift + M: A set of default keyboard shortcuts for accessing the on-canvas color selector.

Note

Some people regard these shortcuts as somewhat unfortunate. The reason is that they are meant to be used during painting and the left Shift key is at the opposite end of the keyboard from the I, M and N keys. So for a right-handed painter, this is very difficult to do while using the stylus with a right hand. Note that you can reassign any shortcut by using the shortcut configuration in Settings ‣ Configure Krita… ‣ Shortcuts.

Stabilization / Path Smoothing

Using the freehand ‘paint with brush’ tool that you can find on the Tool Options, more settings for smoothing the path and stabilization of your brush strokes are available.

Global pressure curve

If you find the feeling of Krita too hard or too soft regarding the pressure when you paint, you can set a softer or harder curve here: Settings ‣ Configure Krita… ‣ Tablet settings

Adjustment

Like in PS, you can use the classic filters to adjust many things while painting:

	Ctrl + L: Levels

	Ctrl + U: HSV adjustment

	Ctrl + I: Invert

Dodge / Burn / Blur Tools

Unlike Photoshop, where these are separate tools, in Krita, they are available via the Filter Brush Engine, which allows you to apply the majority of Krita’s filters in brush form.

Themes

If you don’t like the dark default theme of Krita go to: Settings ‣ Themes, and choose a brighter or darker theme.
If you don’t like the color outside your viewport go to: Settings ‣ Configure Krita… ‣ Display, and change the Canvas border color.

What Krita Has Over Photoshop

As mentioned in the introduction, Krita is a specialized paint application. Thus, it has specialized tools for painting. Similar tools are not found in more generalized image manipulation applications such as PS. Here is a short list of the most important ones.

Brush Engines

Krita has a lot of different so-called brush engines. These brush engines define various methods on how the pixels end up on your canvas. Brush engines with names like Grid, Particles, Sketch and others will bring you new experiences on how the brushes work and a new landscape of possible results. You can start customizing brushes by using the brush-settings editor, which is accessible via the toolbar, but it’s much easier to just press the F5 key.

Tags for brush presets

This is a very useful way to configure brush presets. Each brush can have any amount of tags and be in any group. You can make tag for blending brushes, for texture brushes, for effect brushes, favorites etc.

Settings curve

You can set setting to pressure (speed/distance/tilt/random/etc.) relation for each brush setting.

[image: ../../_images/Settings-curves.png]

The Pop-up Palette

[image: ../../_images/Krita-popuppalette.png]
Easily to be found on [image: mouseright], the pop-up palette allows you to quickly access brushes, color history and a color selector within arm’s reach. The brushes are determined by tag, and pressing the lower-right configure button calls a drop-down to change tags. This allows you to tag brushes in the preset docker by workflow, and quickly access the right brushes for the workflow you need for your image.

Transformations

The Krita transformation tool can perform transformations on a group and affect child layers. There are several modes, like free, perspective, warp, the powerful cage and even liquify.
Furthermore, you can use transformation masks to apply transforms non-destructively to any layer type, raster, vector group, you name it.

[image: ../../_images/Krita-transform-mask.png]

Transform masks allow non-destructive transforms

Incremental Save

You can save your artwork with the pattern : myartworksname_001.kra, myartworksname_002.kra, myartworksname_003.kra etc., by pressing a single key on the keyboard. Krita will increment the final number if the pattern “_XXX” is recognized at the end of the file’s name.

[image: ../../_images/Krita-incremental-saves.png]
This feature allows you to avoid overwriting your files, and keep track to your older version and work in progress steps.

Filter: Color to alpha

If you want to delete the white of the paper from a scanned artwork, you can use this filter. It takes a color and turns it into pure transparency.

[image: ../../_images/Krita-color-to-alpha.png]

Many Blending Modes

If you like using blending modes, Krita has many of them – over 70! You have plenty of room for experimentation.
A special system of favorite blending modes has been created to let you have fast access to the ones you use the most.

Painting Assistants

Krita has many painting assistants. This is a special type vector shapes with a magnetic influence on your brush strokes. You can use them as rulers, including with shapes other than just straight.

[image: ../../_images/Krita_basic_assistants.png]

Krita’s vanishing point assistants in action

Multibrushes: Symmetry / Parallel / Mirrored / Snowflake

Krita’s Multibrush tool allows you to paint with multiple brushes at the same time. Movements of the brushes other than the main brush is created by mirroring what you paint, or by duplicating it by any number around any axis. They can also be used in parallel mode.

[image: ../../_images/Krita-multibrush.png]

A Wide Variety of Color Selectors

The Advanced Color Selector docker offer you a wide choice of color selectors.

[image: ../../_images/Krita_Color_Selector_Types.png]

View dependent color filters

Using the LUT docker, Krita allows you to have a separate color correction filter per view. While this is certainly useful to people who do color correction in daily life, to the artist this allows for seeing a copy of the image in luminance grayscale, so that they instantly know the values of the image.

[image: ../../_images/Krita-view-dependant-lut-management.png]

Using the LUT docker to change the colors per view

HDR color painting

This same LUT docker is the controller for painting with HDR colors. Using the LUT docker to change the exposure on the view, Krita allows you to paint with HDR colors, and has native OpenEXR support!

[image: ../../_images/Krita-hdr-painting.png]

Painting with HDR colors

What Krita Does Not Have

Again, Krita is a digital paint application and Photoshop is an image manipulation program with some painting features. This means that there are things you can do in PS that you cannot do in Krita. This section gives a short list of these features.

Filters

Krita has a pretty impressive pack of filters available, but you will probably miss one or two of the special filters or color adjustment tools you often use in Photoshop. For example, there is no possibility to tweak a specific color in HSV adjustment.

Automatic healing tool

Krita does not have an automatic healing tool. It does, however, have a so-called clone tool which can be used to do a healing correction, although not automatically.

Macro Recording

Macro recording and playback exists in Krita, but it is not working well at this time.

Text Tool

The text tool in Krita is less advanced than the similar tool in Photoshop.

Blending Modes While Transforming

When you transform a layer or a selection in Krita, the transformation appears on the top of your layer stack ignoring the layer blending mode.

Hint

Starting from Krita 5.0, the performance setting “Use in-stack preview in Transform Tool” allows for the layer blending mode to be previewed during transformation.

Photomerge

You may have used this tool in Photoshop to seamlessly and automatically stitch together a drawing that was scanned in segments. Krita does not have an equivalent, though an alternative is to use Hugin, which is cross-platform and free, just like Krita.

Hugin Website [http://hugin.sourceforge.net]

Tutorial for Using Scans in Hugin [https://www.davidrevoy.com/article314/autostiching-scan-with-hugin]

Other

Also, you cannot ‘Export for web’, ‘Image Ready’ for GIF frame or slicing web image, etc.

Conclusion

Using these tips you will probably be up to speed with Krita in a short time. If you find other things worth mentioning in this document we, the authors, would be interested in hearing about them.
Krita develops fast, so we believe that the list of things possible in Photoshop but not in Krita will become shorter in time. We will maintain this document as this happens.

Introduction to Krita coming from Paint Tool SAI

How do you do that in Krita?

This section goes over the functionalities that Krita and Paint Tool SAI share, but shows how they slightly differ.

Canvas navigation

Krita, just like SAI, allows you to flip, rotate and duplicate the view. Unlike SAI, these are tied to keyboard keys.

	Mirror
	This is tied to M key to flip.

	Rotate
	There’s a couple of possibilities here: either the 4 and 6 keys, or the Ctrl + [and Ctrl +] shortcuts for basic 15 degrees rotation left and right. But you can also have more sophisticated rotation with the Shift + Space + drag or Shift + [image: mousemiddle] + drag shortcuts. To reset the rotation, press the 5 key.

	Zoom
	You can use the + and - keys to zoom out and in, or use the Ctrl + [image: mousemiddle] shortcut. Use the 1, 2 or 3 keys to reset the zoom, fit the zoom to page or fit the zoom to page width.

You can use the Overview docker in Settings ‣ Dockers to quickly navigate over your image.

You can also put these commands on the toolbar, so it’ll feel a little like SAI. Go to Settings ‣ Configure Toolbars… menu item. There are two toolbars, but we’ll add to the Main Toolbar.

Then, you can type in something in the left column to search for it. So, for example, ‘undo’. Then select the action ‘undo freehand stroke’ and drag it to the right. Select the action to the right, and click Change text. There, toggle Hide text when toolbar shows action alongside icon to prevent the action from showing the text. Then press OK. When done right, the Undo should now be sandwiched between the save and the gradient icon.

You can do the same for Redo, Deselect, Invert Selection, Zoom out, Zoom in, Reset zoom, Rotate left, Rotate right, Mirror view and perhaps Smoothing: basic and Smoothing: stabilizer to get nearly all the functionality of SAI’s top bar in Krita’s top bar. (Though, on smaller screens this will cause all the things in the Brushes and Stuff Toolbar to hide inside a drop-down to the right, so you need to experiment a little).

Hide Selection, Reset Rotation are currently not available via the Toolbar configuration, you’ll need to use the shortcuts Ctrl + H and 5 to toggle these.

Note

Krita 3.0 currently doesn’t allow changing the text in the toolbar, we’re working on it.

Right click color sampler

You can actually set this in Settings ‣ Configure Krita… ‣ Canvas input settings ‣ Alternate invocation. Just double-click the entry that says Ctrl + [image: mouseleft] shortcut before Sample Foreground Color from Merged Image to get a window to set it to [image: mouseright].

Note

Krita 3.0 actually has a Paint Tool SAI-compatible input sheet shipped by default. Combine these with the shortcut sheet for Paint Tool SAI to get most of the functionality on familiar hotkeys.

Stabilizer

This is in the tool options docker of the freehand brush. Use Basic Smoothing for more advanced tablets, and Stabilizer is much like Paint Tool SAI’s. Just turn off Delay so that the dead-zone disappears.

Transparency

So one of the things that throw a lot of Paint Tool SAI users off is that Krita uses checkers to display transparency, which is actually not that uncommon. Still, if you want to have the canvas background to be white, this is possible. Just choose Background: As Canvas Color in the new image dialogue and the image background will be white. You can turn it back to transparent via Image ‣ Image Background Color and Transparency… menu item. If you export a PNG or JPG, make sure to uncheck Store alpha channel (transparency) and to make the background color white (it’s black by default).

[image: ../../_images/Krita-color-to-alpha.png]
Like SAI, you can quickly turn a black and white image to black and transparent with the Filter: Color to Alpha dialog under Filters ‣ Colors ‣ Color to Alpha… menu item.

Brush Settings

Another, somewhat amusing misconception is that Krita’s brush engine is not very complex. After all, you can only change the Size, Flow and Opacity from the top bar.

This is not quite true. It’s rather that we don’t have our brush settings in a docker but a drop-down on the toolbar. The easiest way to access this is with the F5 key. As you can see, it’s actually quite complex. We have more than a dozen brush engines, which are a type of brush you can make. The ones you are used to from Paint Tool SAI are the Pixel Brush (ink), The Color Smudge Brush (brush) and the filter brush (dodge, burn).

A simple inking brush recipe for example is to take a pixel brush, uncheck the Enable Pen Settings on opacity and flow, and uncheck everything but size from the option list. Then, go into brush-tip, pick Auto Brush from the tabs, and set the size to 25 (right-click a blue bar if you want to input numbers), turn on anti-aliasing under the brush icon, and set fade to 0.9. Then, as a final touch, set spacing to ‘auto’ and the spacing number to 0.8.

You can configure the brushes in a lot of detail, and share the packs with others. Importing of packs and brushes can be done via the Settings ‣ Manage Resources…, where you can import .bundle or .kpp files.

Erasing

Erasing is a blending mode in Krita, much like the transparency mode of Paint Tool SAI. It’s activated with the E key, or you can select it from the Blending Mode drop-down box.

Blending Modes

Krita has a lot of Blending modes, and thankfully all of Paint Tool SAI’s are amongst them except binary. To manage the blending modes, each of them has a little check-box that you can tick to add them to the favorites.

Multiple, Screen, Overlay and Normal are amongst the favorites.
Krita’s Luminosity is actually slightly different from Paint Tool SAI’s, and it replaces the relative brightness of color with the relative brightness of the color of the layer.

SAI’s Luminosity mode (called Shine in SAI2) is the same as Krita’s Luminosity/Shine (SAI) mode, which is new in Krita 4.2.4.
The SAI’s Shade mode is the same as Color Burn and Hard Mix is the same as the Luminosity and Shade modes.

Layers

	Lock Alpha
	This is the checker box icon next to every layer.

	Clipping group
	For Clipping masks in Krita you’ll need to put all your images in a single layer, and then press the ‘a’ icon, or press the Ctrl + Shift + G shortcut.

	Ink layer
	This is a vector layer in Krita, and also holds the text.

	Masks
	These grayscale layers that allow you to affect the transparency are called transparency masks in Krita, and like Paint Tool SAI, they can be applied to groups as well as layers. If you have a selection and make a transparency mask, it will use the selection as a base.

	Clearing a layer
	This is under Edit ‣ Clear, but you can also just press the Del key.

Mixing between two colors

If you liked this docker in Paint Tool SAI, Krita’s Digital Color Selector docker will be able to help you. Dragging the sliders will change how much of a color is mixed in.

What do you get extra when using Krita?

More brush customization

You already met the brush settings editor. Sketch brushes, grid brushes, deform brushes, clone brushes, brushes that are textures, brushes that respond to tilt, rotation, speed, brushes that draw hatches and brushes that deform the colors. Krita’s variety is quite big.

More color selectors

You can have HSV sliders, RGB sliders, triangle in a hue ring. But you can also have HSI, HSL or HSY’ sliders, CMYK sliders, palettes, round selectors, square selectors, tiny selectors, big selectors, color history and shade selectors. Just go into Settings ‣ Configure Krita… ‣ Color Selector Settings ‣ Color Selector tab, select an option in the Docker: drop-down box, to change the shape and type of your main color selector.

[image: ../../_images/Krita_Color_Selector_Types.png]
You can call the color history with the H key, common colors with the U key and the two shade selectors with the Shift + N and Shift + M shortcuts. The big selector can be called with the Shift + I shortcut on canvas.

Geometric Tools

Circles, rectangles, paths, Krita allows you to draw these easily.

Multibrush, Mirror Symmetry and Wrap Around

These tools allow you to quickly paint a mirrored image, mandala or tiled texture in no time. Useful for backgrounds and abstract vignettes.

[image: ../../_images/Krita-multibrush.png]

Assistants

The painting assistants can help you to set up a perspective, or a concentric circle and snap to them with the brush.

[image: Krita's vanishing point assistants in action.]

Krita’s vanishing point assistants in action.

Locking the Layer

Lock the layer with the padlock, so you don’t draw on it.

Quick Layer select

If you hold the R key and press a spot on your drawing, Krita will select the layer underneath the cursor. Really useful when dealing with many layers.

Color Management

This allows you to prepare your work for print, or to do tricks with the LUT docker, so you can diagnose your image better. For example, using the LUT docker to turn the colors grayscale in a separate view, so you can see the values instantly.

[image: ../../_images/Krita-view-dependant-lut-management.png]

Advanced Transform Tools

Not just rotate and scale, but also cage, wrap, liquify and non-destructive transforms with the transform tool and masks.

[image: ../../_images/Krita_transforms_liquefy.png]

More Filters and non-destructive filter layers and masks

With filters like color balance and curves you can make easy shadow layers. In fact, with the filter layers and layer masks you can make them apply on the fly as you draw underneath.

[image: ../../_images/Krita_ghostlady_3.png]

Pop-up palette

This is the little circular thing that is by default on the right click. You can organize your brushes in tags, and use those tags to fill up the pop-up palette. It also keeps a little color selector and color history, so you can switch brushes on the fly.

[image: ../../_images/Krita-popuppalette.png]

What does Krita lack compared to Paint Tool SAI?

	Variable width vector lines

	The selection source option for layers

	Dynamic hard-edges for strokes (the fringe effect)

	No mix-docker

	No Preset-tied stabilizer

	No per-preset hotkeys

Conclusion

I hope this introduction got you a little more excited to use Krita, if not feel a little more at home.

Drawing Tablets

This page is about drawing tablets, what they are, how they work, and
where things can go wrong.

What are Tablets?

Drawing with a mouse can be unintuitive and difficult compared to pencil
and paper. Even worse, extended mouse use can result in carpal tunnel
syndrome. That’s why most people who draw digitally use a specialized
piece of hardware known as a drawing tablet.

[image: ../_images/Krita_tablet_types.png]
A drawing tablet is a piece of hardware that you can plug into your
machine, much like a keyboard or mouse. It usually looks like a plastic
pad, with a stylus. Another popular format is a computer monitor with
stylus used to draw directly on the screen. These are better to use than
a mouse because it’s more natural to draw with a stylus and generally
better for your wrists.

With a properly installed tablet stylus, Krita can use information like
pressure sensitivity, allowing you to make strokes that get bigger or
smaller depending on the pressure you put on them, to create richer and
more interesting strokes.

Note

Sometimes, people confuse finger-touch styluses with a proper tablet. You can tell the difference because a drawing tablet stylus usually has a pointy nib, while a stylus made for finger-touch has a big rubbery round nib, like a finger. These tablets may not give good results and a pressure-sensitive tablet is recommended.

[image: ../_images/Krita_tablet_stylus.png]

Supported Tablets

Supported tablets are owned by Krita developers themselves, so they can reliably diagnose and fix bugs. We maintain a list of those here.

If you’re looking for information about iPad or Android tablets, look here.

Drivers and Pressure Sensitivity

So you have bought a tablet, a real drawing tablet. And you want to get it
to work with Krita! So you plug in the USB cable, start up Krita and…
It doesn’t work! Or well, you can make strokes, but that pressure
sensitivity you heard so much about doesn’t seem to work.

This is because you need to install a program called a ‘driver’. Usually
you can find the driver on a CD that was delivered alongside your
tablet, or on the website of the manufacturer. Go install it, and while
you wait, we’ll go into the details of what it is!

Running on your computer is a basic system doing all the tricky bits of
running a computer for you. This is the operating system, or OS. Most
people use an operating system called Windows, but people on an Apple
device have an operating system called macOS, and some people, including
many of the developers use a system called Linux.

The base principle of all of these systems is the same though. You would
like to run programs like Krita, called software, on your computer, and
you want Krita to be able to communicate with the hardware, like your
drawing tablet. But to have those two communicate can be really
difficult – so the operating system, works as a glue between the two.

Whenever you start Krita, Krita will first make connections with the
operating system, so it can ask it for a lot of these things: It would
like to display things, and use the memory, and so on. Most importantly,
it would like to get information from the tablet!

[image: ../_images/Krita_tablet_drivermissing.png]
But it can’t! Turns out your operating system doesn’t know much about
tablets. That’s what drivers are for. Installing a driver gives the
operating system enough information, so the OS can provide Krita with the
right information about the tablet. The hardware manufacturer’s job is
to write a proper driver for each operating system.

Warning

Because drivers modify the operating system a little, you will always need to restart your computer when installing or uninstalling a driver, so don’t forget to do this! Conversely, because Krita isn’t a driver, you don’t need to even uninstall it to reset the configuration, just rename or delete the configuration file.

Where it can go wrong: Windows

Krita automatically connects to your tablet if the drivers are
installed. When things go wrong, usually the problem isn’t with Krita.

Surface Pro tablets need two drivers

Certain tablets using n-trig, like the Surface Pro, have two types of
drivers. One is native, n-trig and the other one is called WinTab.
Since 3.3, Krita can use Windows Ink style drivers, just go to
Settings ‣ Configure Krita… ‣ Tablet Settings and
toggle the Windows 8+ Pointer Input (Windows Ink) there. You
don’t need to install the WinTab drivers anymore for n-trig based pens.

Windows 10 updates

Sometimes a Windows 10 update can mess up tablet drivers. In that case,
reinstalling the drivers should work.

Wacom Tablets

There are three known problems with Wacom tablets and Windows.

The first is that if you have customized the driver settings, then sometimes,
often after a driver update, but that is not necessary, the driver breaks.
Resetting the driver to the default settings and then loading your settings
from a backup will solve this problem.

The second is that for some reason it might be necessary to change the display
priority order. You might have to make your Cintiq screen your primary screen,
or, on the other hand, make it the secondary screen. Double check in the Wacom
settings utility that the tablet in the Cintiq is associated with the Cintiq
screen.

The third is that if you have a display tablet like a Cintiq and a Wacom ExpressKeys remote, and you have disabled Windows Ink in the calibration page of the stylus settings dialog, so you have the full set of WinTab features, the Cintiq needs to be the first item in Wacom’s desktop application list. Otherwise, you will have an offset between stylus and mouse that will get worse the more displays there are to the left of the Cintiq display.

Broken Drivers

Tablet drivers need to be made by the manufacturer. Sometimes, with
really cheap tablets, the hardware is fine, but the driver is badly
written, which means that the driver just doesn’t work well. We cannot
do anything about this, sadly. You will have to send a complaint to the
manufacturer for this, or buy a better tablet with better quality
drivers.

Conflicting Drivers

On Windows, you can only have a single WinTab-style driver installed at
a time. So be sure to uninstall the previous driver before installing
the one that comes with the tablet you want to use. Other operating
systems are a bit better about this, but even Linux, where the drivers
are often preinstalled, can’t run two tablets with different drivers at
once.

Interfering software

Sometimes, there’s software that tries to make a security layer between
Krita and the operating system. Sandboxie is an example of this.
However, Krita cannot always connect to certain parts of the operating
system while sandboxed, so it will often break in programs like
Sandboxie. Similarly, certain mouse software, like Razer utilities can
also affect whether Krita can talk to the operating system, converting
tablet information to mouse information. This type of software should be
configured to leave Krita alone, or be uninstalled.

The following software has been reported to interfere with tablet events
to Krita:

	Sandboxie

	Razer mouse utilities

	AMD Catalyst TM “game mode” (this broke the right click for someone)

Flicks (Wait circle showing up and then calling the popup palette)

If you have a situation where trying to draw keeps bringing up the
pop-up palette on Windows, then the problem might be flicks. These are a
type of gesture, a bit of Windows functionality that allows you to make
a motion to serve as a keyboard shortcut. Windows automatically turns
these on when you install tablet drivers, because the people who made
this part of Windows forgot that people also draw with computers. So you
will need to turn it off in the Windows flicks configuration.

Wacom Double Click Sensitivity (Straight starts of lines)

If you experience an issue where the start of the stroke is straight,
and have a Wacom tablet, it could be caused by the Wacom driver
double-click detection.

To fix this, go to the Wacom settings utility and lower the double click
sensitivity.

Loading and Saving Brushes

In the real world, when painting or drawing, you don’t just use one tool. You use pencils, erasers, paintbrushes, different types of paint, inks, crayons, etc. All these have different ways of making marks.

In a digital program like Krita you have something similar. We call this a brush engine. And much like how cars have different engines that give different feels when driving, or how pencils make distinctly different marks than roller ball pens, different brush engines have totally different feels.

The brush engines have a lot of different settings as well. So, you can save those settings into presets.

Unlike Photoshop, Krita makes a difference between brush-tips and brush-presets. Tips are only a stamp of sorts, while the preset uses a tip and many other settings to create the full brush.

The Brush settings drop-down

To start, the Brush Settings Editor panel can be accessed in the toolbar, between the Choose brush preset button on the right and the Fill Patterns button on the left. Alternately, you can use the F5 key to open it.

When you open Brush Settings Editor panel you will see something like this:

Tour of the brush settings drop-down

[image: ../_images/Krita_5_0_Brush_Settings_Layout.svg]The brush settings drop-down is divided into six areas,

Section A – General Information

This contains the Preset Icon, Live Brush Preview, the Preset Name, the Engine name, and several buttons for saving, renaming, and reloading.

Krita’s brush settings are stored into the metadata of a 200×200 PNG (the KPP file), where the image in the PNG file becomes the preset icon. This icon is used everywhere in Krita, and is useful for differentiating brushes in ways that the live preview cannot.

The live preview shows a stroke of the current brush as a little s-curve wiggle, with the pressure being non-existent on the left, and increasing to full pressure as it goes to the right. It can thus show the effect of the Pressure, Drawing Angle, Distance, Fade and Fuzzy Dab sensors, but none of the others. For some brush engines it cannot show anything. For the color smudge, filter brush and clone tool, it shows an alternating line pattern because these brush engines use the pixels already on canvas to change their effect.

After the preset name, there’s a button for renaming the brush. This will save the brush as a new brush and deactivate the previous brush.

Engine

The engine of a brush is the underlying programming that generates the stroke from a brush. What that means is that different brush engines have different options and different results. You can see this as the difference between using crayons, pencils and inks, but because computers are math devices, most of our brush engines produce different things in a more mathematical way.

For most artists the mathematical nature doesn’t matter as much as the different textures and marks each brush engine, and each brush engine has its own distinct flavor and use, and can be further customized by modifying the options.

Reloading

If you change a preset, an icon will appear behind the engine name. This is the Reload the brush preset button. You can use it to revert to the original brush settings.

Saving a preset

On the right, there’s Save New Brush Preset… and Overwrite Brush buttons.

	Save New Brush Preset…
	Will take the current preset and all its changes and save it as a new preset. If no change was made, you will be making a copy of the current preset.

	Overwrite Brush
	This will only enable if there are any changes. Pressing this will override the current preset with the new settings, keeping the name and the icon intact. It will always make a timestamped back up in the resources folder.

Save new preset will call up the following window, with a mini scratch pad, and all sorts of options to change the preset icon:

[image: ../_images/Krita_4_0_Save_New_Brush_Preset_Dialog.png]
The image on the left is a mini scratch pad, you can draw on it with the current brush, allowing small modifications on the fly.

	Brush Name:
	The Name of your brush. This is also used for the KPP file. If there’s already a brush with that name, it will effectively overwrite it.

	Load Existing Thumbnail
	This will load the existing thumbnail inside the preset.

	Load Scratch Pad Thumbnail
	This will load the dashed area from the big scratch pad (Section C) into the thumbnail area.

	Load Image
	With this you can choose an image from disk to load as a thumbnail.

	Load from Icon Library
	This opens up the icon library.

	Clear Thumbnail
	This will make the mini scratch pad white.

The Icon Library

To make making presets icons faster, Krita got an icon library.

[image: ../_images/Krita_4_0_Preset_Icon_Library_Dialog.png]
It allows you to select tool icons, and an optional small emblem. When you press OK it will load the resulting combination into the mini scratch pad, and you can draw in the stroke.

If you go to your resources folder, there’s a folder there called preset_icons, and in this folder there are tool_icons and emblem_icons. You can add semi-transparent PNGs here and Krita will load those into the icon library as well, so you can customize your icons even more!

At the top right of the icon library, there are three sliders. They allow you to adjust the tool icon. The top two are the same Hue and Saturation as in HSL adjustment, and the lowest slider is a super simple levels filter. This is done this way because the levels filter allows maintaining the darkest shadows and brightest highlights on a tool icon,
making it much better for quick adjustments.

If you’re done with everything, you can press Save in the Save New Brush Preset dialog and Krita will save the new brush.

Section B – The Preset Chooser

The preset chooser is much the same as the preset docker and the preset drop-down on the F6 key. It’s unique in that it allows you to filter by engine and this is also where you can create brushes for an engine from scratch.

It is by default collapsed, so you will need to press the arrow at the top left of the brush engine to show it.

The top drop-down is set to “all” by default, which means it shows all engines. It then shows a tag section where you can select the tags, the preset list and the search bar.

Underneath that there’s a plus icon, which when pressed gives you the full list of Krita’s engines. Selecting an engine from the list will show the brushes for that engine.

The trashcan icon does the same as it does in the preset docker: delete, or rather, deactivate a preset, so it won’t show up in the list.

Section C – The Scratch pad

When you tweak your brushes, you want to be able to check what each setting does. That’s why, to the right of the settings drop-down, there is a scratch pad.

It is by default collapsed, so you will have to press the arrow at the top right of the brush settings to show it.

When saving a new preset, you can choose to get the icon from the scratch pad, this will load the dash area into the mini scratch pad of the Save New Brush Preset dialog.

The scratch pad has five buttons underneath it. These are in order for:

	Fill area with brush preset icon

	Fill area with current image

	Fill area with gradient (useful for smudge brushes)

	Fill area with background color

	Reset area to white

Section D – The Options List

The options, as stated above, are different per brush engine. These represent the different parameters, toggles and knobs that you can turn to make a brush preset unique. For a couple of options, the main things to change are sliders and checkboxes, but for a lot of them, they use curves instead.

Some options can be toggled, as noted by the little checkboxes next to them, but others, like flow and opacity are so fundamental to how the brush works, that they are always on.

The little padlock icon next to the options is for locking the brush. This has its own page.

Section E – Option Configuration Widget

Where section D is the list of options, section E is the widget where you can change things.

Using sensor curves

One of the big important things that make art unique to the artist who created it is the style of the strokes. Strokes are different because they differ in speed, rotation, direction, and the amount of pressure put onto the stylus. Because these are so important, we would want to customize how these values are understood in detail. The best way to do this is to use curves.

Curves show up with the size widget for example. With an inking brush, we want to have size mapped to pressure. Just toggling the size option in the option list will do that.

However, different people have different wrists and thus will press differently on their stylus. Someone who presses softly tends to find it easy to make thin strokes, but very difficult to make thick strokes. Conversely, someone who presses hard on their stylus naturally will have a hard time making thin strokes, but easily makes thick ones.

Such a situation can be improved by using the curves to map pressure to output thinner lines or thicker ones.

The brush settings curves even have quick curve buttons for these at the top. Someone who has a hard time making small strokes should try the second to last concave button, while someone who has a hard time making thick strokes should try the third button, the S shape.

Underneath the curve widget there are two more options:

	Share curve across all settings
	This is for the list of sensors. Toggling this will make all the sensors use the same curve. Unchecked, all checked sensors will have separate curves.

	Curves calculation mode:
	This indicates how the multiple values of the sensor curves are used. The curves always go from 0 to 1.0, so if one curve outputs 0.5 and the other 0.7, then…

	Multiply
	Will multiply the two values, 0.5*0.7 = 0.35.

	Addition
	Will add the two to a maximum of 1.0, so 0.5+0.7 = 1.2, which is then capped at 1.0.

	Maximum
	Will compare the two and pick the largest. So in the case of 0.5 and 0.7, the result is 0.7.

	Minimum
	Will compare the two and pick the smallest. So in the case of 0.5 and 0.7, the result is 0.5.

	Difference
	Will subtract the smallest value from the largest, so 0.7-0.5 = 0.2.

It’s maybe better to see with the following example:

[image: ../_images/Krita_4_0_brush_curve_calculation_mode.png]
The first two are regular, the rest with different multiplication types.

	Is a brush with size set to the distance sensor.

	Is a brush with the size set to the fade sensor.

	The size is calculated from the fade and distance sensors multiplied.

	The size is calculated from the fade and distance sensors added to
each other. Notice how thick it is.

	The size takes the maximum value from the values of the fade and
distance sensors.

	The size takes the minimum value from the values of the fade and
distance sensors.

	The size is calculated by having the largest of the values subtracted
with the smallest of the values.

Section F – Miscellaneous options

	Eraser switch size
	This switches the brush to a separately stored size when using the E key.

	Eraser switch opacity
	Same as above, but then with Eraser opacity.

	Temporarily save tweaks to preset
	This enables dirty presets. Dirty presets store the tweaks you make as long as this session of Krita is active. After that, they revert to default. Dirtied presets can be recognized by the icon in the top-left of the preset.

[image: ../_images/Krita_4_0_dirty_preset_icon.png]

The icon encircled in red in the top left of the third, fourth and fifth presets in first row indicate it is “Dirty”, meaning there are tweaks made to the preset.

	Instant preview
	This allows you to toggle instant preview on the brush. The Instant Preview has a super-secret feature: when you press the instant preview label, and then right click it, it will show a threshold slider. This slider determines at what brush size instant preview is activated for the brush. This is useful because small brushes can be slower with instant preview, so the threshold ensures it only activates when necessary.

The On-canvas brush settings

There is a On-Canvas Brush Editor. If you open up the pop-up palette, there should be an icon on the bottom-right. Press that to show the on-canvas brush settings. You will see several sliders here, to quickly make small changes.

At the top it shows the currently active preset. Next to that is a settings button, click that to get a list of settings that can be shown and organized for the given brush engine. You can use the up and down arrows to order their position, and then left and right arrows to add or remove from the list. You can also drag and drop.

Making a Brush Preset

Now, let’s make a simple brush to test the waters with:

Getting a default for the brush engine.

First, open the settings with the F5 key.

Then, press the arrow on the upper left to open the preset chooser. There, press the “+” icon to get a list of engines. For this brush we’re going to make a pixel brush.

Example: Making an inking brush

	Draw on the scratch pad to see what the current brush looks like. If done correctly, you should have a 5px wide brush that has pressure set to opacity.

	Let us turn off the opacity first. Click on the opacity option in the right-hand list. The settings should now be changed to a big curve. This is the sensor curve.

	Uncheck the Enable Pen Settings checkbox.

	Test on the scratch pad… there still seems to be something affecting opacity. This is due to the flow option.

	Select the Flow option from the list on the right hand. Flow is like Opacity, except that Flow is per dab, and opacity is per stroke.

	Uncheck the Enable Pen Settings checkbox here as well. Test again.

	Now you should be getting somewhere towards an inking brush. It is still too small however, and kinda grainy looking. Click Brush Tip in the brush engine options.

	Here, the diameter is the size of the brush-tip. You can touch the slider change the size, or right-click it and type in a value. Set it to 25 and test again. It should be much better.

	Now to make the brush feel a bit softer, turn down the fade parameter to about 0.9. This’ll give the brush mask a softer edge.

	If you test again, you’ll notice the fade doesn’t seem to have much effect. This has to do with the spacing of the dabs: The closer they are together, the harder the line is. By default, this is 0.1, which is a bit low. If you set it to 10 and test, you’ll see what kind of effect spacing has. The Auto checkbox changes the way the spacing is calculated, and Auto Spacing with a value of 0.8 is the best value for inking brushes. Don’t forget that you can use right-click to type in a value.

	Now, when you test, the fade seems to have a normal effect… except on the really small sizes, which look jagged. To get rid of that, check the anti-aliasing check box. If you test again, the lines should be much nicer now.

Saving the new Brush

When you’re satisfied, go to the upper left and select Save New Brush Preset… button.

You will get the save preset dialog. Name the brush something like “My Preset”. Then, select Load from Icon Library to get the icon library. Choose a nice tool icon and press OK.

The icon will be loaded into the mini scratch pad on the left. Now doodle a nice stroke next to it. If you feel you messed up, just go back to the icon library to load a new icon.

Finally, press Save, and your brush should be done.

You can further modify your inking brush by…

	Changing the amount of pressure you need to put on a brush to make it full size.
	To do this, select the size option, and press the pressure sensor from the list next to the curve. The curve should look like a straight line. Now if you want a brush that gets big with little pressure, tick on the curve to make a point, and drag the point to the upper-left. The more the point is to the upper-left, the more extreme the effect. If you want instead a brush that you have to press really hard on to get to full size, drag the dot to the lower-right. Such a brush is useful for fine details. Don’t forget to save the changes to your brush when done.

	Making the fine lines look even softer by using the flow option.
	To do this, select the flow option, and turn back on the Enable Pen Settings check box. Now if you test this, it is indeed a bit softer, but maybe a bit too much. Click on the curve to make a dot, and drag that dot to the top-left, half-way the horizontal of the first square of the grid. Now, if you test, the thin lines are much softer, but the hard your press, the harder the brush becomes.

Sharing Brushes

Okay, so you’ve made a new brush and want to share it. There are several ways to share a brush preset.

The recommended way to share brushes and presets is by using the Resource Bundle system. We have detailed instructions on how to use them on the resource management page.

However, there are various old-fashioned ways of sharing brushes that can be useful when importing and loading very old packs:

Sharing a single preset

There are three types of resources a single preset can take:

	A paintoppreset file: This is the preset proper, with the icon and the curves stored inside.

	A Brush file: This is the brush tip. When using masked brushes, there are two of these.

	A Pattern file: this is when you are using textures.

So when you have a brush that uses unique predefined tips for either brush tip or masked brush, or unique textures you will need to share those resources as well with the other person.

To find those resources, go to Settings ‣ Manage Resources… ‣ Open Resource Folder.

There, the preset file will be inside paintoppresets, the brush tips inside brushes and the texture inside patterns.

Importing a single KPP file.

Now, if you want to use the single preset, you should go to the preset chooser on the F6 key and press the folder icon there. This will give a file dialog. Navigate to the KPP file and open it to import it.

If there are brush tips and patterns coming with the file, do the same with pattern via the pattern docker, and for the brush-tip go to the settings drop-down (F5) and then go to the brush-tip option. There, select predefined brush, and then the import button to call up the file dialog.

You can also use the import button in Settings ‣ Manage Resources….

Sharing via ZIP (old-fashioned)

Sharing via ZIP should be replaced with resource bundles, but older brush packs are stored in ZIP files.

Using a ZIP with the relevant files.

	Go to Settings ‣ Manage Resources… ‣ Open Resource Folder to open the resource folder.

	Then, open up the ZIP file.

	Copy the brushes, paintoppresets and patterns folders from the ZIP file to the resource folder. You should get a prompt to merge the folders, agree to this.

	Restart Krita.

	Enjoy your brushes!

On-Canvas Brush Editor

Krita’s brush editor is, as you may know, on the F5 key. However, sometimes you just want to modify a single parameter quickly. Perhaps even in canvas-only mode. The on canvas brush editor or brush HUD allows you to do this. It’s accessible from the pop-up palette, by ticking the lower-right arrow button.

[image: ../_images/On_canvas_brush_editor.png]
You can change the amount of visible settings and their order by clicking the settings icon next to the brush name.

[image: ../_images/On_canvas_brush_editor_2.png]
On the left are all unused settings, on the right are all used settings. You use the > and < buttons to move a setting between the two columns. The Up and Down buttons allow you to adjust the order of the used settings, for when you think flow is more important than size.

[image: ../_images/On_canvas_brush_editor_3.png]
These set-ups are per brush engine, so different Brush Engines can have different configurations.

Mirror Tools

Draw on one side of a mirror line while the Mirror Tool copies the results to the other side. The Mirror Tools are accessed along the toolbar. You can move the location of the mirror line by grabbing the handle.

[image: ../_images/Mirror-tool.png]
Mirror Tools give a similar result to the Multibrush Tool, but unlike the Multibrush which only traces brush strokes like the Freehand Brush Tool, the Mirror Tools can be used with any other tool that traces strokes, such as the Straight Line Tool and the Bezier Curve Tool, and even with the Multibrush Tool.

	Horizontal Mirror Tool
	Mirror the results along the horizontal axis.

	Vertical Mirror Tool
	Mirror the results along the vertical axis.

There are additional options for each tool. You can access these by the clicking the drop-down arrow located on the right of each tool.

	Hide Mirror X/Y Line (toggle) – Locks the mirror axis and hides the axis line.

	Lock X/Y Line (toggle) – hides the move icon on the axis line.

	Move to Canvas Center X/Y – Moves the axis line to the center of the canvas.

Mirroring along a rotated line

The Mirror Tool can only mirror along a perfectly vertical or horizontal line. To mirror along a line that is at a rotated angle, use the Multibrush Tool and its various parameters, it has more advanced options besides basic symmetry.

Painting with Assistants

The assistant system allows you to have a little help while drawing straight lines or circles.

They can function as a preview shape, or you can snap onto them with the freehand brush tool. In the tool options of free hand brush, you can toggle Snap to Assistants to turn on snapping.

[image: Krita's vanishing point assistants in action.]

Krita’s vanishing point assistants in action.

The following assistants are available in Krita:

Types

There are several types in Krita. You can select a type of assistant via the tool options docker.

Ellipse

An assistant for drawing ellipses and circles.

This assistant consists of three points: the first two are the axis of the ellipse, and the last one is to determine its width.

	Concentric Ellipse
	The same an ellipse, but allows for making ellipses that are concentric to each other.

If you press the Shift key while holding the first two handles, they will snap
to perfectly horizontal or vertical lines. Press the Shift key while holding the
third handle, and it’ll snap to a perfect circle.

Perspective Ellipse

Alternative assistant for drawing ellipses. It can be used either simply, to draw an ellipse defined by a tetragon which the ellipse is tangential to, or in a perspective as an ellipse representing the perspective transformation of a circle.

[image: ../_images/Assistants_ellipse_in_perspective.png]
The assistant consists of four points, which are the corners for the tetragon defining the ellipse.

The X-like marks show the locations of the vanishing points for the perspective.

There are two sets of lines inside the ellipse: one, solid, are the lines connecting points where the ellipse touches the tetragon. They are the axis of the circle in perspective. The dotted lines represent the current, actual axis of the final ellipse.

Perspective

This ruler allows you to draw and manipulate grids on the canvas that can serve as perspective guides for your painting. A grid can be added to your canvas by first clicking the tool in the toolbar and then clicking four points on the canvas which will serve as the four corners of your grid.

[image: ../_images/Perspectivegrid.png]
This grid can be used with the ‘perspective’ sensor, which can influence brushes.

The grid can be manipulated by pulling on any of its four corners. The grid can be extended by clicking and dragging a midpoint of one of its edges. This will allow you to expand the grid at other angles. This process can be repeated on any subsequent grid or grid section.

If you press the Shift key while holding any of the corner handles, they’ll snap to one of the other corner handles, in sets. You can delete any grid by clicking on the cancel button at its center. This tool can be used to build reference for complex scenes.

Ruler

There are three assistants in this group:

	Ruler
	Helps create a straight line between two points.

	Infinite Ruler
	Extrapolates a straight line beyond the two visible points on the canvas.

	Parallel Ruler
	This ruler allows you to draw a line parallel to the line between the two points anywhere on the canvas.

If you press the Shift key while holding the first two handles, they will snap to perfectly horizontal or vertical lines.

New in version 5.1: Of these, the Ruler assistant also has extra options to add markers:

	Subdivisions
	This adds notches to the length of the assistant, evenly spread over the assistant.

	Minor Subdivisions
	This adds extra smaller notches between the Subdivisions.

Spline

This assistant allows you to position and adjust four points to create a cubic bézier curve. You can then draw along the curve, snapping your brush stroke directly to the curve line. Perfect curves every time!

If you press the Shift key while holding the first two handles, they will snap to perfectly horizontal or vertical lines. Press the Shift key while holding the third or fourth handle, they will snap relative to the handle they are attached to.

Vanishing Point

This assistant allows you to create a vanishing point, typically used for a horizon line. A preview line is drawn and all your snapped lines are drawn to this line.

It is one point, with four helper points to align it to previously created perspective lines.

They are made and manipulated with the Assistant Tool.

If you press the Shift key while holding the center handle, they will snap to perfectly horizontal or vertical lines depending on the position of where it previously was.

Changed in version 4.1: The vanishing point assistant also shows several general lines.

When you’ve just created, or when you’ve just moved a vanishing point assistant, it will be selected. This means you can modify the amount of lines shown in the tool options of the Assistant Tool.

Fish Eye Point

Like the vanishing point assistant, this assistant is per a set of parallel lines in a 3d space. So to use it effectively, use two, where the second is at a 90 degrees angle of the first, and add a vanishing point to the center of both. Or combine one with a parallel ruler and a vanishing point, or even one with two vanishing points. The possibilities are quite large.

This assistant will not just give feedback/snapping between the vanishing points, but also give feedback to the relative left and right of the assistant. This is so you can use it in edge-cases like panoramas with relative ease.

If you press the Shift key while holding the first two handles, they will snap to perfectly horizontal or vertical lines. Press the Shift key while holding the third handle, and it’ll snap to a perfect circle.

2 Point Perspective

New in version 5.0.

This assistant simplifies the setup of a two point perspective by combining the functions of the Vanishing Point assistant and the parallel vertical Ruler into one single assistant. Additionally, it displays accurate square grid planes of the configured perspective, which can help you visually tune the intensity of the perspective distortion.

It requires 3 points to achieve this: the first 2 of which are the vanishing points, while the third point is used to determine the center of vision, which affects how the grid is displayed. In two point perspective the center of vision is a point on the horizon line, so the assistant displays a small notch to indicate its location. Generally, the center of vision is also where the main focus of an illustration is.

	Density
	An extra option in the tool options, this controls how dense the grid is.

	Enable Vertical Ruler
	This allows you to disable the vertical ruler, so that the assistant is only two vanishing points and a grid.

[image: ../_images/Assistants_2_pointperspective_03.png]

In the above image, a two point perspective with an area limiter is enough to draw an indoor area. The assistant is colored blue here.

Tips

You can hold specific key combinations while moving a vanishing point to activate the following behaviours:

	Alt
	The vanishing point will only move along the horizon line

	Ctrl
	The grid will rotate along with the vanishing point on the horizon line. This allows you to easily draw several two-point objects that belong in the same scene at various angles to each other.

	Ctrl+Shift
	Both vanishing points move to change the visual size of the grid’s field of view.

Tutorials

Check out this in depth discussion and tutorial on
https://www.youtube.com/watch?v=OhEv2pw3EuI

Setting up Krita for technical drawing-like perspectives

So now that you’ve seen the wide range of drawing assistants that Krita offers, here is an example of how using these assistants you can set up Krita for technical drawing.

This tutorial below should give you an idea of how to set up the assistants for specific types of technical views.

If you want to instead do the true projection, check out the projection category.

Orthographic

Orthographic is a mode where you try to look at something from the left or the front. Typically, you try to keep everything in exact scale with each other, unlike perspective deformation.

The key assistant you want to use here is the Parallel Ruler. You can set these up horizontally or vertically, so you always have access to a Grid.

Axonometric

All of these are set up using three Parallel Rulers.

[image: ../_images/Assistants_oblique.png]

	Oblique
	For oblique, set two parallel rulers to horizontal and vertical, and one to an angle, representing depth.

[image: ../_images/Assistants_dimetric.png]

	Dimetric & Isometric
	Isometric perspective has technically all three rulers set up at 120° from each other. Except when it’s game isometric, then it’s a type of dimetric projection where the diagonal values are a 116.565° from the main. The latter can be easily set up by snapping the assistants to a grid.

[image: ../_images/Assistants_trimetric.png]

	Trimetric
	Is when all the angles are slightly different. Often looks like a slightly angled isometric.

Linear Perspective

[image: ../_images/Assistants_1_point_perspective.png]

	1 Point Perspective
	A 1 point perspective is set up using 1 vanishing point, and two crossing perpendicular parallel rulers.

[image: ../_images/Assistants_2_point_perspective.png]

	2 Point Perspective
	A 2 point perspective is set up using 2 vanishing point and 1 vertical parallel ruler. Often, putting the vanishing points outside the frame a little can decrease the strength of it. You can also use a 2 Point Perspective Ruler to set this one up very quickly.

[image: ../_images/Assistants_2_pointperspective_02.png]
[image: ../_images/Assistants_3_point_perspective.png]

	3 Point Perspective
	A 3 point perspective is set up using 3 vanishing point rulers.

Logic of the vanishing point

There’s a little secret that perspective tutorials don’t always tell you, and that’s that a vanishing point is the point where any two parallel lines meet. This means that a 1 point perspective and 2 point perspective are virtually the same.

We can prove this via a little experiment. That good old problem: drawing a rail-road.

[image: ../_images/Assistants_vanishing_point_logic_01.png]
You are probably familiar with the problem: How to determine where the next beam is going to be, as perspective projection will make them look closer together.

Typically, the solution is to draw a line in the middle and then draw lines diagonally across. After all, those lines are parallel, meaning that the exact same distance is used.

[image: ../_images/Assistants_vanishing_point_logic_02.png]
But because they are parallel, we can use a vanishing point assistant instead, and we use the alignment handles to align it to the diagonal of the beam, and to the horizontal (here marked with red).

That diagonal can then in turn be used to determine the position of the beams:

[image: ../_images/Assistants_vanishing_point_logic_03.png]
Because any given set of lines has a vanishing point (outside the ones flat on the view-plane), there can be an infinite amount of vanishing points in a linear perspective. Therefore, Krita allows you to set vanishing points yourself instead of forcing you to only use a few.

Fish Eye perspective

Fish eye perspective works much the same as the linear perspective, the big difference being that in a fish-eye perspective, any parallel set of lines has two vanishing points, each for one side.

So, to set them up, the easiest way is one horizontal, one vertical, on the same spot, and one vanishing point assistant in the middle.

[image: ../_images/Fish-eye.gif]
But, you can also make one horizontal one that is just as big as the other horizontal one, and put it halfway:

[image: ../_images/Assistants_fish-eye_2_02.png]

Working with Images

Computers work with files and as a painting program, Krita works with
images as the type of file it creates and manipulates.

What do Images Contain?

If you have a text document, it of course contains letters, strung in
the right order, so the computer loads them as coherent sentences.

Raster Data

This is the main data on the paint layers you make. So these are the
strokes with the paint brush and look pixelated up close. A multi-layer
file will contain several of such layers, that get overlaid on top of
each other so make the final image.

A single layer file will usually only contain raster data.

Vector Data

These are mathematical operations that tell the computer to draw pixels
on a spot. This makes them much more scalable, because you just tell the
operation to make the coordinates 4 times bigger to scale it up. Due to
this vector data is much more editable, lighter, but at the same time
it’s also much more CPU intensive.

Operation Data

Stuff like the filter layers, that tells Krita to change the colors of a
layer, but also transparency masks, group layer and transformation masks
are saved to multi-layer files. Being able to load these depend on the
software that initially made the file. So Krita can load and save
groups, transparency masks and layer effects from PSD, but not load or
save transform masks.

Metadata

Metadata is information like the creation date, author, description and
also information like DPI.

Image size

The image size is the dimension and resolution of the canvas. Image size
has direct effect file size of the Krita document. The more pixels that
need to be remembered and the higher the bit depth of the color, the
heavier the resulting file will be.

DPI/PPI

DPI stands for Dots per Inch, PPI stands for Pixels per
Inch. In printing industry, suppose if your printer prints at 300
DPI. It means it is actually putting 300 dots of colors in an area
equal to an Inch. This means the number of pixels your artwork has in a
relative area of an inch.

DPI is the concern of the printer, and artists while creating
artwork should keep PPI in mind. According to the PPI you have
set, the printers can decide how large your image should be on a piece
of paper.

Some standards:

	72 PPI
	This is the default PPI of monitors as assumed by all programs. It
is not fully correct, as most monitors these days have 125 PPI or
even 300 PPI for the retina devices. Nonetheless, when making an
image for computer consumption, this is the default.

	120 PPI
	This is often used as a standard for low-quality posters.

	300 PPI
	This is the minimum you should use for quality prints.

	600 PPI
	The quality used for line art for comics.

Color depth

We went over color depth in the Color Management page. What you need to
understand is that Krita has image color spaces, and layer color spaces,
the latter which can save memory if used right. For example, having a
line art layer in grayscale can half the memory costs.

Image color space vs layer color space vs conversion.

Because there’s a difference between image color space and layer color space, you can change only the image color space in Image ‣ Properties… which will leave the layers alone. But if you want to change the color space of the file including all the layers you can do it by going to Image ‣ Convert Image Color Space… this will convert all the layers color space as well.

Author and Description

[image: ../_images/document_information_screen.png]
Krita will automatically save who created the image into your image’s
metadata. Along with the other data such as time and date of creation
and modification, Krita also shows editing time of a document in the
document information dialog, useful for professional illustrators,
speed-painters to keep track of the time they worked on artwork for
billing purposes. It detects when you haven’t performed actions for a
while, and has a precision of ±60 seconds. You can empty it in the
document info dialog and of course by unzipping you .kra file and
editing the metadata there.

These things can be edited in File ‣ Document Information, and for the author’s information Settings ‣ Configure Krita… ‣ Author. Profiles can be switched under Settings ‣ Active Author Profile.

Setting the canvas background color

You can set the canvas background color via Image ‣ Image Background
Color and Transparency… menu item. This allows you to turn the background color
non-transparent and to change the color. This is also useful for certain file
formats which force a background color instead of transparency. PNG and
JPG export use this color as the default color to fill in transparency
if you do not want to export transparency.

If you come in from a program like Paint Tool SAI, then using this
option, or using As canvas color radio button at Background:
section in the new file options, will allow you to work in a slightly more comfortable
environment, where transparency isn’t depicted with checkered boxes.

Basic transforms

There are some basic transforms available in the Image menu.

	Shear Image…
	This will allow you to skew the whole image and its layers.

	Rotate
	This show a submenu that will allow you to rotate the image and all its layers quickly.

	Mirror Image Horizontally/Vertically
	This will allow you to mirror the whole image with all its layers.

But there are more options than that…

Cropping and resizing the canvas

You can crop and image with the
Crop Tool, to cut away extra space and improve the composition.

Trimming

Using Image ‣ Trim to Current Layer, Krita resizes the
image to the dimensions of the layer selected. Useful for when you paste
a too large image into the layer and want to resize the canvas to the extent
of this layer.

Image ‣ Trim to Selection is a faster cousin to the crop
tool. This helps us to resize the canvas to the dimension of any active selection.
This is especially useful with right-clicking the layer on the layer stack and
choosing Select Opaque. Image ‣ Trim to Selection
will then crop the canvas to the selection bounding box.

Image ‣ Trim to Image Size is actually for layers, and will trim all
layers to the size of the image, making your files lighter by getting
rid of invisible data.

Resizing the canvas

You can also resize the canvas via Image ‣ Resize Canvas… (or
the Ctrl + Alt + C shortcut). The dialog box is shown below.

[image: ../_images/Resize_Canvas.png]
In this, Constrain proportions checkbox will make sure the height and width stay
in proportion to each other as you change them. Offset indicates
where the new canvas space is added around the current image. You
basically decide where the current image goes (if you press the
left-button, it’ll go to the center left, and the new canvas space will
be added to the right of the image).

Another way to resize the canvas according to the need while drawing is
when you scroll away from the end of the canvas, you can see a strip with
an arrow appear. Clicking this will extend the canvas in that direction.
You can see the arrow marked in red in the example below:

[image: ../_images/Infinite-canvas.png]

Resizing the image

Scale Image to New Size… allows you to resize the whole image. Also,
importantly, this is where you can change the resolution or upres your
image. So for instance, if you were initially working at 72 PPI to block
in large shapes and colors, images, etc… And now you want to really get
in and do some detail work at 300 or 400 PPI this is where you would make
the change.

Like all other dialogs where a chain link appears, when the chain is
linked the aspect ratio is maintained. To disconnect the chain, just click
on the link and the two halves will separate.

[image: ../_images/Scale_Image_to_New_Size.png]

Separating Images

[image: ../_images/Separate_Image.png]
This powerful image manipulation feature lets you separate an image into
its different components or channels.

This is useful for people working in print, or people manipulating game
textures. There’s no combine functionality, but what you can do, if
using colored output, is to set two of the channels to the addition
Blending Modes.

For grayscale images in the RGB space, you can use the Copy Red, Copy
Green and Copy Blue blending modes, with using the red one for the red
channel image, etc.

Saving, Exporting and Opening Files

When Krita creates or opens a file, it has a copy of the file in memory,
that it edits. This is part of the way how computers work: They make a
copy of their file in the RAM. Thus, when saving, Krita takes its copy
and copies it over the existing file. There’s a couple of tricks you can
do with saving.

	Save
	Krita saves the current image in its memory to a defined place on
the hard-drive. If the image hadn’t been saved before, Krita will
ask you where to save it.

	Save As…
	Make a copy of your current file by saving it with a different name.
Krita will switch to the newly made file as its active document.

	Open…
	Open a saved file. Fairly straightforward.

	Export…
	Save a file to a new location without actively opening it. Useful
for when you are working on a layered file, but only need to save a
flattened version of it to a certain location.

	Open Existing Document as Untitled Document…
	This is a bit of an odd one, but it opens a file, and forgets where
you saved it to, so that when pressing ‘save’ it asks you where to
save it. This is also called ‘import’ in other programs.

	Create Copy from Current Image
	Makes a new copy of the current image. Similar to Open
Existing Document as Untitled Document…, but then with already
opened files.

	Save Incremental Version
	Saves the current image as filename_XXX.kra and switches the
current document to it.

	Save Incremental Backup
	Copies and renames the last saved version of your file to a backup file and saves your document under the original name.

Note

Since Krita’s file format is compressed data file, in case of a corrupt or broken file you can open it with archive managers and extract the contents of the layers. This will help you to recover as much as possible data from the file. On Windows, you will need to rename it to filename.zip to open it.

Saving, AutoSave and Backup Files

Krita does its best to keep your work safe. But if you want to make sure that you won’t lose work, you will need to understand how Saving, AutoSave and Backup Files work in Krita.

Saving

Krita does not store your images somewhere without your intervention. You need to save your work, or it will be lost, irretrievably. Krita can save your images in many formats. You should always save your work in Krita’s native format, .kra
because that supports all Krita’s features.

Additionally, you can export your work to other formats, for compatibility with other applications or publication on the Web or on paper. Krita will warn which aspects of your work are going to be lost when you save to another format than .kra and offers to make a .kra file for you as well.

If you save your work, Krita will ask you where it should save on your computer. By default, this is the Pictures folder in your User folder: this is true for all operating systems.

If you use Save As… your image will be saved under a new name. The original file under its own name will not be deleted. From now on, your file will be saved under the new name.

If you use Export… using a new filename, a new file will be created with a new name. The file you have open will keep the old name, and the next time you save it, it will be saved under the old name.

You can Save, Save As… and Export… to any file format.

See also

Saving for the Web

AutoSave

AutoSave is what happens when you’ve worked for a bit and not saved your work yourself: Krita will save your work for you. Autosave files are by default hidden in your file manager. You can configure Krita 4.2 and up to create autosave files that are visible in your file manager. By default, Krita autosaves every fifteen minutes; you can configure that in the File tab of the General Settings page of the Configure Krita dialog, which is in the Settings menu (Linux, Windows) or in the Application menu (macOS).

If you close Krita without saving, your unsaved work is lost and cannot be retrieved. Closing Krita normally also means that autosave files are removed.

[image: ../_images/file_config_page.png]
There are two possibilities:

	You hadn’t saved your work at all

	You had saved your work already

AutoSave for Unsaved Files

If you had not yet saved your work, Krita will create an unnamed AutoSave file.

When you’re using Linux or macOS, the AutoSave file will be a hidden file in your home directory. If you’re using Windows, the AutoSave file will be a file in your user’s %TEMP% folder. In Krita 4.2 and up, you can configure Krita to make the AutoSave files visible by default.

A hidden autosave file will be named like .krita-12549-document_1-autosave.kra

If Krita crashes before you had saved your file, then the next time you start Krita, you will see the file in a dialog that shows up as soon as Krita starts. You can select to restore the files, or to delete them.

[image: ../_images/autosave_unnamed_restore.png]
If Krita crashed, and you’re on Windows and your %TEMP% folder gets cleared, you will have lost your work. Windows does not clear the %TEMP% folder by default, but you can enable this feature in Settings. Applications like Disk Cleanup or CCleaner will also clear the %TEMP% folder. Again, if Krita crashes, and you haven’t saved your work, and you have something enabled that clear your %TEMP% folder, you will have lost your work.

If Krita doesn’t crash, and you close Krita without saving your work, Krita will remove the AutoSave file: your work will be gone and cannot be retrieved.

If you save your work and continue, or close Krita and do save your work, the AutoSave file will be removed.

AutoSave for Saved Files

If you had already saved your work, Krita will create a named AutoSave file.

A hidden named autosave file will look like .myimage.kra-autosave.kra.

By default, named AutoSave files are hidden. Named AutoSave files are placed in the same folder as the file you were working on.

If you start Krita again after it crashed and try to open your original file, Krita will ask you whether to open the AutoSave file instead:

[image: ../_images/autosave_named_restore.png]
If you choose “no”, the AutoSave file will be removed. The work that has been done since the last time you saved your file yourself will be lost and cannot be retrieved.

If you choose “yes”, the AutoSave file will be opened, then removed. The file you have open will have the name of your original file. The file will be set to Modified, so the next time you try to close Krita, Krita will ask you whether you want to save the file. If you choose No, your work is irretrievably gone. It cannot be restored.

If you use Save As… your image will be saved under a new name. The original file under its own name and its AutoSave file are not deleted. From now on, your file will be saved under the new name; if you save again, an AutoSave file will be created using the new filename.

If you use Export… using a new filename, a new file will be created with a new name. The file you have open will keep the new name, and the next time you save it, the AutoSave file will be created from the last file saved with the current name, that is, not the name you choose for Export….

Backup Files

There are three kinds of Backup files

	Ordinary Backup files that are created when you save a file that has been opened from disk

	Incremental Backup files that are copies of the file as it is on disk to a numbered backup, and while your file is saved under the current name

	Incremental Version files that are saves of the file you are working on with a new number, leaving alone the existing files on disk.

Ordinary Backup Files

If you have opened a file, made changes, then save it, or save a new file after the first time you’ve saved it, Krita will save a backup of your file.

You can disable this mechanism in the File tab of the General Settings page of the Configure Krita dialog, which is in the Settings menu (Linux, Windows) or in the Application menu (macOS). By default, Backup files are enabled.

[image: ../_images/file_config_page.png]
By default, a Backup file will be in the same folder as your original file. You can also choose to save Backup files in the User folder or the %TEMP% folder; this is not as safe because if you edit two files with the same name in two different folders, their backups will overwrite each other.

By default, a Backup file will have ~ as a suffix, to distinguish it from an ordinary file. If you are using Windows, you will have to enable “show file extensions” in Windows Explorer to see the extension.

[image: ../_images/file_and_backup_file.png]
If you want to open the Backup file, you will have to rename it in your file manager. Make sure the extension ends with .kra.

Every time you save your file, the last version without a ~ suffix will be copied to the version with the ~ suffix. The contents of the original file will be gone: it will not be possible to restore that version.

Incremental Backup Files

Incremental Backup files are similar to ordinary Backup files: the last saved state is copied to another file just before saving. However, instead of overwriting the Backup file, the Backup files are numbered:

[image: ../_images/save_incremental_backup.png]
Use this when you want to keep various known good states of your image throughout your painting process. This takes more disk space, of course.

Do not be confused: Krita does not save the current state of your work to the latest Incremental file, but copies the last saved file to the Backup file and then saves your image under the original filename.

Incremental Version Files

Incremental Version works a bit like Incremental Backup, but it leaves the original files alone. Instead, it will save a new file with a file number:

[image: ../_images/save_incremental_version.png]

Templates

[image: ../_images/Krita_New_File_Template_A.png]
Templates are just .kra files which are saved in a special location, so it can be pulled up by Krita quickly. This is like the Open Existing Document as Untitled Document… but then with a nicer place in the UI.

You can make your own template file from any .kra file, by using File ‣ Create Template from Image… menu item. This will add your current document as a new template, including all its properties along with the layers and layer contents.

We have the following defaults:

Animation Templates

These templates are used to make Japanese-style animation. They are designed on the assumption that they will be used in co-production, so you can customize the things like layer folders in these according to scale and details of your works. These are available in English and Japanese language.

	Animation-Japanese-En

	Animation-Japanese-Jp

Comic Templates

These templates are specifically designed for you to just get started with drawing comics. The comic template relies on a system of vectors and clones of those vector layers which automatically reflect any changes made to the vector layers. In between these two, you can draw your picture, and not fear them drawing over the panel. Use Inherit Alpha to clip the drawing by the panel.

	European Bande Desinée Template.
	This one is reminiscent of the system used by for example TinTin or Spirou et Fantasio. These panels focus on wide images, and horizontal cuts.

	US-style comics Template.
	This one is reminiscent of old DC and Marvel Comics, such as Batman or Captain America. Nine images for quick story progression.

	Manga Template.
	This one is based on Japanese comics, and focuses on a thin vertical gutter and a thick horizontal gutter, ensuring that the reader finished the previous row before heading to the next.

	Waffle Iron Grid
	12 little panels at your disposal.

Design Templates

These are templates for design and have various defaults with proper PPI at your disposal:

	Cinema 16:10

	Cinema 2.93:1

	Presentation A3-landscape

	Presentation A4 portrait

	Screen 4:3

	Web Design

DSLR templates

These have some default size for photos:

	Canon 55D

	Canon 5DMK3

	Nikon D3000

	Nikon D5000

	Nikon D7000

Texture Templates

These are for making 3D textures, and are between 1024, to 4092.

Introduction to Layers and Masks

Krita supports layers which help to better control parts and elements of your painting.

Think of an artwork or collage made with various stacks of papers with some papers cut such that they show the paper beneath them while some hide what’s beneath them. If you want to replace an element in the artwork, you replace that piece of paper instead of drawing the entire thing. In Krita instead of papers we use Layers. Layers are part of the document which may or may not be transparent, they may be smaller or bigger than the document itself, they can arrange one above other, named and grouped.

Layers can give better control over your artwork for example you can re-color an entire artwork just by working on the separate color layer and thereby not destroying the line art which will reside above this color layer.

You can edit individual layers, you can even add special effects to them, like Layer styles, blending modes, transparency, filters and transforms. Krita takes all these layers in its layer stack, including the special effects and combines or composites together a final image. This is just one of the many digital image manipulation tricks that Krita has up its sleeve!

Usually, when you put one paint layer on top of another, the upper paint layer will be fully visible, while the layer behind it will either be obscured, occluded or only partially visible.

Managing layers

Some artists draw with limited number of layers, but some prefer to have different elements of the artwork on separate layer. Krita has some good layer management features which make the layer management task easy.

You can group layers and organize the elements of your artwork.

The layer order can be changed or layers can be moved in and out of a group in the layer stack by simply holding them and dragging and dropping. Layers can also be copied across documents while in the subwindow mode, by dragging and dropping from one document to another.

These features save time and also help artists in maintaining the file with a layer stack which will be easy to understand for others who work on the same file. In addition to these layers and groups can both be labeled and filtered by colors, thus helping the artists to visually differentiate them.

To assign a color label to your layer or layer group you have to [image: mouseright] on the layer and choose one of the given colors from the context menu. To remove an already existing color label you can click on the ‘x’ marked box in the context menu.

[image: ../_images/Layer-color-filters.svg]Once you assign color labels to your layers, you can then filter layers having similar color label by clicking on one or more colors in the list from the drop-down situated in the top-right corner of the layer docker.

[image: ../_images/Layer-color-filters-menu.svg]
New in version 5.0: You can also use this dropdown to filter the layers by layer name.

Types of Layers

[image: ../_images/Krita-types-of-layers.svg]The image above shows the various types of layers in Layers. Each layer type has a different purpose for example all the vector elements can be only placed on a vector layer and similarly normal raster elements are mostly on the paint layer, Layers and Masks page contains more information about these types layers.

Now Let us see how these layers are composited in Krita.

How are layers composited in Krita?

In Krita, the visible layers form a composite image which is shown on the canvas. The order in which Krita composites the layers is from bottom to top, much like the stack of papers we discussed above. As we continue adding layers, the image we see changes, according to the properties of the newly added layers on top.

Group Layers composite separately from the other layers in the stack, except when pass through mode is activated. The layers inside a group form a composite image first and then this composite is taken into consideration while the layer stack is composited to form a whole image. If the pass through mode is activated by pressing the icon similar to bricked wall, the layers within the group are considered as if they are outside that particular group in the layer stack, however, the visibility of the layers in a group depends on the visibility of the group.

[image: ../_images/Passthrough-mode_.png]
[image: ../_images/Layer-composite.png]
The groups in a PSD file saved from Photoshop have pass-through mode on by default unless they are specifically set with other blending modes.

Inherit Alpha or Clipping layers

There is a clipping feature in Krita called inherit alpha. It is denoted by an alpha icon in the layer stack.

[image: ../_images/Inherit-alpha-02.png]
It can be somewhat hard to figure out how the inherit alpha feature works in Krita for the first time. Once you click on the inherit alpha icon on the layer stack, the pixels of the layer you are painting on are confined to the combined pixel area of all the layers below it. That means if you have the default white background layer as first layer, clicking on the inherit alpha icon and painting on any layer above will seem to have no effect as the entire canvas is filled with white. Hence, it is advised to put the base layer that you want the pixels to clip in a group layer. As mentioned above, group layers are composited separately, hence the layer which is the lowest layer in a group becomes the bounding layer and the content of the layers above this layer clips to it if inherit alpha is enabled.

[image: ../_images/Inherit-alpha-krita.jpg]
[image: ../_images/Krita-tutorial2-I.1-2.png]
You can also enable alpha inheritance to a group layer.

Masks and Filters

Krita supports non-destructive editing of the content of the layer. Non-destructive editing means editing or changing a layer or image without actually changing the original source image permanently, the changes are just added as filters or masks over the original image while keeping it intact, this helps a lot when your workflow requires constant back and forth. You can go back to original image with a click of a button. Just hide the filter or mask you have your initial image.

You can add various filters to a layer with Filter mask, or add Filter layer which will affect the whole image. Layers can also be transformed non-destructively with the transformation masks, and even have portions temporarily hidden with a Transparent Mask. Non-destructive effects like these are very useful when you change your mind later, or need to make a set of variations of a given image.

Note

You can merge all visible layers by selecting everything first Layer ‣ Select ‣ Visible Layers. Then Combine them all by merging Layer ‣ Merge with Layer Below.

These filters and masks are accessible through the right-click menu (as shown in the image below) and the Plus icon on the layer docker.

[image: ../_images/Layer-right-click.svg]You can also add a filter as a mask from filter dialog itself, by
clicking on the Create Filter Mask button.

[image: ../_images/Filtermask-button.png]
All the filters and masks can also be applied over a group too, thus making it easy to non-destructively edit multiple layers at once. In the category Layers and masks you can read more about the individual types of layers and masks.

Layer Docker has more information about the shortcuts and other layer management workflows.

Selections

Selections allow you to pick a specific area of your artwork to change. This is useful when you want to move a section of the painting, transform it, or paint on it without affecting the other sections. There are many selection tools available that select in different ways. Once an area is selected, most tools will stay inside that area. On that area you can draw or use gradients to quickly get colored and/or shaded shapes with hard edges. The selections in Krita are not limited to the canvas boundary, so you can also select portions of the painting that are beyond the canvas boundary.

Creating Selections

The most common selection tools all exist at the bottom of the toolbox. Each tool selects things slightly differently. The links for each tool go into a more detailed description of how to use it.

	Rectangular Selection Tool

	[image: toolselectrect]

	Select the shape of a square.

	Elliptical Selection Tool

	[image: toolselectellipse]

	Select the shape of a circle.

	Polygonal Selection Tool

	[image: toolselectpolygon]

	Click where you want each point of the Polygon to be. Double click to end your polygon and finalize your selection area. Use the Shift + Z shortcut to undo last point.

	Freehand Selection Tool

	[image: toolselectfreehand]

	freehand/Lasso tool is used for a rough selection by drawing the selection outline freehand on the canvas.

	Similar Color Selection Tool

	[image: toolselectsimilar]

	Similar Color Selection Tool.

	Contiguous Selection Tool

	[image: toolselectcontiguous]

	Contiguous or “Magic Wand” selects a field of color. Adjust the Fuzziness to allow more changes in the field of color, by default limited to the current layer.

	Path Selection Tool

	[image: toolselectpath]

	Path select an area based on a vector path, click to get sharp corners or drag to get flowing lines and close the path with the Enter key or connecting back to the first point.

	Magnetic Selection Tool

	[image: toolselectmagnetic]

	Magnetic selection makes a free hand selection where the selection snaps to sharp contrasts in the image.

Note

You can also use the transform tools on your selection, a great way to try different proportions on parts of your image.

Editing Selections

The tool options for each selection tool gives you the ability to modify
your selection.

	Action

	Modifier

	Description

	Replace

	Ctrl

	Replace the current selection.

	Intersect

	Shift + Alt

	Get the overlapping section of both selections.

	Add

	Shift

	Add the new selection to the current selection.

	Subtract

	Alt

	Subtract the selection from the current selection.

	Symmetric
Difference

	–

	Make a selection where both the new and current
do not overlap.

You can change this in Tools Settings.

If you hover over a selection with a selection tool and no selection is activated, you can move it. To quickly go into transform mode, [image: mouseright] and select Edit Selection.

Removing Selections

If you want to delete the entire selection, the easiest way is to deselect everything. Select ‣ Deselect. Shortcut Ctrl + Shift + A.
When you have one of the selection tool active, and the mode of selection is in intersect, replace or symmetric difference then you can also deselect by just [image: mouseleft] anywhere on the canvas.

Display Modes

In the bottom left-hand corner of the status bar there is a button to toggle how the selection is displayed. The two display modes are the following: (Marching) Ants and Mask. The red color with Mask can be changed in the preferences. You can edit the color under Settings ‣ Configure Krita… ‣ Display ‣ Selection Overlay. If there is no selection,
this button will not do anything.

[image: ../_images/Ants-displayMode.jpg]
Ants display mode (default) is best if you want to see the areas that are not selected.

[image: ../_images/Mask-displayMode.jpg]
Mask display mode is good if you are interested in seeing the various transparency levels for your selection. For example, when you have a selection with very soft edges due using feathering.

Changed in version 4.2: Mask mode is activated as well when a selection mask is the active layer so you can see the different selection levels.

Global Selection Mask (Painting a Selection)

The global Selection Mask is your selection that appears on the layers docker. By default, this is hidden, so you will need to make it visible via Select ‣ Show Global Selection Mask.

[image: ../_images/Global-selection-mask.png]
Once the global Selection Mask is shown, you will need to create a selection. The benefit of using this is that you can paint your
selection using any of the normal painting tools, including the transform and move. The information is saved as grayscale.

You can enter the global selection mask mode quickly from the selection tools by doing [image: mouseright] and select Edit Selection.

Selection from layer transparency

You can create a selection based on a layer’s transparency by right-clicking on the layer in the layer docker and selecting Select Opaque from the context menu.

New in version 4.2: You can also do this for adding, subtracting and intersecting by going to Select ‣ Select Opaque, where you can find specific actions for each.

If you want to quickly select parts of layers, you can hold the Ctrl + [image: mouseleft] shortcut on the layer thumbnail. To add a selection do Ctrl + Shift + [image: mouseleft], to remove Ctrl + Alt + [image: mouseleft] and to intersect Ctrl + Shift + Alt + [image: mouseleft]. This works with any mask that has pixel or vector data (so everything but transform masks).

Pixel and Vector Selection Types

Vector selections allow you to modify your selection with vector anchor tools. Pixel selections allow you to modify selections with pixel information. They both have their benefits and disadvantages. You can convert one type of selection to another.

[image: ../_images/Vector-pixel-selections.jpg]
When creating a selection, you can select what type of selection you want from the Mode in the selection tool options: Pixel or Vector. By default this will be Vector.

Vector selections can be modified as any other vector shape with the Shape Selection Tool, if you try to paint on a vector selection mask it will be converted into a pixel selection. You can also convert vector shapes to selection. In turn, vector selections can be made from vector shapes, and vector shapes can be converted to vector selections using the options in the Selection menu. Krita will add a new vector layer for this shape.

One of the most common reasons to use vector selections is that they give you the ability to move and transform a selection without the kind of resize artifacts you get with a pixel selection. You can also use the Shape Edit Tool to change the anchor points in the selection, allowing you to precisely adjust bezier curves or add corners to rectangular selections.

If you started with a pixel selection, you can still convert it to a
vector selection to get these benefits. Go to Select ‣ Convert to Vector Selection.

Note

If you have multiple levels of transparency when you convert a selection to vector, you will lose the semi-transparent values.

Common Shortcuts while Using Selections

	Copy – Ctrl + C or Ctrl + Ins

	Paste – Ctrl + V or Shift + Ins

	Cut – Ctrl + X, Shift + Del

	Copy From All Layers – Ctrl + Shift + C

	Copy Selection to New Layer – Ctrl + Alt + J

	Cut Selection to New Layer – Ctrl + Shift + J

	Display or hide selection with Ctrl + H

	Select Opaque – Ctrl + [image: mouseleft] on layer thumbnail.

	Select Opaque (Add) – Ctrl + Shift + [image: mouseleft] on layer thumbnail.

	Select Opaque (Subtract) – Ctrl + Alt + [image: mouseleft] on layer thumbnail.

	Select Opaque (Intersect) – Ctrl + Shift + Alt + [image: mouseleft] on layer thumbnail.

Python Scripting

This section covers python scripting.

Contents:

	Managing Python plugins
	How to install a Python plugin

	How to get to the plugin?

	How to enable and disable a plugin?

	Introduction to Python Scripting
	What is Python Scripting?

	Technical Details

	How to make a Krita Python plugin
	Getting Krita to recognize your plugin

	Creating an extension

	Creating configurable keyboard shortcuts

	Creating a docker

	PyQt Signals and Slots

	A note on unit tests

	Conclusion

Managing Python plugins

How to install a Python plugin

Caution

Custom Python plugins are made by users of Krita and the Krita team does not guarantee that they work, that they are useful or that they are safe. Note that a Python plugin can do everything that Krita can do, which means for example access to your files. Krita team isn’t responsible for any damage you might suffer from the plugin, and you install it on your own risk.

Using Python plugin importer

Note

This method doesn’t always import action files (responsible for shortcuts) correctly.

You need to ensure that you have the plugin in a *.zip file. Inside the zip file there should be a file pluginname.desktop and a folder pluginname (instead of pluginname there should be an actual unique name of the plugin).

Go to Tools ‣ Scripts ‣ Import Python Plugin…, find the *.zip file and press OK. Restart Krita.

Go to Configure Krita ‣ Python Plugins Manager, find the plugin and enable it. Restart Krita.

Now the plugin should be available.

Manually

If the plugin is inside a *.zip archive, you need to extract it first.

Go to Settings ‣ Manage Resources ‣ Open Resource Folder. Put file pluginname.desktop and folder pluginname (instead of pluginname there should be an actual unique name of the plugin) inside the pykrita folder. Put file pluginname.action into the actions folder. Restart Krita.

Now the plugin should be available.

How to get to the plugin?

Plugins in Krita are either dockers or extensions.

If it’s an extension, it will be available in the menu Tools ‣ Scripts.

When it’s a docker, you can find it in Settings ‣ Dockers.

If the plugin has any shortcuts, and you imported the action file properly, you can change the shortcuts in Configure Krita ‣ Keyboard Shortcuts.

How to enable and disable a plugin?

You can enable and disable all plugins (no matter if they’re pre-installed or custom) in Configure Krita ‣ Python Plugins Manager.

Introduction to Python Scripting

New in version 4.0.

When we offered python scripting as one of Kickstarter Stretchgoals we could implement next to vectors and text, it won the backer vote by a landslide. Some people even only picked python and nothing else. So what exactly is python scripting?

What is Python Scripting?

Python is a scripting language, that can be used to automate tasks. What python scripting in Krita means is that we added an API to krita, which is a bit of programming that allows python to access to parts of Krita. With this we can make dockers, perform menial tasks on a lot of different files and even write our own exporters. People who work with computer graphics, like VFX and video game artists use python a lot to make things like sprite sheets, automate parts of export and more.

It is outside the scope of this manual to teach you python itself. However, as python is an extremely popular programming language and great for beginners, there’s tons of learning material around that can be quickly found with a simple ‘learn python’ internet search.

This manual will instead focus on how to use python to automate and extend Krita. For that we’ll first start with the basics: How to run Python commands in the scripter.

How to Enable the Scripter Plugin

The scripter plugin is not necessary to use python, but it is very useful for testing and playing around with python. It is a python console, written in python, which can be used to write small scripts and execute them on the fly.

To open the scripter, navigate to Tools ‣ Scripts ‣ Scripter. If you don’t see it listed, go to Settings ‣ Configure Krita… ‣ Python Plugin Manager and toggle “Scripter” in the list to enable it. If you don’t see the scripter plugin, make sure you are using an up-to-date version of Krita.

The scripter will pop up with a text editor window on top and an output window below. Input the following in the text area:

print("hello world")

Press the big play button or press the Ctrl + R shortcut to run the script. Then, below, in the output area the following should show up:

==== Warning: Script not saved! ====
hello world

Now we have a console that can run functions like print() from the Python environment - but how do we use it to manage Krita?

Running basic Krita commands

To allow Python to communicate with Krita, we will use the Krita module. At the top of every script, we will write from krita import *.

This allows us to talk to Krita through Krita.instance(). Let’s try to double our coding abilities with Python.

from krita import *

Krita.instance().action('python_scripter').trigger()

You should see a second scripter window open. Pretty neat! Here is a slightly more advanced example.

from krita import *

d = Krita.instance().createDocument(512, 512, "Python test document", "RGBA", "U8", "", 120.0)
Krita.instance().activeWindow().addView(d)

This will open up a new document. Clearly Python gives you quite a lot of control to automate Krita. Over time we expect the community to write all kinds of scripts that you can use simply by pasting them in the scripter.

But what if you want to write new commands for yourself? The best place to start is very simple: search for examples written by other people! You can save a lot of time if someone else has written code that you can base your work on. It’s also worth looking through the python plugins, which are located in /share/krita/pykrita. There’s also a step by step guide for How to make a Krita Python plugin here in the manual.

But it’s likely that you need more information. For that, we will need see what’s hidden behind the asterisk when you import * from Krita. To learn what Krita functions that are available and how to use them, you will want to go for Krita API reference documentation.

Krita’s API

	LibKis API Overview [https://api.kde.org/krita/html/index.html]

	Krita class documentation [https://api.kde.org/krita/html/annotated.html]

Those pages may look like a lot of jargon at first. This is because Krita’s API documentation comes from the underlying C++ language that Krita is written in. The magic happens because of a Python tool called SIP, which makes it possible for python speak in C++ and talk to Krita. The end result is that when we import krita and call functions, we’re actually using the C++ methods listed in that documentation.

Let’s see how this stuff works in more detail. Let’s take a look at the second link, the Krita class reference [https://api.kde.org/krita/html/classKrita.html#aa55507903d088013ced2df8c74f28a63]. There we can see all the functions available to the Krita instance. If you type dir(Krita.instance()) in Python, it should match this page very closely - you can view the documentation of the functions createDocument(), activeWindow(), and action() which we used above.

One of the more confusing things is seeing all the C++ classes that Krita uses, including the Qt classes that start with Q. But here is the beauty of SIP: it tries to make the translation from these classes into Python as simple and straightforward as possible. For example, you can see that the function filters() returns a QStringList. However, SIP converts those QStringLists into regular python list of strings!

from krita import *

print(Krita.instance().filters())

Outputs as:

['asc-cdl', 'autocontrast', 'blur', 'burn', 'colorbalance', 'colortoalpha', 'colortransfer',
'desaturate', 'dodge', 'edge detection', 'emboss', 'emboss all directions', 'emboss horizontal and vertical',
'emboss horizontal only', 'emboss laplascian', 'emboss vertical only', 'gaussian blur', 'gaussiannoisereducer',
'gradientmap', 'halftone', 'height to normal', 'hsvadjustment', 'indexcolors', 'invert', 'lens blur', 'levels',
'maximize', 'mean removal', 'minimize', 'motion blur', 'noise', 'normalize', 'oilpaint', 'perchannel', 'phongbumpmap',
'pixelize', 'posterize', 'raindrops', 'randompick', 'roundcorners', 'sharpen', 'smalltiles', 'threshold', 'unsharp',
'wave', 'waveletnoisereducer']

However, sometimes the conversion doesn’t go quite as smoothly.

from krita import *

print(Krita.instance().documents())

gives something like this:

[<PyKrita.krita.Document object at 0x7f7294630b88>,
<PyKrita.krita.Document object at 0x7f72946309d8>,
<PyKrita.krita.Document object at 0x7f7294630c18>]

It is a list of something, sure, but how to use it? If we go back to the Krita apidocs page and look at the function, documents() we’ll see there’s actually a clickable link on the ‘Document’ class. If you follow that link [https://api.kde.org/krita/html/classDocument.html], you’ll see that the document has a function called name() which returns the name of the document, and functions width() and height() which return the dimensions. So if we wanted to generate an info report about the documents in Krita, we could write a script like this:

from krita import *

for doc in Krita.instance().documents():
 print(doc.name())
 print(" "+str(doc.width())+"x"+str(doc.height()))

We get an output like:

==== Warning: Script not saved! ====
Unnamed
 2480x3508
sketch21
 3508x2480
Blue morning
 1600x900

Hopefully this will give you an idea of how to navigate the API docs now.

Krita’s API has many more classes, you can get to them by going to the top-left class list, or just clicking their names to get to their API docs. The functions print() or dir() are your friends here as well. This line will print out a list of all the actions in Krita – you could swap in one of these commands instead of ‘python_scripter’ in the example above.

[print([a.objectName(), a.text()]) for a in Krita.instance().actions()]

The Python module inspect was designed for this sort of task. Here’s a useful function to print info about a class to the console.

import inspect
def getInfo(target):
 [print(item) for item in inspect.getmembers(target) if not item[0].startswith('_')]

getInfo(Krita.instance())

Finally, in addition to the LibKis documentation, the Qt documentation, since Krita uses PyQt to expose nearly all of the Qt API to Python. You can build entire windows with buttons and forms this way, using the very same tools that Krita is using! You can read the Qt documentation [https://doc.qt.io/] and the PyQt documentation [https://www.riverbankcomputing.com/static/Docs/PyQt5/] for more info about this, and also definitely study the included plugins as well to see how they work.

Technical Details

Python Scripting on Windows

To get Python scripting working on Windows 7/8/8.1, you will need to install the Universal C Runtime from Microsoft’s website [https://www.microsoft.com/en-us/download/details.aspx?id=48234]. (Windows 10 already comes with it.)

Python 2 and 3

By default, Krita is compiled for python 3.

However, it is possible to compile it with python 2. To do so, you will need to add the following to the cmake configuration line:

-DENABLE_PYTHON_2=ON

How to make a Krita Python plugin

You might have some neat scripts you have written in the Scripter Python runner, but maybe you want to do more with it and run it automatically for instance. Wrapping your script in a plugin can give you much more flexibility and power than running scripts from the Scripter editor.

Okay, so even if you know python really well, there are some little details to getting Krita to recognize a python plugin. So this page will give an overview how to create the various types of python script unique to Krita.

These mini-tutorials are written for people with a basic understanding of python, and in such a way to encourage experimentation instead of plainly copy and pasting code, so read the text carefully.

Getting Krita to recognize your plugin

A script in Krita has two components – the script directory (holding your script’s Python files) and a “.desktop” file that Krita uses to load and register your script. For Krita to load your script both of these must put be in the pykrita subdirectory of your Krita resources folder (See Resource Management for the paths per operating system). To find your resources folder start Krita and click the Settings ‣ Manage Resources… menu item. This will open a dialog box. Click the Open Resources Folder button. This should open a file manager on your system at your Krita resources folder. See the API [https://api.kde.org/krita/html/index.html] docs under “Auto starting scripts”. If there is no pykrita subfolder in the Krita resources directory use your file manager to create one.

Scripts are identified by a file that ends in a .desktop extension that contain information about the script itself.

Therefore, for each proper plugin you will need to create a folder, and a desktop file.

The desktop file should look as follows:

[Desktop Entry]
Type=Service
ServiceTypes=Krita/PythonPlugin
X-KDE-Library=myplugin
X-Python-2-Compatible=false
X-Krita-Manual=myPluginManual.html
Name=My Own Plugin
Comment=Our very own plugin.

	Type
	This should always be service.

	ServiceTypes
	This should always be Krita/PythonPlugin for python plugins.

	X-KDE-Library
	This should be the name of the plugin folder you just created.

	X-Python-2-Compatible
	Whether it is python 2 compatible. If Krita was built with python 2 instead of 3 (-DENABLE_PYTHON_2=ON in the cmake configuration), then this plugin will not show up in the list.

	X-Krita-Manual
	An Optional Value that will point to the manual item. This is shown in the Python Plugin manager. If it’s an HTML file it’ll be shown as rich text [https://doc.qt.io/qt-5/richtext-html-subset.html], if not, it’ll be shown as plain text.

	Name
	The name that will show up in the Python Plugin Manager.

	Comment
	The description that will show up in the Python Plugin Manager.

Krita python plugins need to be python modules, so make sure there’s an __init__.py script, containing something like…

from .myplugin import *

Where .myplugin is the name of the main file of your plugin. If you restart Krita, it now should show this in the Python Plugin Manager in the settings, but it will be grayed out, because there’s no myplugin.py. If you hover over disabled plugins, you can see the error with them.

Note

You need to explicitly enable your plugin. Go to the Settings menu, open the Configure Krita dialog and go to the Python Plugin Manager page and enable your plugin.

Summary

In summary, if you want to create a script called myplugin:

	
	in your Krita resources/pykrita directory create
	
	a folder called myplugin

	a file called myplugin.desktop

	
	in the myplugin folder create
	
	a file called __init__.py

	a file called myplugin.py

	in the __init__.py file put this code:

from .myplugin import *

	in the desktop file put this code:

[Desktop Entry]
Type=Service
ServiceTypes=Krita/PythonPlugin
X-KDE-Library=myplugin
X-Python-2-Compatible=false
Name=My Own Plugin
Comment=Our very own plugin.

	write your script in the myplugin/myplugin.py file.

Creating an extension

Extensions [https://api.kde.org/krita/html/classExtension.html] are relatively simple python scripts that run on Krita start. They are made by extending the Extension class, and the most barebones extension looks like this:

from krita import *

class MyExtension(Extension):

 def __init__(self, parent):
 # This is initialising the parent, always important when subclassing.
 super().__init__(parent)

 def setup(self):
 pass

 def createActions(self, window):
 pass

And add the extension to Krita's list of extensions:
Krita.instance().addExtension(MyExtension(Krita.instance()))

This code of course doesn’t do anything. Typically, in createActions we add actions to Krita, so we can access our script from the Tools menu.

First, let’s create an action [https://api.kde.org/krita/html/classAction.html]. We can do that easily with Window.createAction() [https://api.kde.org/krita/html/classWindow.html#a72ec58e53844076c1461966c34a9115c]. Krita will call createActions for every Window that is created and pass the right window object that we have to use.

So…

def createActions(self, window):
 action = window.createAction("myAction", "My Script", "tools/scripts")

	“myAction”
	This should be replaced with a unique ID that Krita will use to find the action.

	“My Script”
	This is what will be visible in the Tools Menu.

If you now restart Krita, you will have an action called “My Script”. It still doesn’t do anything, because we haven’t connected it to a script.

So, let’s make a simple export document script. Add the following to the extension class, make sure it is above where you add the extension to Krita:

def exportDocument(self):
 # Get the document:
 doc = Krita.instance().activeDocument()
 # Saving a non-existent document causes crashes, so lets check for that first.
 if doc is not None:
 # This calls up the save dialog. The save dialog returns a tuple.
 fileName = QFileDialog.getSaveFileName()[0]
 # And export the document to the fileName location.
 # InfoObject is a dictionary with specific export options, but when we make an empty one Krita will use the export defaults.
 doc.exportImage(fileName, InfoObject())

And add the import for QFileDialog above with the imports:

from krita import *
from PyQt5.QtWidgets import QFileDialog

Then, to connect the action to the new export document:

def createActions(self, window):
 action = window.createAction("myAction", "My Script")
 action.triggered.connect(self.exportDocument)

This is an example of a signal/slot connection [https://doc.qt.io/qt-5/signalsandslots.html], which Qt applications like Krita use a lot. We’ll go over how to make our own signals and slots a bit later.

Restart Krita and your new action ought to now export the document.

Creating configurable keyboard shortcuts

Now, your new action doesn’t show up in Settings ‣ Configure Krita ‣ Keyboard Shortcuts.

Krita, for various reasons, only adds actions to the Shortcut Settings when they are present in an .action file. The action file to get our action to be added to the shortcuts should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<ActionCollection version="2" name="Scripts">
 <Actions category="Scripts">
 <text>My Scripts</text>

 <Action name="myAction">
 <icon></icon>
 <text>My Script</text>
 <whatsThis></whatsThis>
 <toolTip></toolTip>
 <iconText></iconText>
 <activationFlags>10000</activationFlags>
 <activationConditions>0</activationConditions>
 <shortcut>ctrl+alt+shift+p</shortcut>
 <isCheckable>false</isCheckable>
 <statusTip></statusTip>
 </Action>
 </Actions>
</ActionCollection>

	<text>My Scripts</text>
	This will create a sub-category under scripts called “My Scripts” to add your shortcuts to.

	name
	This should be the unique ID you made for your action when creating it in the setup of the extension.

	icon
	The name of a possible icon. These will only show up on KDE plasma, because Gnome and Windows users complained they look ugly.

	text
	The text that it will show in the shortcut editor.

	whatsThis
	The text it will show when a Qt application specifically calls for ‘what is this’, which is a help action.

	toolTip
	The tool tip, this will show up on hover-over.

	iconText
	The text it will show when displayed in a toolbar. So for example, “Resize Image to New Size” could be shortened to “Resize Image” to save space, so we’d put that in here.

	activationFlags
	This determines when an action is disabled or not.

	activationConditions
	This determines activation conditions (e.g. activate only when selection is editable). See the code [https://invent.kde.org/graphics/krita/-/blob/master/libs/ui/kis_action.h#L41] for examples.

	shortcut
	Default shortcut.

	isCheckable
	Whether it is a checkbox or not.

	statusTip
	The status tip that is displayed on a status bar.

Save this file as myplugin.action where myplugin is the name of your plugin. The action file should be saved, not in the pykrita resources folder, but rather in a resources folder named “actions”. (So, share/pykrita is where the python plugins and desktop files go, and share/actions is where the action files go) Restart Krita. The shortcut should now show up in the shortcut action list.

Creating a docker

Creating a custom docker [https://api.kde.org/krita/html/classDockWidget.html] is much like creating an extension. Dockers are in some ways a little easier, but they also require more use of widgets. This is the barebones docker code:

from PyQt5.QtWidgets import *
from krita import *

class MyDocker(DockWidget):

 def __init__(self):
 super().__init__()
 self.setWindowTitle("My Docker")

 def canvasChanged(self, canvas):
 pass

Krita.instance().addDockWidgetFactory(DockWidgetFactory("myDocker", DockWidgetFactoryBase.DockRight, MyDocker))

The window title is how it will appear in the docker list in Krita. canvasChanged always needs to be present, but you don’t have to do anything with it, so hence just ‘pass’.

For the addDockWidgetFactory…

	“myDocker”
	Replace this with a unique ID for your docker that Krita uses to keep track of it.

	DockWidgetFactoryBase.DockRight
	The location. These can be DockTornOff, DockTop, DockBottom, DockRight, DockLeft, or DockMinimized

	MyDocker
	Replace this with the class name of the docker you want to add.

So, if we add our export document function we created in the extension section to this docker code, how do we allow the user to activate it? First, we’ll need to do some Qt GUI coding: Let’s add a button!

By default, Krita uses PyQt, but its documentation is pretty bad, mostly because the regular Qt documentation is really good, and you’ll often find that the PyQt documentation of a class, say, QWidget [https://www.riverbankcomputing.com/static/Docs/PyQt5/api/qtwidgets/qwidget.html] is like a weird copy of the regular Qt documentation [https://doc.qt.io/qt-5/qwidget.html] for that class.

Anyway, what we need to do first is that we need to create a QWidget, it’s not very complicated, under setWindowTitle, add:

mainWidget = QWidget(self)
self.setWidget(mainWidget)

Then, we create a button:

buttonExportDocument = QPushButton("Export Document", mainWidget)

Now, to connect the button to our function, we’ll need to look at the signals in the documentation. QPushButton [https://doc.qt.io/qt-5/qpushbutton.html] has no unique signals of its own, but it does say it inherits 4 signals from QAbstractButton [https://doc.qt.io/qt-5/qabstractbutton.html#signals], which means that we can use those too. In our case, we want clicked.

buttonExportDocument.clicked.connect(self.exportDocument)

If we now restart Krita, we’ll have a new docker and in that docker there’s a button. Clicking on the button will call up the export function.

However, the button looks aligned a bit oddly. That’s because our mainWidget has no layout. Let’s quickly do that:

mainWidget.setLayout(QVBoxLayout())
mainWidget.layout().addWidget(buttonExportDocument)

Qt has several layouts [https://doc.qt.io/qt-5/qlayout.html], but the QHBoxLayout and the QVBoxLayout [https://doc.qt.io/qt-5/qboxlayout.html] are the easiest to use, they just arrange widgets horizontally or vertically.

Restart Krita and the button should now be laid out nicely.

PyQt Signals and Slots

We’ve already been using PyQt signals and slots already, but there are times when you want to create your own signals and slots.
As PyQt’s documentation is pretty difficult to understand [https://www.riverbankcomputing.com/static/Docs/PyQt5/signals_slots.html], and the way how signals and slots are created is very different from C++ Qt, we’re explaining it here:

All python functions you make in PyQt can be understood as slots, meaning that they can be connected to signals like Action.triggered or QPushButton.clicked. However, QCheckBox has a signal for toggled, which sends a boolean. How do we get our function to accept that boolean?

First, make sure you have the right import for making custom slots:

from PyQt5.QtCore import pyqtSlot

(If there’s from PyQt5.QtCore import * already in the list of imports, then you won’t have to do this, of course.)

Then, you need to add a PyQt slot definition before your function:

@pyqtSlot(bool)
def myFunction(self, enabled):
 enabledString = "disabled"
 if (enabled == True):
 enabledString = "enabled"
 print("The checkbox is"+enabledString)

Then, when you have created your checkbox, you can do something like myCheckbox.toggled.connect(self.myFunction).

Similarly, to make your own PyQt signals, you do the following:

signal name is added to the member variables of the class
signal_name = pyqtSignal(bool, name='signalName')

def emitMySignal(self):
 # And this is how you trigger the signal to be emitted.
 self.signal_name.emit(True)

And use the right import:

from PyQt5.QtCore import pyqtSignal

To emit or create slots for objects that aren’t standard python objects, you only have to put their names between quotation marks.

A note on unit tests

If you want to write unit tests for your plugin, have a look at the mock krita module [https://github.com/rbreu/krita-python-mock].

Conclusion

Okay, so that covers all the Krita specific details for creating python plugins. It doesn’t handle how to parse the pixel data, or best practices with documents, but if you have a little bit of experience with python you should be able to start creating your own plugins.

As always, read the code carefully and read the API docs for python, Krita and Qt carefully to see what is possible, and you’ll get pretty far.

Tag Management

Tags are how you organize common types of resources. They can be used with brushes, gradients, patterns, and even brush tips. You can select them from a drop-down menu above the resources. Selecting a tag will filter all the resources by that tag. Selecting the tag of All will show all resources. Krita comes installed with a few default tags. You can create and edit your own as well. The tags are managed similarly across the different types of resources.

You can use tags together with the Pop-up Palette for increased productivity.

[image: ../_images/Tag_Management.png]

Note

You can select different brush tags in the pop-up palette. This can be a quick way to access your favorite brushes.

This page has a few common things you can do with tags. For more information about tags, check the Tags section on the resource management page.

Adding a New Tag for a Brush

By pressing the + next to the tag selection, you will get an option to add a tag. Type in the name you want and press the Enter key. You will need to go back to the All tag to start assigning brushes.

Assigning an Existing Tag to a Brush

Right-click on a brush in the Brush Presets Docker. You will get an option to assign a tag to the brush.

Changing a Tag’s Name

Select the existing tag that you want to have changed from the drop-down. Press the + icon next to the tag. You will get an option to rename it. Press the Enter key to confirm. All the existing brushes will remain in the newly named tag.

Deleting a Tag

Select the existing tag that you want to have removed from the drop-down. Press the + icon next to the tag. You will get an option to remove it.

Soft Proofing

When we make an image in Krita, and print that out with a printer, the image tends to look different. The colors are darker, or less dark than expected, maybe the reds are more aggressive, maybe contrast is lost. For simple documents, this isn’t much of a problem, but for professional prints, this can be very sad, as it can change the look and feel of an image drastically.

The reason this happens is simply because the printer uses a different color model (CMYK) and it has often access to a lower range of colors (called a gamut).

A naive person would suggest the following solution: do your work within the CMYK color model! But there are three problems with that:

	Painting in a CMYK space doesn’t guarantee that the colors will be the same on your printer. For each combination of Ink, Paper and Printing device, the resulting gamut of colors you can use is different, which means that each of these could have a different profile associated with them.

	Furthermore, even if you have the profile and are working in the exact color space that your printer can output, the CMYK color space is very irregular, meaning that the color maths isn’t as nice as in other spaces. Blending modes are different in CMYK as well.

	Finally, working in that specific CMYK space means that the image is stuck to that space. If you are preparing your work for different a CMYK profile, due to the paper, printer or ink being different, you might have a bigger gamut with more bright colors that you would like to take advantage of.

So ideally, you would do the image in RGB, and use all your favorite RGB tools, and let the computer do a conversion to a given CMYK space on the fly, just for preview. This is possible, and is what we call ‘’Soft Proofing’’.

[image: ../_images/Softproofing_regularsoftproof.png]

On the left, the original, on the right, a view where soft proofing is turned on. The difference is subtle due to the lack of really bright colors, but the soft proofed version is slightly less blueish in the whites of the flowers and slightly less saturated in the greens of the leaves.

You can toggle soft proofing on any image using the Ctrl + Y shortcut. Unlike other programs, this is per-view, so that you can look at your image non-proofed and proofed, side by side. The settings are also per image, and saved into the .kra file. You can set the proofing options in Image ‣ Image Properties ‣ Soft Proofing.

There you can set the following options:

	Profile, Depth, Space
	Of these, only the profile is really important. This will serve as the profile you are proofing to. In a professional print workflow, this profile should be determined by the printing house.

	Intent
	Set the proofing Intent. It uses the same intents as the intents mentioned in the color managed workflow.

[image: ../_images/Softproofing_adaptationstate.png]

Left: Soft proofed image with Adaptation state slider set to max. Right: Soft proofed image with Adaptation State set to minimum.

	Adaptation State
	A feature which allows you to set whether Absolute Colorimetric will make the white in the image screen-white during proofing (the slider set to max), or whether it will use the white point of the profile (the slider set to minimum). Often CMYK profiles have a different white as the screen, or amongst one another due to the paper color being different.

	Black Point Compensation
	Set the black point compensation. Turning this off will crunch the shadow values to the minimum the screen and the proofing profile can handle, while turning this on will scale the black to the screen-range, showing you the full range of grays in the image.

	Gamut Warning
	Set the color of the out-of-gamut warning.

You can set the defaults that Krita uses in Settings ‣ Configure Krita… ‣ Color Management.

To configure this properly, it’s recommended to make a test image to print (and that is printed by a properly set-up printer) and compare against, and then approximate in the proofing options how the image looks compared to the real-life copy you have made.

Out of Gamut Warning

The out of gamut warning, or gamut alarm, is an extra option on top of Soft-Proofing: It allows you to see which colors are being clipped, by replacing the resulting color with the set alarm color.

This can be useful to determine where certain contrasts are being lost, and to allow you to change it slowly to a less contrasted image.

[image: ../_images/Softproofing_gamutwarnings.png]

Left: View with original image, Right: View with soft proofing and gamut warnings turned on. Krita will save the gamut warning color alongside the proofing options into the KRA file, so pick a color that you think will stand out for your current image.

You can activate Gamut Warnings with the Ctrl + Shift + Y shortcut, but it needs soft proofing activated to work fully.

Note

Soft Proofing doesn’t work properly in floating-point spaces, and attempting to force it will cause incorrect gamut alarms. It is therefore disabled.

Warning

Gamut Warnings sometimes give odd warnings for linear profiles in the shadows. This is a bug in LittleCMS, see here [https://ninedegreesbelow.com/bug-reports/soft-proofing-problems.html] for more info.

Vector Graphics

Krita 4.0 has had a massive rewrite of the vector tools. So here’s a page explaining the vector tools:

What are vector graphics?

Krita is primarily a raster graphics editing tool, which means that most of the editing changes the values of the pixels on the raster that makes up the image.

[image: ../_images/Pixels-brushstroke.png]
Vector graphics on the other hand use mathematics to describe a shape. Because it uses a formula, vector graphics can be resized to any size.

On one hand, this makes vector graphics great for logos and banners. On the other hand, raster graphics are much easier to edit, so vectors tend to be the domain of deliberate design, using a lot of precision.

Tools for making shapes

You can start making vector graphics by first making a vector layer (press the arrow button next to the + in the layer docker to get extra layer types). Then, all the usual drawing tools outside the Freehand, Dynamic and the Multibrush tool can be used to draw shapes.

The Path and Polyline tool are the tools you used most often on a vector layer, as they allow you to make the most dynamic of shapes.

On the other hand, the Ellipse and Rectangle tools allow you to draw special shapes, which then can be edited to make special pie shapes, or for easy rounded rectangles.

The calligraphy and text tool also make special vectors. The calligraphy tool is for producing strokes that are similar to brush strokes, while the text tool makes a text object that can be edited afterwards.

All of these will use the current brush size to determine stroke thickness, as well as the current foreground and background color.

There is one last way to make vectors: the Vector Image tool. It allows you to add shapes that have been defined in an SVG file as symbols. Unlike the other tools, these have their own fill and stroke.

Arranging Shapes

A vector layer has its own hierarchy of shapes, much like how the whole image has a hierarchy of layers. So shapes can be in front of one another. This can be modified with the arrange docker, or with the Select Shapes tool.

The arrange docker also allows you to group and ungroup shapes. It also allows you to precisely align shapes, for example, have them aligned to the center, or have an even spacing between all the shapes.

Editing shapes

Editing of vector shapes is done with the Select Shapes tool and the Edit Shapes tool.

The Select Shapes tool can be used to select vector shapes, to group them (via [image: mouseright]), ungroup them, to use booleans to combine or subtract shapes from one another (via [image: mouseright]), to move them up and down, or to do quick transforms.

Fill

You can change the fill of a shape by selecting it and changing the active foreground color.

You can also change it by going into the tool options of the Select Shapes tool and going to the Fill tab.

Vector shapes can be filled with a solid color, a gradient or a pattern.

Stroke

Strokes can be filled with the same things as fills.

However, they can also be further changed. For example, you can add dashes and markers to the line.

Coordinates

Shapes can be moved with the Select Shapes tool, and in the tool options you can specify the exact coordinates.

Editing nodes and special parameters

If you have a shape selected, you can double-click it to get to the appropriate tool to edit it. Usually this is the Edit Shape tool, but for text this is the Text tool.

In the Edit Shape tool, you can move around nodes on the canvas for regular paths. For special paths, like the ellipse and the rectangle, you can move nodes and edit the specific parameters in the Tool Options docker.

Working together with other programs

One of the big things Krita 4.0 brought was moving from ODG to SVG. What this means is that Krita saves as SVG inside KRA files, and that means Krita can open SVG just fine. This is important as SVG is the most popular vector format.

Inkscape

You can copy and paste vectors from Krita to Inkscape, or from Inkscape to Krita. Only the SVG 1.1 features are supported, with exception of smaller features like the mesh gradients.

Snapping

In Krita 3.0, we now have functionality for Grids and Guides, but of course, this functionality is by itself not that interesting without snapping.

Snapping is the ability to have Krita automatically align a selection or shape to the grids and guides, document center and document edges. For Vector layers, this goes even a step further, and we can let you snap to bounding boxes, intersections, extrapolated lines and more.

All of these can be toggled using the snap pop-up menu which is assigned to Shift + S shortcut.

Now, let us go over what each option means:

	Grids
	This will snap the cursor to the current grid, as configured in the grid docker. This doesn’t need the grid to be visible. Grids are saved per document, making this useful for aligning your art work to grids, as is the case for game sprites and grid-based designs.

	Pixel
	This allows to snap to every pixel under the cursor. Similar to Grid Snapping but with a grid having spacing = 1px and offset = 0px.

	Guides
	This allows you to snap to guides, which can be dragged out from the ruler. Guides do not need to be visible for this, and are saved per document. This is useful for comic panels and similar print-layouts, though we recommend Scribus for more intensive work.

[image: ../_images/Snap-orthogonal.png]

	Orthogonal (Vector Only)
	This allows you to snap to a horizontal or vertical line from existing vector objects’ nodes (Unless dealing with resizing the height or width only, in which case you can drag the cursor over the path). This is useful for aligning object horizontally or vertically, like with comic panels.

[image: ../_images/Snap-node.png]

	Node (Vector Only)
	This snaps a vector node or an object to the nodes of another path.

[image: ../_images/Snap-extension.png]

	Extension (Vector Only)
	When we draw an open path, the last nodes on either side can be mathematically extended. This option allows you to snap to that. The direction of the node depends on its side handles in path editing mode.

[image: ../_images/Snap-intersection.png]

	Intersection (Vector Only)
	This allows you to snap to an intersection of two vectors.

	Bounding box (Vector Only)
	This allows you to snap to the bounding box of a vector shape.

	Image bounds
	Allows you to snap to the vertical and horizontal borders of an image.

	Image center
	Allows you to snap to the horizontal and vertical center of an image.

The snap works for the following tools:

	Straight line

	Rectangle

	Ellipse

	Polyline

	Path

	Freehand path

	Polygon

	Gradient

	Shape Handling tool

	The Text-tool

	Assistant editing tools

	The move tool (note that it snaps to the cursor position and not the bounding box of the layer, selection or whatever you are trying to move)

	The Transform tool

	Rectangle select

	Elliptical select

	Polygonal select

	Path select

	Guides themselves can be snapped to grids and vectors

Snapping doesn’t have a sensitivity yet, and by default is set to 10 screen pixels.

Animation with Krita

Thanks to the 2015 Kickstarter, Krita has animation. In specific, Krita has frame-by-frame raster animation.

To access the animation features, the easiest way is to change your workspace to Animation. This will make the animation dockers and workflow appear.

Workflow

In traditional animation workflow, what you do is that you make Keyframes, which contain the important poses, and then draw frames in between (tweening in highly sophisticated animator’s jargon).

For this workflow, there are three important dockers:

	The Animation Timeline Docker. View and control all the frames in your animation. The timeline docker also contains functions to manage your layers. The layers that are created in the timeline docker also appear on the normal Layer docker.

	The Onion Skin Docker. This docker controls the look of the onion skin, which in turn is useful for seeing the previous frame.

	The Animation Curves Docker. This docker allows you to do minor tweening for animation curves.

	The Storyboard Docker. This docker helps you create and keep track of storyboards.

Furthermore, especially when you want to do a big animation, that is, any animation longer than 3 seconds, you will need to think about how you are going to approach this. Krita is specialized in frame by frame animation, and because of this Krita keeps all the frames in memory. This means that animation files will eat up all of your computer’s working memory (RAM). If you don’t know what working memory is, you probably have too little to do a long sequence in Krita. Therefore, you need to take a page from professional animation and do some planning!

[image: ../_images/Storyboard_thumbnailonly_view.png]

The storyboard docker can help you plan out the shots of a scene.

Typically, most animation projects start with a script or at the very least an outline of actions that will happen. You can do this in any kind of text editor you like. The next step is to create a storyboard. They are sketches of the basic composition of each scene, with some extra notes on what is going to move, like camera movement, character movement, notes on audio, notes on color. These seem closer to a comic than an animation, but the key difference between the two is that in comics the composition is made to help the reader move their eyes over the page, while in animation the viewer’s eyes will stay in relatively the same spot, so consecutive storyboard frames will have their most important elements in relatively the same place. If that seems a little abstract, don’t worry. You can make a story board by using the animation functions, but the key here is that you use as little frames as possible. Export the story board using the render animation option.

Then, the next step is to make an Animatic. An animatic is basically the storyboard, but then animated. You are best off doing this in a video editor like Kdenlive [http://kdenlive.org/], OpenShot [https://www.openshot.org/], Olive [https://olivevideoeditor.org/index.php], or even Windows Movie Maker. If you want to put everything together into one big animation you will need to learn how to use such a program to begin with, as Krita doesn’t have extensive video and audio montage functions.

Doing the animatic will allow you to see how the animation can be subdivided into small clips. If you are just starting out, you are best off limiting yourself to 12 frames per second. Then, a 10-second clip would be 120 frames. Try to figure out if you can subdivide your animation idea into clips of 10 seconds or shorter. You can import the story board frames associated with a specific clip by going to File ‣ Import Animation Frames. From there, slowly start building up your animation. During the sketching phase it may also help to work on a low resolution, like 800×450 pixels. High resolution only starts mattering when you are doing line art, after all. And it will be hard to get to that point if you don’t even have a rough outline.

Always keep an eye on the memory consumption. You can see the memory consumption in the status bar, by clicking the resolution label. This label should also have a little progress bar that shows how much memory Krita is using at this moment. Don’t let the memory bar get full: it will lead to Krita slowing down, and sometimes it might even mean Krita won’t be able to export the animation on your specific machine. You can reduce memory consumption by:

	Merging together layers. Yes, you cannot afford to have a layer for every single change. Often, the fewer layers, the better.

	In some cases by going to Image ‣ Crop Layers to Image Size, this will crop all layers to remove sections that are outside the canvas.

	Sometimes, certain layers don’t need to be full color, especially if they’re just black and white. You can then go to Layers ‣ Convert ‣ Convert Layer Color Space and convert the layer to a grayscale one. This will half the amount of RAM this specific layer will take up.

	Working smaller. Even if you imagined yourself animating in the 4K resolution, you might need to accept your computer just cannot handle this. Try going a step lower, on animations, even a 20% reduction can make a huge difference in memory consumption, while not being a huge difference in resolution.

Also watch out that other programs on your computer aren’t hogging all the RAM. Web browsers and chat programs tend to be the biggest culprits here, especially if you are streaming music or videos. If you are hurting for memory, see if you can get these functions to work on a separate device like a phone instead.

Another thing you will want to do is make a ton of backups. Every time you hit an important section with an animation, like you finished the line art, or you did a pretty tricky section, you will want to use File ‣ Incremental Backup to make a separate copy of the current file to continue working in. This way, if the animation file gets corrupt, which could happen due to a power outage, or a cat jumping on the keyboard, you will still have a snapshot of the last important section. Other backup techniques, like copying the files to a cloud service, or to a backup hard drive are also very recommended.

Tip

And while we’re at it, whenever you’ve hit a milestone, don’t forget to take a break as well! Doing big projects like animations take a lot of effort and concentration, so taking breaks is important to recharge yourself.

When you are done, you will want to use Render Animation again. Now either export a frame sequence or a small video file, and then compose all the frame sequences and video files together in the video editor. Then you can render it to WebM, and upload it to your favorite video hosting website.

This may all seem a little complicated, but if your computer doesn’t have a lot of resources, you have got to be resourceful yourself!

Introduction to animation: How to make a walk cycle

The best way to get to understand all these different parts is to actually use them. Walk cycles are considered the most basic form of a full animation, because of all the different parts involved with them. Therefore, going over how one makes a walk cycle should serve as a good introduction.

Setup

First, we make a new file. On the first tab, we type in a nice ratio like 1280×1024, set the dpi to 72 (we’re making this for screens after all) and title the document ‘walk cycle’.

In the second tab, we choose a nice background color, and set the background to canvas-color. This means that Krita will automatically fill in any transparent bits with the background color. You can change this in Image ‣ Image Properties. This is very useful for animation, as the layer you do animation on must be semi-transparent to get onion skinning working.

Note

Krita has a bunch of functionality for meta-data, starting at the Create Document screen. The title will be automatically used as a suggestion for saving and the description can be used by databases, or for you to leave comments behind. Not many people use it individually, but it can be useful for working in larger groups.

Then hit Create!

Then, to get all the necessary tools for animation, select the animation workspace in Window ‣ Workspace ‣ Animation

Which should result in this:

[image: ../_images/Introduction_to_animation_01.png]

The animation workspace adds the Animation Timeline Docker at the bottom.

Animating

Make sure there’s two transparent layers setup in the layer docker. You can add a new layer by pressing the + or by pressing ins. Let’s name the bottom one ‘environment’ and the top walkcycle by double-clicking their names in the layer docker.

[image: Layout of the layer stack.]

Use the Straight Line Tool to draw a single horizontal line. This is the ground.

[image: Our simple environment, consisting of a single horizon.]
Then, select the walkcycle layer and draw a head and torso (you can use any brush for this).

[image: A head and torso.]
Now, selecting a new frame will not make a new frame automatically. Krita doesn’t actually see the walkcycle layer as an animated layer at all!

We can make it an animated layer by adding a frame to the timeline. A frame in the timeline to get a context menu. Select Create Duplicate Frame ([image: duplicateframe]).

Attention

If you select Create Blank Frame, the content of the layer will be dropped and a new blank frame will appear; since you want to preserve the image, you need to use Create Duplicate Frame.

[image: Location of the onion skin icon.]
You can see it has become an animated layer because of the onion skin icon ([image: onionon]) showing up in the timeline docker.

Use the Create Duplicate Frame button to copy the first frame onto the second. Then, use the Move Tool (switch to it using the T shortcut) with the Shift + ↑ shortcut to move the frame contents up.

We can see the difference by turning on the onion skinning (press the [image: onionoff], so it becomes [image: onionon]):

[image: Onion skin is turned on.]

[image: The current frame in black and the silhouette of the previous frame in red.]

Now, you should see the previous frame as red.

Warning

Krita sees white as a color, not as transparent, so make sure the animation layer you are working on is transparent in the bits where there’s no drawing. You can fix the situation by use the Color to Alpha filter, but prevention is best.

[image: Current frame is black and silhouette of the future frame is green.]

Future frames are drawn in green, and both colors can be configured in the onion skin docker.

Now, we’re going to draw the two extremes of the walk cycle. These are the pose where both legs are as far apart as possible, and the pose where one leg is full stretched and the other pulled in, ready to take the next step.

[image: ../_images/Introduction_to_animation_09.png]

The above image shows our two extremes: legs far apart, and one leg straight while the other is bent, as it’s taking a step. This also shows the power of onion skins, as we can see both extremes at once.
Notice also how the legs have been made semi-transparent. This isn’t necessary with a stick figure, but useful in this case when we start copying.

Let’s copy these two. You can do this by doing [image: mouseright] on the frame, and then selecting Copy Keyframes. Then select the new position in the time line, [image: mouseright] again, and Paste Keyframes.

Now then…

	Copy frame 0 to frame 2.

	Copy frame 1 to frame 3.

	Erase the semi transparent lines to make it obvious which leg is in front of the other. In 0 and 1, we have the closer leg to the right, then bend, and in 2 and 3, we have the further leg to the right and then bend.

[image: ../_images/Introduction_to_animation_10.png]

	In the animation settings, set the frame-rate to 4

[image: ../_images/Introduction_to_animation_11.png]

	Select all frames in the timeline docker by dragging-selecting them.

[image: ../_images/Introduction_to_animation_12.png]

	Press play in the header.

	Enjoy your first animation!

[image: ../_images/animation_walkcycle_2021_4_frames.gif]

Expanding upon your rough walk cycle

[image: ../_images/Introduction_to_animation_13.png]
You can quickly make some space by the Alt + drag shortcut on any frame. This’ll move that frame and all others after it
in one go. More efficient for us, however, is to select all frames, [image: mouseright] them, and then select Hold frames ‣ Insert Hold Frame, which will insert an empty space or Hold Frame in between each Keyframe.

Make new frames in between each keyframe, and try to interpolate, or inbetween each frame you add.

Note

A lot has been written about how to inbetween properly, and it’s one of the areas where animators express their own style the clearest. As such, we won’t cover inbetweening itself here. We recommend you do a search for inbetweening tutorials on the internet. We also recommend animation analyses to get an idea of how intricate this subject is.

For this particular example, I prefer to start by finding the position of the heel in a frame, then draw the rest of the foot, then the knees, and then the rest of the legs.

[image: ../_images/Introduction_to_animation_14.png]
[image: ../_images/Introduction_to_animation_13.png]
You’ll find that the more frames you add, the more difficult it becomes to keep track of the animation. There are two things you can do here. The first is to color label frames, you can do [image: mouseright] on the keyframes, and select any of the colors on the bottom.

[image: ../_images/Introduction_to_animation_13b.png]

In this example, the extremes are blue, the first inbetweens green and the less important inbetweens in yellow and orange.

Another thing you can do is to adjust the onion skins.

You can modify the onion skin by using the Onion Skin Docker, where you can change how many frames are visible at once, by toggling them on the top row. The bottom row is for controlling transparency, while below there you can modify the colors and intensity of the coloring.

[image: ../_images/Introduction_to_animation_15.png]

[image: ../_images/Introduction_to_animation_14b.png]

Here we’ve turned off all onion skinned frames except the next and previous ones.

Animating with multiple layers

Okay, our walk cycle is missing some hands, let’s add them on a separate
layer. So we make a new layer, and name it hands and…

[image: ../_images/Introduction_to_animation_16.png]
Our walk cycle is gone from the timeline docker! This is a feature
actually. A full animation can have so many little parts that an
animator might want to remove the layers they’re not working on from the timeline docker.

New in version 4.3.0: In Krita 4.3.0 and later, all new layers are pinned to the timeline by default.

To show a layer whether it’s active or not, you can “pin” it to the
timeline by clicking the [image: pintimeline] icon while having the layer you want pinned selected in the layer docker. We recommend pinning any layers that you’re currently animating on.

[image: ../_images/Introduction_to_animation_17.png]
[image: ../_images/Introduction_to_animation_18.png]

Exporting

When you are done, select File ‣ Render Animation. To render to a video file, you’ll need a program called FFmpeg. To learn more, please read Render Animation.

Enjoy your walk cycle!

[image: ../_images/Introduction_to_animation_walkcycle_02.gif]

Animating with transform masks

New in version 5.0.

If you want to move your walk cycle, you may use Transform Masks to move the frames from left to right without editing the pixels themselves.

First, open up the Animation Curves Docker if it has not been opened yet, under Settings ‣ Dockers ‣ Animation Curves.

Then, group the layers that you want to transform, in our example, these are the hands and the walkcycle layers. [image: mouseright] the group, Add ‣ Transform mask.

Then, go into the animation docker, select the first frame, and select Adds keyframe to control scalar property ([image: scalaradd]). In the Timeline Docker, Scalar Frames will be marked with a diamond.

Now select the Transform Tool, press the screen and move the group to the start point. Press Enter to confirm. Select the last frame in the docker, and then press the screen again, now move everything to the end point. Press Zoom view to fit channel range to view the whole frame.

Now, when you press play, you will see the layer contents move. However, it is probably moving too fast. There are two things to reduce that problem: The first is to copy and paste the walk cycle frames, so it repeats 3-4 times, then move the scalar frame to the last frame.

[image: ../_images/Introduction_to_animation_19.png]
[image: ../_images/introduction_to_animation_walkcycle_03_simple_tween.gif]
This still doesn’t sync the walk cycle directly to the speed it’s moving at. The best method, if a little laborious, is to go to the first frame where one of the feet touches the ground, and then mark that section (for example, using guides), then, in subsequent frames, use the Transform Tool on each frame to move it so that the foot stays in the same place as long as it’s touching the ground. Do the same for the next bit where a foot touches the ground, and the next, and so on.

[image: ../_images/Introduction_to_animation_20a.png]

Each place where a foot touches the ground is marked using vertical guides, which allows us to adjust each frame, so the foot stays in place.

[image: ../_images/Introduction_to_animation_20b.png]

[image: ../_images/Introduction_to_animation_20c.png]

The animation curve docker after adjusting each frame to be in the right spot. Krita can do curve interpolation (so you can create an ease-in and ease-out type curves), but for a situation like this, per-frame adjustment is quicker.

After having done all that, you will end up with a smoothly moving walk cycle:

[image: ../_images/introduction_to_animation_walkcycle_03_adjusted_tween.gif]

See also

	Animation Timeline Docker

	Onion Skin Docker

	Animation Curves Docker

	Storyboard Docker

	Import Animation

	Audio for Animation

	Render Animation

	Japanese Animation Template

Japanese Animation Template

This template is used to make Japanese-style animation. It is designed
on the assumption that it was used in co-production, so please customize
its things like layer folders according to scale and details of your
works.

Basic structure of its layers

Layers are organized so that your work will start from lower layers go
to higher layers, except for coloring layers.

[image: ../_images/Layer_Organization.png]

Its layer contents

from the bottom

	Layout Paper
	These layers are a form of layout paper. Anime tap holes are prepared on separate layers in case you have to print it out and continue your drawing traditionally.

	Layout (Background)
	These layers will contain background scenery or layouts which are scanned from a traditional drawing. If you don’t use them, you can remove them.

	Key drafts
	These layers are used to draw layouts digitally.

	Keys
	Where you add some details to the layouts and arrange them to draw “keys” of animation.

	Inbetweening
	Where you add inbetweens to keys for the process of coloring, and remove unnecessary details to finalize keys (To be accurate, I finish finalization of keys before beginning to add inbetweens).

	Coloring (under Inbetweening)
	Where you fill areas with colors according to specification of inbetweens.

	Time Sheet and Composition sheet
	This contains a time sheet and composition sheet. Please rotate them before using.

	Color set
	This contains colors used to draw main and auxiliary line art and fill highlight or shadows. You can add them to your palette.

Basic steps to make animation

Key draft –> assign them into Time sheet (or adjust them on Timeline, then assign them into Time sheet) –> adjust them on Timeline –> add frames to draw drafts for inbetweening if you need them –> Start drawing Keys

[image: ../_images/Keys_drafts.png]
You can add layers and add them to timeline.

[image: ../_images/Add_Timeline_1.png]
[image: ../_images/Add_Timeline_2.png]
This is due difference between 24 drawing per second, which is used in Full Animation, and 12 drawing per second and 8 drawings per second, which are used in Limited Animation, on the Timeline docker.

[image: ../_images/24_12_and_8_drawing_per_sec.png]
This is correspondence between Timeline and Time sheet. “Black” layer is to draw main line art which are used ordinary line art, “Red” layer is to draw red auxiliary line art which are used to specify highlights, “Blue” layer is to draw blue auxiliary line art which are used to specify shadows, and “Shadow” layer is to draw light green auxiliary line art which are used to specify darker shadows. However, probably you have to increase or decrease these layers according to your work.

[image: ../_images/Time_sheet_1.png]
Finished keys, you will begin to draw the inbetweens. If you feel Krita is becoming slow, I recommend you to merge key drafts and keys, as well as to remove any unnecessary layers.

After finalizing keys and cleaning up unnecessary layers, add inbetweens, using Time sheet and inbetween drafts as reference.

This is its correspondence with Time sheet.

[image: ../_images/Inbetweening.png]
Once the vector functionality of Krita becomes better, I recommend you to use vector to finalize inbetweening.

If you do the colors in Krita, please use Coloring group layer. If you do
colors in other software, I recommend to export frames as .TGA files.

Resolution

I made this template in 300 dpi because we have to print them to use them in traditional works which still fill an important role in Japanese Anime Studio. However, if you stick to digital, 150-120 dpi is enough to make animation. So you can decrease its resolution according to your need.

Originally written by Saisho Kazuki, Japanese professional animator, and translated by Tokiedian, KDE contributor.

Gamut Masks

New in version 4.2.

Gamut masking is an approach to color formalized by James Gurney, based on the idea that any color scheme can be expressed as shapes cut out from the color wheel.

It originates in the world of traditional painting, as a form of planning and premixing palettes. However, it translates well into digital art, enabling you to explore and analyze color, plan color schemes and guide your color choices.

How does it work?

You draw one or multiple shapes on top of the color wheel. You limit your color choices to colors inside the shapes. By leaving colors out, you establish a relationship between the colors, thus creating harmony.

Gamut masking is available in both the Advanced and Artistic Color Selectors.

See also

	Color Wheel Masking, Part 1 by James Gurney [https://gurneyjourney.blogspot.com/2008/01/color-wheel-masking-part-1.html]

	The Shapes of Color Schemes by James Gurney [https://gurneyjourney.blogspot.com/2008/02/shapes-of-color-schemes.html]

	Gamut Masking Demonstration by James Gurney (YouTube) [https://youtu.be/qfE4E5goEIc]

Selecting a gamut mask

For selecting and managing gamut masks open the Gamut Masks Docker: Settings ‣ Dockers ‣ Gamut Masks.

[image: ../_images/Krita_Gamut_Mask_Docker.png]

Gamut Masks docker

In this docker you can choose from several classic gamut masks, like the ‘Atmospheric Triad’, ‘Complementary’, or ‘Dominant Hue With Accent’. You can also duplicate those masks and make changes to them (3,4), or create new masks from scratch (2).

Clicking the thumbnail icon (1) of the mask applies it to the color selectors.

See also

	Gamut Masks Docker

In the color selector

You can rotate an existing mask directly in the color selector, by dragging the rotation slider on top of the selector (2).

The mask can be toggled off and on again by the toggle mask button in the top left corner (1).

[image: ../_images/GamutMasks_Selectors.png]

Advanced and Artistic color selectors with a gamut mask

See also

	Artistic Color Selector Docker

	Advanced Color Selector

Editing/creating a custom gamut mask

Tip

To rotate a mask around the center point use the rotation slider in the color selector.

If you choose to create a new mask, edit, or duplicate selected mask, the mask template documents open as a new view (1).

There you can create new shapes and modify the mask with standard vector tools (Vector Graphics). Please note, that the mask is intended to be composed of basic vector shapes. Although interesting results might arise from using advanced vector drawing techniques, not all features are guaranteed to work properly (e.g. grouping, vector text, etc.).

Warning

Transformations done through the transform tool or layer transform cannot be saved in a gamut mask. The thumbnail image reflects the changes, but the individual mask shapes do not.

You can Preview the mask in the color selector (4). If you are satisfied with your changes, Save the mask (5). Cancel (3) will close the editing view without saving your changes.

[image: ../_images/Krita_Gamut_Mask_Docker_2.png]

Editing a gamut mask

Importing and exporting

Gamut masks can be imported and exported in bundles in the Resource Manager. See Resource Management for more information.

General Concepts

Learn about general art and technology concepts that are not specific to Krita.

Contents:

	Colors
	Bit Depth

	Color Managed Workflow

	Mixing Colors

	Color Models

	Color Space Size

	Gamma and Linear

	Profiling and Calibration

	Scene Linear Painting

	Viewing Conditions

	File Formats
	Compression

	Metadata

	Openness

	Contents

	Perspective Projection
	Orthographic

	Oblique

	Axonometric

	Perspective Projection

	Practical

	Conclusion and afterthoughts

Colors

Okay, so… Let’s talk colors!

Colors are pretty, and they’re also pretty fundamental to painting. When painting, we want to be able to access and manipulate colors easily to do fun stuff like mixing them together or matching them to create visual harmony or contrast. We also want to be able to quickly find our favorite shades of red or favorite tints of blue without thinking or working too hard. All of this becomes even more important the more colors we have access to!

Naturally, the first thing we do is organize the colors, usually based on what we see in nature. For example, we tend to order hues in the order that they appear in a rainbow, and we think about brightness of values as a tonal range from white to black. Of course, nature itself is tied to physics, and the order of hues and the concept of brightness has everything to do with the wavelength and energy of light as it bounces around and eventually enters our eyes.

[image: ../_images/Krita_color_mixing_natural_order.png]
In the case of traditional media, we order the colors (hues) by how they result from mixes of other colors, starting with the subtractive primary colors: cyan, magenta, yellow. Mixing each primary color with each other reveals three secondary colors: violet, orange, and green. Mixing between those colors creates tertiary colors, and so on - the variations of hues between each named color are practically limitless! Thinking of colors in this way creates a circle of hues that artists call “the color wheel”! Each one of these hues can be made lighter (tint) or darker (shade) by mixing with white or black, respectively, and any color can be made less saturated (more gray or muted) by mixing with another color on the opposite side of the color wheel.

[image: ../_images/Krita_color_mixing_traditional_order.png]
In the digital world of computers color is treated similarly, and we order colors by the way the screen generates them; each pixel of color on our screen is produced by combining super tiny red, green, and blue lights of varying intensities. Unlike mixing paint, where light intensity is subtracted by pigment and mixing all the colors together produces a muddy brown or gray, mixing lights is additive - no light at all is obviously black, and mixing all of the colored lights produces white. As such, we can make a list of possible primary color intensities:

[image: ../_images/percentages_red.svg]Shown above is a table of different intensities of red light. Our screens can certainly create a lot of shades of red, but we only start to see the power of pixels when we add in the other primary colors, green and blue, and show the colors of light that are produced when they are added together! For example, here’s a table showing various mixes of red and green:

[image: ../_images/percentages_red_green.svg]But that’s just red and green, what about blue? I guess we can make even more tables to show what happens when different amounts of blue are added into the mix:

[image: ../_images/percentages_red_green_blue.svg]This way of ordering colors is probably familiar to you if you have used some programs for making internet applications, like Flash. In fact, if we had made 6 samples instead of 5 per “channel” (that is, per each primary color), we’d have gotten the 216 websafe colors [https://websafecolors.info/color-chart]!

Showing the colors in a bunch of tables just feels wrong, though, doesn’t it? That’s because, while our tables are 2D, as we are mixing three primary colors, color can be thought of as 3D! It’s a bit odd the first time you think about it this way, but you can actually stack these tables based on the amount of blue and they become a cube!

[image: ../_images/Rgbcolorcube_2.png]
This cube is not filled with water, or sand, or even concrete, but colors! Colors are pretty abstract, and we typically talk about cubes and other 3D objects that represent abstract ideas as spaces, hence we call this cube a color space. Because this particular cube uses red, green, and blue as its axes, we say that our cube is in the RGB color model.

There are many more color models. For example, if we were to balance our cube on the black corner, the white corner would be right under our finger at the very top of the cube. And as geometry and maths would have it, if we were to cut the cube in half as we balanced it, the line from the white point at the top to the black point at the bottom would be the grayscale.

[image: ../_images/Rgbcolorcube_HSI.png]
When you think about a strip of grays running through the middle of the cube, as we move farther away from that grayscale towards the outer edges of the cube the colors would begin to become more saturated (colorful and vivid). The circle of colors around that middle axis of gray would then define the hue, with a different color in each direction.

This is the basic idea of the HSV, HSL, HSI, and HSY color models. This particular model is called HSI (hue, saturation, and intensity), because it maps each unique color to the intensity of the primary colored lights that mix to create them.

There are other color models, like L*a*b*, where we look at the corresponding gray value of a color first, and then try to describe it, not it terms of hue and saturation, but by how red, green, blue, and yellow it is. Because our brains cannot really comprehend a color that is both green and red, or yellow and blue, this makes them good polar opposites in a sliding scale. We call this a perceptual model, as it is based on how we see color instead of how the color is generated.

Color models describe color spaces, which, in turn, are all sorts of sizes and shapes as well. Krita allows you to do operations in different models and spaces, and we call this functionality “Color Management”.

Color Management is necessary for CMYK (subtractive) support, but outside of that, not many drawing or painting programs offer the feature, as some developers believe that artists have no need for such functionality. What a pity! Especially because Color Management allows for far more cool tricks than just basic CMYK support, and the ability to manipulate colors like a computer can is perhaps digital painting’s most unique quality!

As Krita is giving almost unprecedented control of color, this unfortunately means that there are little to no articles out there on how to use color management for artists or painters. And so, we made this category and hope to fill it up with relatively short articles explaining color-related concepts in a light-hearted and visual manner.

We recommend going over the color managed workflow page next - even if you don’t plan on using it, it will help make sense out of the many features related to colors and Color Management. Other than that, each article should stand on its own and can be taken in at your own direction and pace!

Topics:

	Bit Depth

	Color Managed Workflow

	Mixing Colors

	Color Models

	Color Space Size

	Gamma and Linear

	Profiling and Calibration

	Scene Linear Painting

	Viewing Conditions

Bit Depth

Bit depth basically refers to the amount of working memory per pixel you reserve for an image.

Like how having a A2 paper in real life can allow for much more detail in the end drawing, it does take up more of your desk than a simple A4 paper.

However, this does not just refer to the size of the image, but also how much precision you need per color.

To illustrate this, I’ll briefly talk about something that is not even available in Krita:

Indexed Color

In older programs, the computer would have per image, a palette that contains a number for each color. The palette size is defined in bits, because the computer can only store data in bit-sizes.

[image: ../../_images/Kiki_lowbit.png]

	1bit
	Only two colors in total, usually black and white.

	4bit (16 colors)
	16 colors in total, these are famous as many early games were presented in this color palette.

	8bit
	256 colors in total. 8bit images are commonly used in games to save on memory for textures and sprites.

However, this is not available in Krita. Krita instead works with channels, and counts how many colors per channel you need (described in terms of ‘’bits per channel’’). This is called ‘real color’.

Real Color

[image: ../../_images/Rgbcolorcube_3.png]

1, 2, and 3bit per channel don’t actually exist in any graphics application out there, however, by imagining them, we can imagine how each bit affects the precision: Usually, each bit subdivides each section in the color cube meaning precision becomes a power of 2 bigger than the previous cube.

	4bit per channel (not supported by Krita)
	Also known as Hi-Color, or 16bit color total. A bit of an old system, and not used outside of specific displays.

	8bit per channel
	Also known as “True Color”, “Millions of colors” or “24bit/32bit”. The standard for many screens, and the lowest bit-depth Krita can handle.

	16bit per channel
	One step up from 8bit, 16bit per channel allows for colors that can’t be displayed by the screen. However, due to this, you are more likely to have smoother gradients. Sometimes known as “Deep Color”. This color depth type doesn’t have negative values possible, so it is 16bit precision, meaning that you have 65536 values per channel.

	16bit float
	Similar to 16bit, but with more range and less precision. Where 16bit only allows coordinates like [1, 4, 3], 16bit float has coordinates like [0.15, 0.70, 0.3759], with [1.0,1.0,1.0] representing white. Because of the differences between floating point and integer type variables, and because Scene-referred imaging allows for negative values, you have about 10-11bits of precision per channel in 16 bit floating point compared to 16 bit in 16 bit int (this is 2048 values per channel in the 0-1 range). Required for HDR/Scene referred images, and often known as ‘half floating point’.

	32bit float
	Similar to 16bit float but with even higher precision. The native color depth of OpenColor IO, and thus faster than 16bit float in HDR images, if not heavier. Because of the nature of floating point type variables, 32bit float is roughly equal to 23-24 bits of precision per channel (16777216 values per channel in the 0-1 range), but with a much wider range (it can go far above 1), necessary for HDR/Scene-referred values. It is also known as ‘single floating point’.

This is important if you have a working color space that is larger than your device space: At the least, if you do not want color banding.

And while you can attempt to create all your images a 32bit float, this will quickly take up your RAM. Therefore, it’s important to consider which bit depth you will use for what kind of image.

Color Managed Workflow

You may have heard that Krita has something called color-management. Or maybe you just wondered what all these ‘color model’ and ‘color profile’ things you can find in the menus mean. Color management is pretty useful for people who work in digital imaging professionally, and hopefully this page will explain why.

Basic Info

If you’ve never worked with color management before, and have no clue what it is, then know that you’ve probably been working in the 8bit RGB color space with the sRGB profile. This means you can choose for sRGB built-in or sRGB-elle-v2-srgbtrc.icc. With the new color space browser this profile is marked with (default) when using 8bit.

We’ll go into what these terms mean in the theory, but if you’re here only for trying to figure out which is the default, you now know it. Maybe, after reading this, you may feel like changing the default, to get new and interesting results from filters, blending modes, or just the color smudge brush.

What is the problem?

To explain the point of color management, you’d first need to learn which problem color management tries to solve.

Let us imagine a kinder garden:

The class of 28 children is subdivided in groups of 7. Each group has its own table.

The teacher gives them a painting assignment: They need to paint a red triangle, a blue square, a green circle and put a yellow border around the three.
The kids are very experienced with painting already, so the teacher can confidently leave the smarter ones to their own devices, and spent more time on those who need help.

The following results come from painting:

Even though all groups had the same assignment, each group’s result looks different.

[image: ../../_images/Krita_2_9_colormanagement_group1.png]

Group 1 had vermillion red, citron yellow and ultramarine blue to their disposal. This means their triangle looks nice and red, but their circle’s green is muddy. This is because ultramarine is too dark of a blue to create nice greens with.

[image: ../../_images/Krita_2_9_colormanagement_group2.png]

Group 2 had magenta red, citron yellow and cerulean blue. Magenta is a type of red that is closer to pink, opposed to vermillion, which is closer to orange. However, their green looks nice because cerulean is a much lighter blue.

[image: ../../_images/Krita_2_9_colormanagement_group3.png]

Group 3 had vermillion red, citron yellow, emerald green and cerulean blue. They didn’t mix their green, and thus ended up with a purer color.

[image: ../../_images/Krita_2_9_colormanagement_group4.png]

Finally, group 4 has vermillion red, citron yellow and cerulean blue. Their colors probably look like what you imagined.

Now, these are kindergarteners, so this isn’t the largest problem in the world. However, imagine that something like this happened at a printing company? Imagine four printers printing the same magazine with wildly different results? That would be disastrous!

For this purpose, we invented color management.

What is color management?

Color management is, dryly put, a set of systems that tries to have the same color translate properly between color devices.

It usually works by attempting to convert a color to the reference color space XYZ. XYZ is a coordinate system that has a spot for all colors that the average human eye can see.

From XYZ it can then be translated back into another device space, such as RGB (for screens), or CMYK (for printers).

Krita has two systems dedicated to color management. On the one hand, we have lcms2, which deal with ICC profiles, and on the other, we have OCIO, which deal with LUT color management.

To give a crude estimate, ICC profiles deal with keeping colors consistent over many interpretations of devices (screens, printers) by using a reference space, and OCIO deals with manipulating the interpretation of said colors.

Within both we can identify the following color spaces:

	Device spaces
	Device spaces are those describing your monitor, and have to be made using a little device that is called “colorimeter”. This device, in combination with the right software, measures the strongest red, green and blue your screen can produce, as well as the white, black and gray it produces. Using these and several other measurements it creates an ICC profile unique to your screen. You set these in Krita’s color management tab.
By default we assume sRGB for screens, but it’s very likely that your screen isn’t exactly fitting sRGB, especially if you have a high quality screen, where it may be a bigger space instead. Device spaces are also why you should first consult with your printer what profile they expect. Many printing houses have their own device profiles for their printers, or may prefer doing color conversion themselves.
You can read more about colorimeter usage here.

	Working spaces
	These are delivered alongside Krita for ICC, and downloadable from the OCIO website for OCIO. Working spaces are particularly nice to do color calculations in, which programs like Krita do often. It’s therefore recommended to have a working space profile for your image.

	Aesthetic or Look spaces
	These are special spaces that have been deformed to give a certain look to an image. Krita doesn’t deliver Look profiles for ICC, nor does it yet support Look spaces for OCIO.

Color managed workflow

Knowing this about these spaces of course doesn’t give you an idea of how to use them, but it does make it easier to explain how to use them. So let us look at a typical color management workflow:

[image: ../../_images/Krita-colormanaged-workflow_text.svg]
A typical example of a color managed workflow. We have input from scanners and cameras, which we convert to a working space that can be used between different editing software, and is converted to an output space for viewing on screen or printing.

In a traditional color managed workflow, we usually think in terms of real world colors being converted to computer colors and the other way around. So, for example photos from a camera or scanned in images. If you have a device space of such a device, we first assign said device space to the image, and then convert it to a working space.

We then do all our editing in the working space, and use the working space to communicate between editing programs. In Krita’s case, due to it having two color management systems, we use ICC profiles between programs like Gimp 2.9+, Inkscape, digiKam and Scribus, and OCIO configuration between Blender and Natron.

You also store your working files in the working space, just like how you have the layers unmerged in the working file, or have it at a very high resolution.

Sometimes, we apply aesthetic or ‘look’ spaces to an image as part of the editing process. This is rather advanced, and probably not something to worry about in Krita’s case.

Then, when we’re done editing, we try to convert to an output space, which is another device space. This can be CMYK for printers or a special screen RGB profile. When you are dealing with professional printing houses, it is best to ask them about this step. They have a lot of experience with doing the best conversion, and may prefer to do the conversion from your working space to the device space of their printers.

Another form of output is the way your screen displays the color. Unlike regular output, this one is done all the time during editing: After all, you need to be able to see what you are doing, but your screen is still a device with a device space, so it does distort how the image looks. In this manner, you can see your screen as a set of binoculars you have to look through to see your image at all.

Therefore, without a profiled monitor, you actually don’t know what the actual colors you are working with are like, because the computer doesn’t know the relevant properties of your screen. So if you profiled your monitor, give Krita the profile in the settings, and select the sRGB space to draw in, you are for the first time seeing the actual colors of the sRGB space.

So what does this mean?

[image: ../../_images/Krita-colormanaged-workflow_krita_text.svg]
When we paint from scratch, we can see our screen profile as the input space, because we use it to determine what colors to pick. This somewhat simplifies the workflow, but makes the screen profile and viewing conditions more important.

Now, photographers and people who do a tricky discipline of VFX called ‘color grading’ will go completely mad over trying to get the colors they put in to come out 100% correctly, and will even count in factors like the time of day and the color they painted their walls. For example, if the wall behind your computer is pure red, your eyes will adjust to be less sensitive to red, which means that the colors they pick in the program could come out redder. We call these the viewing conditions.

Thankfully, artists have to worry a slight bit less about this. As illustrations are fully handmade, we are able to identify the important bits and make appropriate contrasts between colors. This means that even if our images turn out to be slightly redder than intended, it is less likely the whole image is ruined. If we look back at the kindergarten example above, we still understand what the image was supposed to look like, despite there being different colors on each image. Furthermore, because the colors in illustrations are deliberately picked, we can correct them more easily on a later date. Yet, at the same time, it is of course a big drag to do this, and we might have had much more flexibility had we taken viewing conditions under consideration.

That said, for artists it is also very useful to understand the working spaces. Different working spaces give different results with filters and mixing, and only some working spaces can be used for advanced technology like HDR.

Similarly, Krita, as a program intended to make images from scratch, doesn’t really worry about assigning workspaces after having made the image. But because you are using the screen as a binocular to look at your image, and to pick colors, you can see your screen’s device space as an input space to the image. Hence why profiling your monitor and giving the profile to Krita in the settings can help with preparing your work for print and future ventures in the long run.

Overall, it is kinda useful to keep things like viewing conditions in the back of your mind. Many professional artists use a mid-gray color as their default canvas background because they find they create much more dynamic images due to having improved their viewing conditions. It is also why a lot of graphics programs, including Krita, come with a dark theme nowadays. (Though, of course this might also be because dark themes can be considered cool, who knows.)

ICC profiles

An ICC profile is a set of coordinates describing the extremities of the device space within XYZ, and it is the color management data you use to communicate your working space to printers and applications that are designed for the print industry, such as Gimp, Scribus, Photoshop, Illustrator, Inkscape, digiKam, RawTheraphee, etc. You have two types of ICC profiles:

	Matrix Shaper profiles
	These are delivered alongside Krita. Matrix shaper profiles are made by setting parameters and interpolating between these to get the exact size of the color space. Due to this, Krita’s color space browser can give you a lot of information on these profiles. Such profiles are also preferable as working space.

[image: ../../_images/Kiki_matrix_profile.png]

Matrix shaper profiles have a few parameters that describe the color space which are then interpolated between, this requires a lot of maths.

	cLUT profiles
	These are fairly rare, and primarily used to describe printer profiles, such as CMYK. cLUT, or Color Look-up Table profiles store far more data than Matrix shaper profiles, so they can hold data of little particularities caused by, for example, unexpected results from mixing pigments. This is a far more organic approach to describing a color space, hence why a lot of programs that don’t care for color management much don’t support these.

[image: ../../_images/Kiki_cLUTprofiles.png]

cLUT profiles work by holding tables of each color in a color space and their respective coordinates in a reference space. For CMYK this is typically L*A*B* and for the rest XYZ. These tables are tricky to make, which means these profiles are a lot rarer.

The interesting thing about ICC profiles is that your working space can be larger than your device space. This is generally not bad. However, when converting, you do end up with the question of how to translate the working space values.

	Perceptual
	This just squishes the values of the working space into the space it’s converted to. It’s a nice method to see all possible values in this, but not so good if you want accurate color reproduction. Use this if you want to see all colors in an image, or want to express all possible contrasts. Doesn’t work with Matrix Shaper profiles, defaults to relative colorimetric.

	Absolute Colorimetric
	The opposite to Perceptual, Absolute colorimetric will attempt to retain all the correct colors at whatever cost, which may result in awful looking colors. Recommended only for reproduction work. Doesn’t work with Matrix Shaper profiles in Krita due to ICC v4 workflow standards.

	Relative Colorimetric
	An in between solution between perceptual and absolute, relative will try to fit whatever colors it can match between color spaces. It does this by aligning the white and black points. It cuts off the rest to their respective borders. This is what all matrix shaper profiles default to during conversion, because the ICC v4 workflow specifies to only use Relative Colorimetric for matrix shaper profiles.

	Saturation
	Does anything to retain colorfulness, even hue will be sacrificed. Used in infographics. Doesn’t work with Matrix Shaper profiles, defaults to relative colorimetric.

ICC profile version is the last thing to keep in mind when dealing with ICC profiles. Krita delivers both Version 2 and Version 4 profiles, with the later giving better results in doing color maths, but the former being more widely supported (as seen below in ‘Interaction with other applications’). This is also why Krita defaults to V2, and we recommend using V2 when you aren’t certain if the other programs you are using support V4.

LUT docker and HDR imaging

[image: ../../_images/LUT_Management_Docker.png]

The LUT Management is the second important bit of color management in Krita that is shared between Krita and programs like Blender, Natron and Nuke, and only uses Look Up Tables that are configured via a config file.

You can set the workingspace of the image under input color space, and the display to sRGB or your own LUT if you have added it to the configuration. View in this case is for proofing transforms to a certain display device.

Component, exposure, gamma, whitepoint and blackpoint are knobs which allows you to modify the display filter.

[image: ../../_images/Krita_HDR_1.svg]
As explained before, we can see our monitor as a telescope or binocular into the world of our picture. Which means it distorts our view of the image a little. But we can modify this binocular, or display filter to see our image in a different way. For example, to allow us to see the white in an image that are whiter than the white of our screen. To explain what that means, we need to think about what white is.

For example, white, on our monitor is full red, full green and full blue. But it’s certainly different from white on our paper, or the color of milk, white from the sun, or even the white of our cell-phone displays.

Black similarly, is brighter on a LCD display than a LED one, and incomparable with the black of a carefully sealed room.

This means that there’s potentially blacker blacks than screen black, and white whites than screen white. However, for simplicity’s sake we still assign the black-point and the white-point to certain values. From there, we can determine whether a white is whiter than the white point, or a black blacker than the black-point.

The LUT docker allows us to control this display-filter and modify the distortion. This is useful when we start modifying images that are made with scene referred values, such as HDR photos, or images coming out of a render engine.

[image: ../../_images/Krita_HDR2.svg]
So, for example, we can choose to scale whiter-than-screen-white to our screen-white so we can see the contrasts there.

The point of this is that you can take advantage of more lightness detail in an image. While you can’t see the difference between screen white and whiter-than-screen-white (because your screen can’t show the difference), graphics programs can certainly use it.

A common example is matching the lighting between a 3d model and a real world scene. Others are advanced photo retouching, with much more contrast information available to the user. In painting itself, this allows you to create an image where you can be flippant with the contrast, and allow yourself to go as bright as you’d like.

LUT docker manipulations are per view, so you can create a new view and set it to luminosity. This way you can see the image in both color as well as grayscale and keep a good eye on your values.

Another example is to carefully watch the gradients in a certain section.

Like ICC, the LUT Docker allows you to create a profile of sorts for your device. In this case it’s the ‘LUT’, which stands for ‘Look Up Table’, and which can be added to OCIO by modifying the configuration file. When OCIO is turned on, the configuration in Settings ‣ Configure Krita… ‣ Color Management is turned off, unless you are using the Internal color engine.

In summary

Krita has two modes of color management:

	ICC works in terms of spaces relative to the CIEXYZ space, and requires an ICC profile.

	OCIO works in terms of interpretation, and makes use of LUTs.

	both can be made with a colorimeter.

	If you want to have a properly color managed workflow, you have one made customary for the input device (your screen) and the output devices (your printer, or target screen). For web the output is always sRGB.

	Set up your screen profiles under Settings ‣ Configure Krita… ‣ Color management.

	Do NOT use screen profiles or other device profiles to draw in. Use a working space profile such as any of the ‘elle’ profiles for this, as the color maths will be much more predictable and pleasant. Krita will convert between your screen and working space on the fly, allowing you to pick the correct colors. This turns your screen into binoculars to view the image.

	Use the appropriate color management for the appropriate workflow. If you are working with Blender, you will be better off using OCIO, than ICC. If you are working with Scribus or Photoshop, use ICC.

Krita does a lot of color maths, often concerning the blending of colors. This color maths works best in linear color space, and linear color space requires a bit depth of at the least 16bit to work correctly. The disadvantage is that linear space can be confusing to work in.

If you like painting, have a decent amount of RAM, and are looking to start your baby-steps in taking advantage of Krita’s color management, try upgrading from having all your images in sRGB built-in to sRGB-v2-elle-g10.icc or rec2020-v2-elle-g10.icc at 16bit float. This’ll give you better color blending while opening up the possibility for you to start working in HDR!

Note

Some graphics cards, such as those of the NVidia-brand actually have the best performance under 16bit float, because NVidia cards convert to floating point internally. When it does not need to do that, it speeds up!

Note

No amount of color management in the world can make the image on your screen and the image out of the printer have 100% the same color.

Exporting

When you have finished your image and are ready to export it, you can modify the color space to optimize it:

If you are preparing an image for the web:

	If you use 16bit color depth or higher, convert the image to 8bit color depth. This will make the image much smaller.

	Krita doesn’t have built-in dithering currently, which means that 16 to 8bit conversions can come out a bit banded. But you can simulate it by adding a fill layer with a pattern, set this fill layer to overlay, and to 5% opacity. Then flatten the whole image and convert it to 8bit. The pattern will function as dithering giving a smoother look to gradients.

	If it’s a gray-scale image, convert it to gray-scale.

	If it’s a color image, keep it in the working space profile: Many web browsers these days support color profiles embedded into images. Firefox, for example, will try to convert your image to fit the color profile of the other monitor (if they have one). That way, the image will look almost exactly the same on your screen and on other profiled monitors.

Note

In some versions of Firefox, the colors actually look strange: This is a bug in Firefox, which is because its color management system is incomplete [https://ninedegreesbelow.com/galleries/viewing-photographs-on-the-web.html], save your PNG, JPG or TIFF without an embedded profile to work around this.

If you are preparing for print:

	You hopefully made the picture in a working space profile instead of the actual custom profile of your screen, if not, convert it to something like Adobe RGB, sRGB or Rec. 2020.

	Check with the printer what kind of image they expect. Maybe they expect sRGB color space, or perhaps they have their own profile.

Interaction with other applications

Blender

If you wish to use Krita’s OCIO functionality, and in particular in combination with Blender’s color management, you can try to have it use Blender’s OCIO config.

Blender’s OCIO config is under <Blender-folder>/version number/datafiles/colormanagement.
Set the LUT docker to use the OCIO engine, and select the config from the above path. This will give you Blender’s input and screen spaces, but not the looks, as those aren’t supported in Krita yet.

Windows Photo Viewer

You might encounter some issues when using different applications together. One important thing to note is that the standard Windows Photo Viewer application does not handle modern ICC profiles. Krita uses version 4 profiles; Photo Viewer can only handle version 2 profiles. If you export to JPEG with an embedded profile, Photo Viewer will display your image much too dark.

Example workflows

Here are some example workflows to get a feeling of how your color management workflow may look like.

As mentioned before, input for your screen is set via Settings ‣ Configure Krita… ‣ Color management, or via the LUT docker’s ‘screen space’. Working space is set via new file per document, or in the LUT docker via ‘input space’.

Webcomic

[image: ../../_images/Krita-colormanaged-workflow_webcomic.svg]
	Input
	Your screen profile. (You pick colors via your screen)

	Workingspace
	sRGB (the default screen profile) or any larger profile if you can spare the bit depth and like working in them.

	Output
	sRGB, ICC version 2, sRGB TRC for the internet, and a specialized CMYK profile from the printing house for the printed images.

Use the sRGB-elle-V2-srgbtrc.icc for going between Inkscape, Photoshop, Paint Tool SAI, Illustrator, Gimp, Manga Studio, Paintstorm Studio, MyPaint, Artrage, Scribus, etc. and Krita.

If you are using a larger space via ICC, you will only be able to interchange it between Krita, Photoshop, Illustrator, Gimp 2.9, Manga Studio and Scribus. All others assume sRGB for your space, no matter what, because they don’t have color management.

If you are going between Krita and Blender, Nuke or Natron, use OCIO and set the input space to ‘sRGB’, but make sure to select the sRGB profile for ICC when creating a new file.

For the final for the web, convert the image to sRGB 8bit, ‘srgbtrc’, do not embed the ICC profile. Then, if using PNG, put it through something like ‘pngcrush’ or other PNG optimizers. sRGB in this case is chosen because you can assume the vast majority of your audience hasn’t profiled their screen, nor do they have screens that are advanced enough for the wide gamut stuff. So hence why we convert to the screen default for the internet, sRGB.

Print

[image: ../../_images/Krita-colormanaged-workflow_print.svg]
	Input
	Your screen profile. (You pick colors via your screen)

	Workingspace
	sRGB or Rec. 2020 if you can afford the bit-depth being 16bit.

	Output
	Specialized CMYK profile from the printing house for the printed images.

The CMYK profiles are different per printer, and even per paper or ink-type so don’t be presumptuous and ask ahead for them, instead of doing something like trying to paint in any random CMYK profile. As mentioned in the viewing conditions section, you want to keep your options open.

You can set the advanced color selector to transform to a given profile via Settings ‣ Configure Krita… ‣ Color Selector Settings. There, tick Color Selector Uses Different Color Space than Image and select the CMYK profile you are aiming for. This will limit your colors a little bit, but keep all the nice filter and blending options from RGB.

Games

[image: ../../_images/Krita-colormanaged-workflow_games.svg]
	Input
	Your screen profile. (You pick colors via your screen)

	Workingspace
	sRGB or grayscale linear for roughness and specular maps.

	Output
	This one is tricky, but in the end it’ll be sRGB for the regular player.

So this one is tricky. You can use OCIO and ICC between programs, but recommended is to have your images to the engine in sRGB or grayscale. Many physically based renderers these days allow you to set whether an image should be read as a linear or ‘srgbtrc’ image, and this is even vital to have the images being considered properly in the physically based calculations of the game renderer.

While game engines need to have optimized content, and it’s recommended to stay within 8bit, future screens may have higher bit depths, and when renderers will start supporting those, it may be beneficial to develop a workflow where the working-space files are rather unnecessarily big and you run some scripts to optimize them for your current render needs, making updating the game in the future for fancier screens less of a drag.

Normal maps and heightmaps are officially supposed to be defined with a ‘non-color data’ working space, but you’ll find that most engines will not care much for this. Instead, tell the game engine not to do any conversion on the file when importing.

Specular, glossiness, metalness and roughness maps are all based on linear calculations, and when you find that certain material has a metalness of 0.3, this is 30% gray in a linear space. Therefore, make sure to tell the game engine renderer that this is a linear space image (or at the very least, should NOT be converted).

See also

	Visualizing the XYZ color space [https://www.youtube.com/watch?v=x0-qoXOCOow].

	Basics of gamma correction [https://www.cambridgeincolour.com/tutorials/gamma-correction.htm].

	Panda3D example of how an image that has gamma encoded without the 3D renderer being notified of it having gamma-encoding can result in too dark images [https://www.panda3d.org/blog/the-new-opengl-features-in-panda3d-1-9/].

	2D examples of the effect of gamma-encoding on color maths [https://ninedegreesbelow.com/photography/linear-gamma-blur-normal-blend.html].

	Basic overview of color management from ArgyllCMS manual [https://www.argyllcms.com/doc/ColorManagement.html].

Mixing Colors

Much like physical media, there are many ways to mix colors together in Krita. Traditional painters and illustrators often use techniques like glazing, scumbling, and hatching to mix colors directly on their canvas, on top of mixing colors together on a palette or even within the hairs of their brush. With a little bit of practice and know-how, and thanks to the variety of powerful tools in Krita, we can mimic all of these mixing techniques in digital painting.

In both traditional and digital painting, mixing techniques can be divided into two major categories: let’s call them “on-canvas” and “off-canvas”.

On-Canvas Mixing

On-canvas mixing techniques are ones where multiple colors are combined directly on the canvas as the artist paints. This takes a few forms, including layering semi-transparent color on top of another color, using texture to change how a color is perceived, or even in the interaction between two areas of wet paint in traditional media. Bottom line: on-canvas mixing happens right on the canvas and is a great tool for artistic exploration and “happy accidents”.

Glazing

[image: ../../_images/Color_gloss.gif]
In traditional painting, glazing is overlaying many different semi-transparent layers to create on-canvas color mixtures. Likewise, in digital painting we can also use glazing to mix colors directly on our canvas. This is one of the most fundamental and commonly used mixing techniques in digital painting.

We first lay down a semi-transparent layer on top of another color that we intend to mix with. Then, we pick the resultant color with the Ctrl + [image: mouseleft] shortcut (this can be configured in the canvas input settings), and paint with that. Depending on our brush’s opacity setting, each time we glaze one color over another we will get a color that is somewhere between those two colors, often leading to a nice mixture.

We can mix even more easily with glazing when we set our brush’s flow to a lower setting. Subtly different than opacity, flow is transparency per dab instead of stroke, and so it gives us softer strokes without giving up control.

Furthermore, we can combine glazing with various blending modes to achieve different, interesting effects. For example, glazing with the multiply blending mode to create nice shadows:

[image: ../../_images/Color_gloss_example_1.png]
Staring with line art and base colors.

[image: ../../_images/Color_gloss_example_2.png]
Using a semi-transparent brush that’s set to multiply, we can add colored layers to suggest shadows and mid-tones. The multiply blending mode will darken and interact with each base color differently.

[image: ../../_images/Color_gloss_example_3.png]
Then, using a brush with low flow (~0.30), we can pick the resulting colors and lay down more layers. Not only does this help you define the different planes and forms that are so crucial for creating a sense of depth and three-dimensionality, it also gives quite a nice, painterly effect!

[image: ../../_images/Color_gloss_example_4.png]
Continue with a lower opacity and flow to create even smoother gradients. Make your edges as sharp or smooth as your subject matter and art style demands!

Smudging

[image: ../../_images/Color_mix.gif]
Smudge mixing is done with the Color Smudge Brush Engine, a special brush engine that allows you to mix your current brush color with the color(s) under the brush. It’s a very powerful type of brush that gives a lovely painterly effect. Performance wise, it’s a bit more demanding and slower than the regular pixel brush.

If you remove all paint from a smudge brush, you get a simple-yet-powerful smudge effect:

[image: ../../_images/Color_smudge.gif]
Different smudge brushes have different effects, so be sure to try them all out!

Scumbling

Scumbling is similar to glazing, except instead of having a semi-opaque layer, we use layers of textured or patterned paint.

[image: ../../_images/Color_scumble2.gif]
Like most painting programs, Krita allows you to pick a Brush Tips, which can be used to create a textured effect like that of scumbling.

[image: ../../_images/Color_scumble.gif]
Krita’s brush engines also allow you to use Texture. This allows you to create interesting and stylized screentone-like effects.

With glazing can get you pretty far when it comes to defining planes and forms, scumbling is the best method to create texture and to break up big pasty flats in your painting.

Off-Canvas Mixing

Off-canvas mixing has basically always been a core tool for artists everywhere; when we think of the stereotypical artist we might imagine someone with a few brushes in one hand and a wooden palette in the other. Whether it’s oils, watercolor, or other traditional media, for the artist to have absolute control over their colors it’s crucial to have some kind of palette, plate, jar, or other off-canvas area to mix colors together. While it’s easy to overlook this in digital painting (where selecting fresh new colors without mixing at all is both easy and free), Krita has a few very useful and unique features for off-canvas mixing.

Color Sampler Blending

New in version 4.1.

Krita, like almost every art and graphics program, has a Color Sampler Tool which allows you to very quickly sample a color from any pixel on your canvas. While this tool may seem relatively simple and humble, it is also one of the most important and commonly used tools in the digital artist’s toolbox - perhaps only second to the brush! In fact, the color sampler tool is at the very heart of mixing colors, and is often used in combination with on-canvas techniques like glazing and scumbling to produce smooth blends of color.

And still, there is more to this little tool than meets the eye! Not only can you configure Krita’s color sampler to sample from the average color of a radius of pixels, Krita’s Color Sampler also has a unique blending feature: a powerful and intuitive tool for off-canvas color mixing!

[image: ../../_images/Krita_cpb_mixing.gif]
The Color Sampler Blending feature changes the way that picking colors has traditionally worked for decades; instead of completely replacing your current brush color with the newly sampled color, blending allows you to quickly “soak up” some portion of the sampled color, which is then mixed with your current brush color.

You can use Color Sampler Blending much like a physical paint brush in traditional media. If you were to dip your paint brush into a pool of blue paint, and then immediately dip again into a pool of red paint and paint a stroke across your canvas, the stoke wouldn’t be pure red - it would be some combination of blue and red which would mix to create an intermediate purple color. Which shade of purple would depend on the ratio of paints that mix together within the hairs of your brush, and this is essentially what the Color Sampler’s “blend” option controls: what percentage of sampled color is mixed together with your current brush color!

Not only does Krita’s Color Sampler Blending feel even more like mixing paints, it is also completely off-canvas and independent of opacity, flow, shape, and other brush settings. Furthermore, unlike most on-canvas mixing techniques, Color Sampler Blending works regardless of the location of colors on your canvas - enabling you to mix with colors at any position, on any layer, or even in different documents! Quickly mix lighting colors with local colors, mix the ambient sky color into shadows, create atmospheric depth, mix from a preselected palette of colors in another layer/document, etc.

To use Color Sampler Blending, simply set the “blend” option in the Tool Options Docker while the Color Sampler Tool is active; setting blend to 100% will cause your Color Sampler to work in the traditional way (completely replacing your brush color with the picked color), setting to around 50% will give you a half-way mix between colors, and setting to a lower value will create more subtle shifts in colors each click. Of course, blending affects both your dedicated Color Sampler Tool as well as the Ctrl + [image: mouseleft] shortcut.

Note

Clicking and dragging the Color Sampler around the canvas currently causes it to sample many times as it switches pixels. You can use this trait to quickly soak up more color by “dipping” your color sampler into color and swirling it around. This can be pretty satisfying! However, this also means that some care must be taken to prevent from accidentally picking up more color than you want. It’s pretty easy to click a single pixel only one time using a mouse, but when painting with a drawing tablet and pen it can sometimes be desirable to use a slightly lower blend setting!

The Digital Colors Mixer

Somewhat hidden away in the Dockers menu (Settings ‣ Dockers ‣ Digital Colors Mixer), this can be a useful tool for off-canvas mixing. The Digital Colors Mixer looks a little bit like an audio mixing board that you’d see in a recording studio, but instead of mixing music it mixes colors! It contains 6 independent color mixers that mix your current brush color with any color of your choosing.

[image: ../../_images/Digi_colormixer.png]
By clicking the color buttons below each mixer you can choose a palette of colors to mix with. Above each mixer is a color patch that will produce a color that mixes some amount of your current brush color with the palette color. Colors towards the top of the mixer will deliver subtle changes to your current color, while colors towards the bottom will be much closer to the palette color of that channel.

Other Tips

Outside of making it easier to create smooth gradients, mixing has another benefit: It allows you to create a cohesive piece.

Limiting the number of colors we use and then mixing tends to give a more cohesive palette, as we’re not trying to do too much at once. This cohesive palette in turn means it will become easier to create a certain mood in an image. Sometimes, mixing in a little bit of accent color can also create unexpected results which in turn can be a little discovery for the audience to delight over as they discover the world of your image.

What we can learn from this, is that the next time we select, say, gray, instead of reaching for a random or generic gray from the Advanced Color Selector, consider using one of Krita’s many wonderful mixing tools to create an interesting and fitting gray from hues that are roughly complementary (opposite each other on the hue wheel).

While on-canvas and off-canvas techniques are fundamentally different categories of mixing colors, they are not mutually exclusive. All of the mixing methods in this article have pros and cons; different tools can be useful for different situations, and combining various techniques can be extremely powerful and fun!

Finally, mixing colors will often go far better in a higher bit-depth like 16bit, though it’ll make the image take up much more working memory (RAM). Furthermore, using a linear color space can often give far better mixtures than a gamma-corrected one, though doing sketches and line art is easier to do in a gamma-corrected space.

Color Models

Krita has many different color spaces and models. Following here is a brief explanation of each, and their use-cases.

RGB

Red, Green, Blue.

These are the most efficient primaries for light-based color mixing, like computer screens. Adding Red, Green and Blue light together results in White, and is thus named the additive color wheel.

RGB is used for two purposes:

Images that are meant for viewing on a screen:

	So that could be images for the web, buttons, avatars, or just portfolio images.

	Or for Video games, both sprites and textures are best in RGB there.

	Or for 3d rendering, visual effects and cg animation.

And for the working space. A working space is an RGB gamut that is really large and predictable, meaning it’s good for image manipulation. You use this next to a profiled monitor. This way you can have precise colors while also being able to view them correctly on multiple screens.

Blending modes in RGB

	
	Color 1

	Color 2

	Normal

	Multiply

	Screen

	
	R

	G

	B

	R

	G

	B

	R

	G

	B

	R

	G

	B

	R

	G

	B

	R & G

	1.0

	0.0

	0.0

	0.0

	1.0

	0.0

	0.5

	0.5

	0.0

	0.0

	0.0

	0.0

	1.0

	1.0

	0.0

	Gray

	0.5

	0.5

	0.5

	0.5

	0.5

	0.5

	0.5

	0.5

	0.5

	0.25

	0.25

	0.25

	0.75

	0.75

	0.75

RGB models: HSV, HSL, HSI and HSY

These are not included as their own color spaces in Krita. However, they do show up in the blending modes and color selectors, so a brief overview:

	Hue
	The tint of a color, or, whether it’s red, yellow, green, etc. Krita’s Hue is measured in 360 degrees, with 0 being red, 120 being green and 240 being blue.

	Saturation
	How vibrant a color is. Saturation is slightly different between HSV and the others. In HSV it’s a measurement of the difference between two base colors being used and three base colors being used. In the others it’s a measurement of how close a color is to gray, and sometimes this value is called Chroma. Saturation ranges from 0 (gray) to 100 (pure color).

	Value
	Sometimes known as Brightness. Measurement of how much the pixel needs to light up. Also measured from 0 to 100.

	Lightness
	Where a color aligns between white and black. This value is non-linear, and puts all the most saturated possible colors at 50. Ranges from 0 to 100.

	Intensity
	Similar to lightness, except it acknowledges that yellow (1,1,0) is lighter than blue (0,0,1). Ranges from 0 to 100.

	Luma (Y’)
	Similar to lightness and Intensity, except it weights the red, green and blue components based real-life measurements of how much light a color reflects to determine its lightness. Ranges from 0 to 100. Luma is well known for being used in film-color spaces.

Grayscale

This color space only registers gray values.
This is useful, because by only registering gray values, it only needs one channel of information, which in turn means the image becomes much lighter in memory consumption!

This is useful for textures, but also anything else that needs to stay grayscale, like Black and White comics.

	
	Color 1

	Color 2

	Normal

	Multiply

	Screen

	
	G

	G

	G

	G

	G

	Gray

	0.5

	0.5

	0.5

	0.25

	0.75

CMYK

Cyan, Magenta, Yellow, Key

This is the color space of printers. Unlike computers, printers have these four colors, and adding them all adds up to black instead of white. This is thus also called a ‘subtractive’ color space.

Changed in version 5.2: Krita 5.1 and older had the blending modes apply direct on the channels. Not all software does this, and thus, to make it simpler to work together with other artists, Krita 5.2 by default inverts the channels before applying the blending mode. You can control this in the preferences.

	
	Color 1

	Color 2

	Normal

	Multiply

	Screen

	
	C

	M

	Y

	K

	C

	M

	Y

	K

	C

	M

	Y

	K

	C

	M

	Y

	K

	C

	M

	Y

	K

	R & G

	0.0

	1.0

	1.0

	0.0

	1.0

	0.0

	1.0

	0.0

	0.5

	0.5

	1.0

	0.0

	0.25

	0.25

	1.0

	0.0

	0.75

	0.75

	1.0

	0.0

	Gray

	0.0

	0.0

	0.0

	0.5

	0.0

	0.0

	0.0

	0.5

	0.0

	0.0

	0.0

	0.5

	0.0

	0.0

	0.0

	0.25

	0.0

	0.0

	0.0

	0.75

There’s also a difference between ‘colored gray’ and ‘neutral gray’ depending on the profile.

	
	25%

	50%

	75%

	
	C

	M

	Y

	K

	C

	M

	Y

	K

	C

	M

	Y

	K

	Colored Gray

	0.25

	0.25

	0.25

	0.25

	0.5

	0.5

	0.5

	0.5

	0.75

	0.75

	0.75

	0.75

	Neutral Gray

	0.0

	0.0

	0.0

	0.25

	0.0

	0.0

	0.0

	0.5

	0.0

	0.0

	0.0

	0.75

[image: ../../_images/Cmyk_black_differences.png]

In Krita, there’s also the fact that the default color is a perfect black in RGB, which then gets converted to our default CMYK in a funny manner, giving a yellow look to the strokes. Again, another good reason to work in RGB and let the conversion be done by the printing house.

While CMYK has a smaller ‘gamut’ than RGB, however, it’s still recommended to use an RGB working space profile to do your editing in. Afterwards, you can convert it to your printer’s CMYK profile using either perceptual or relative colorimetric intent.
Or you can just give the workspace rgb image to your printer and let them handle the work.

YCrCb

Luminosity, Red-chroma, Blue-chroma

YCrCb stands for:

	Y’/Y
	Luma/Luminosity, thus, the amount of light a color reflects.

	Cr
	Red Chroma. This value measures how red a color is versus how green it is.

	Cb
	Blue Chroma. This value measures how blue a color is versus how yellow it is.

This color space is often used in photography and in (correct) implementations of JPEG. As a human you’re much more sensitive to the lightness of colors, and thus JPEG tries to compress the Cr and Cb channels, and leave the Y channel in full quality.

XYZ

Back in 1931, the CIE (Institute of Color and Light), was studying human color perception.
In doing so, they made the first color spaces, with XYZ being the one best at approximating human vision.

XYZ is used as a baseline reference for all other profiles and models. All color conversions are done in XYZ, and all profiles coordinates match XYZ. An RGB color space where Red is set to 100% X, Green is set to 100% Y and Blue is set to 100% Z, with the gamma correction being linear is in effect the same as an XYZ color space.

L*a*b*

A Color space based on the opposition theory of color vision, L*a*b* splits colors into the luminosity, red-green contrast and blue-yellow contrast:

	L*
	Lightness, similar to luminosity in this case.

	a*
	a* in this case is the measurement of how magenta a color is versus how green it is.

	b*
	b* in this case is a measurement of how yellow a color is versus how blue a color is.

L*a*b* is supposed to be a more comprehensible to use that XYZ. It’s often used as an in between color space in conversion, but even more as the correct color space to do color-balancing in. It’s far easier to adjust the contrast and color tone in L*a*b*.

L*a*b* is technically the same as Photoshop’s LAB. Photoshop specifically uses CIELAB d50.

Filters and blending modes

Maybe you have noticed that blending modes in LAB don’t work like they do in RGB or CMYK. This is because the blending modes work by doing a bit of maths on the color coordinates, and because color coordinates are different per color space, the blending modes look different.

Color Space Size

Using Krita’s color space browser, you can see that there are many different space sizes.

[image: ../../_images/Basiccolormanagement_compare4spaces.png]

How do these affect your image, and why would you use them?

There are three primary reasons to use a large space:

	Even though you can’t see the colors, the computer program does understand them and can do color maths with it.

	For exchanging between programs and devices: most CMYK profiles are a little bigger than our default sRGB in places, while in other places, they are smaller. To get the best conversion, having your image in a space that encompasses both your screen profile as your printer profile.

	For archival purposes. In other words, maybe monitors of the future will have larger amounts of colors they can show (spoiler: they already do), and this allows you to be prepared for that.

Let’s compare the following gradients in different spaces:

[image: ../../_images/Basiccolormanagement_gradientsin4spaces_v2.jpg]
[image: ../../_images/Basiccolormanagement_gradientsin4spaces_nonmanaged.png]
On the left we have an artifact-ridden color managed JPEG file with an ACES sRGBtrc v2 profile attached (or not, if not, then you can see the exact different between the colors more clearly). This should give an approximation of the actual colors. On the right, we have an sRGB PNG that was converted in Krita from the base file.

Each of the gradients is the gradient from the max of a given channel. As you can see, the mid-tone of the ACES color space is much brighter than the mid-tone of the RGB colorspace, and this is because the primaries are further apart.

What this means for us is that when we start mixing or applying filters, Krita can output values higher than visible, but also generate more correct mixes and gradients. In particular, when color correcting, the bigger space can help with giving more precise information.

If you have a display profile that uses a LUT, then you can use perceptual to give an indication of how your image will look.

Bigger spaces do have the downside they require more precision if you do not want to see banding, so make sure to have at the least 16bit per channel when choosing a bigger space.

Gamma and Linear

Now, the situation we talk about when talking theory is what we would call ‘linear’. Each step of brightness is the same value.
Our eyes do not perceive linearly. Rather, we find it more easy to distinguish between darker grays than we do between lighter grays.

As humans are the ones using computers, we have made it so that computers will give more room to darker values in the coordinate system of the image. We call this ‘gamma-encoding’, because it is applying a gamma function to the TRC or transfer function of an image. The TRC in this case being the Tone Response Curve or Tone Reproduction Curve or Transfer function (because color management specialists hate themselves), which tells your computer or printer how much color corresponds to a certain value.

[image: ../../_images/Pepper_tonecurves.png]

One of the most common issues people have with Krita’s color management is the assigning of the right colorspace to the encoded TRC. Above, the center Pepper is the right one, where the encoded and assigned TRC are the same. To the left we have a Pepper encoded in sRGB, but assigned a linear profile, and to the right we have a Pepper encoded with a linear TRC and assigned an sRGB TRC. Image from Pepper & Carrot [https://www.peppercarrot.com/].

The following table shows how there’s a lot of space being used by lighter values in a linear space compared to the default sRGB TRC of our modern computers and other TRCs available in our delivered profiles:

[image: ../../_images/trc_gray_gradients.svg]If you look at linear of Rec. 709 TRCs, you can see there’s quite a jump between the darker shades and the lighter shades, while if we look at the Lab L* TRC or the sRGB TRC, which seem more evenly spaced.
This is due to our eyes’ sensitivity to darker values. This also means that if you do not have enough bit depth, an image in a linear space will look as if it has ugly banding. Hence why, when we make images for viewing on a screen, we always use something like the Lab L*, sRGB or Gamma 2.2 TRCs to encode the image with.

However, this modification to give more space to darker values does lead to wonky color maths when mixing the colors.

We can see this with the following experiment:

[image: ../../_images/Krita_2_9_colormanagement_blending_1.png]

Left: Colored circles blurred in a regular sRGB space. Right: Colored circles blurred in a linear space.

Colored circles, half blurred. In a gamma-corrected environment, this gives an odd black border. In a linear environment, this gives us a nice gradation.

This also counts for Krita’s color smudge brush:

[image: ../../_images/Krita_2_9_colormanagement_blending_2.png]

That’s right, the ‘muddying’ of colors as is a common complaint by digital painters everywhere, is in fact, a gamma-corrected colorspace mucking up your colors. If you had been working in LAB to avoid this, be sure to try out a linear rgb color space.

What is happening under the hood

Imagine we want to mix red and green.

First, we would need the color coordinates of red and green inside our color space’s color model. So, that’d be…

	Color

	Red

	Green

	Blue

	Red

	1.0

	0.0

	0.0

	Green

	0.0

	1.0

	0.0

We then average these coordinates over three mixes:

	
	Red

	Mix1

	Mix2

	Mix3

	Green

	Red

	1.0

	0.75

	0.5

	0.25

	0.0

	Green

	0.0

	0.25

	0.5

	0.75

	1.0

	Blue

	0.0

	0.0

	0.0

	0.0

	0.0

But to figure out how these colors look on screen, we first put the individual values through the TRC of the color-space we’re working with:

[image: ../../_images/Basicreading3trcsv2.svg]Then we fill in the values into the correct spot. Compare these to the values of the mixture table above!

[image: ../../_images/red_green_mixes_trc.svg]And this is why color mixtures are lighter and softer in linear space. Linear space is more physically correct, but sRGB is more efficient in terms of space, so hence why many images have an sRGB TRC encoded into them.
In case this still doesn’t make sense: sRGB gives largely darker values than linear space for the same coordinates.

So different TRCs give different mixes between colors, in the following example, every set of gradients is in order a mix using linear TRC, a mix using sRGB TRC and a mix using Lab L* TRC.

[image: ../../_images/3trcsresult.png]
So, you might be asking, how do I tick this option? Is it in the settings somewhere? The answer is that we have several ICC profiles that can be used for this kind of work:

	scRGB (linear)

	All ‘elle’-profiles ending in ‘g10’, such as sRGB-elle-v2-g10.icc.

In fact, in all the ‘elle’-profiles, the last number indicates the gamma. 1.0 is linear, higher is gamma-corrected and ‘srgbtrc’ is a special gamma correction for the original sRGB profile.

If you use the color space browser, you can tell the TRC from the ‘estimated gamma’(if it’s 1.0, it’s linear), or from the TRC widget in Krita 3.0, which looks exactly like the curve graphs above.

Even if you do not paint much, but are for example making textures for a videogame or rendering, using a linear space is very beneficial and will speed up the renderer a little, for it won’t have to convert images on its own.

The downside of linear space is of course that white seems very overpowered when mixing with black, because in a linear space, light grays get more room. In the end, while linear space is physically correct, and a boon to work in when you are dealing with physically correct renderers for videogames and raytracing, Krita is a tool and no-one will hunt you down for preferring the dark mixing of the sRGB TRC.

Profiling and Calibration

So to make it simple, a color profile is just a file defining a set of colors inside a pure XYZ color cube.
This “color set” can be used to define different things:

	the colors inside an image

	the colors a device can output

Choosing the right workspace profile to use depends on how much colors you need and on the bit depth you plan to use.
Imagine a line with the whole color spectrum from pure black (0,0,0) to pure blue (0,0,1) in a pure XYZ color cube.
If you divide it choosing steps at a regular interval, you get what is called a linear profile, with a gamma=1 curve represented as a straight line from 0 to 1.
With 8bit/channel bit depth, we have only 256 values to store this whole line.
If we use a linear profile as described above to define those color values, we will miss some important visible color change steps and have a big number of values looking the same (leading to posterization effect).

This is why was created the sRGB profile to fit more different colors in this limited amount of values, in a perceptually regular grading, by applying a custom gamma curve (see picture here: https://en.wikipedia.org/wiki/SRGB) to emulate the standard response curve of old CRT screens.
So sRGB profile is optimized to fit all colors that most common screen can reproduce in those 256 values per R/G/B channels.
Some other profiles like Adobe RGB are optimized to fit more printable colors in this limited range, primarily extending cyan-green hues. Working with such profile can be useful to improve print results, but is dangerous if not used with a properly profiled and/or calibrated good display.
Most common CMYK workspace profile can usually fit all their colors within 8bit/channel depth, but they are all so different and specific that it’s usually better to work with a regular RGB workspace first and then convert the output to the appropriate CMYK profile.

Starting with 16bit/channel, we already have 65536 values instead of 256, so we can use workspace profiles with higher gamut range like Wide-gamut RGB or Pro-photo RGB, or even unlimited gamut like scRGB.

But sRGB being a generic profile (even more as it comes from old CRT specifications…), there are big chances that your monitor have actually a different color response curve, and so color profile.
So when you are using sRGB workspace and have a proper screen profile loaded (see next point), Krita knows that the colors the file contains are within the sRGB color space, and converts those sRGB values to corresponding color values from your monitor profile to display the canvas.

Note that when you export your file and view it in another software, this software has to do two things:

	read the embed profile to know the “good” color values from the file (which most software do nowadays; when they don’t they usually default to sRGB, so in the case described here we’re safe)

	and then convert it to the profile associated to the monitor (which very few software actually does, and just output to sRGB.. so this can explain some viewing differences most of the time).

Krita uses profiles extensively, and comes bundled with many.

The most important one is the one of your own screen. It doesn’t come bundled, and you have to make it with a color profiling device.
In case you don’t have access to such a device, you can’t make use of Krita’s color management as intended. However, Krita does allow the luxury of picking any of the other bundled profiles as working spaces.

Profiling devices

Profiling devices, called Colorimeters, are tiny little cameras of a kind that you connect to your computer via an usb, and then you run a profiling software (often delivered alongside of the device).

Note

If you don’t have software packaged with your colorimeter, or are unhappy with the results, we recommend ArgyllCMS [https://www.argyllcms.com/].

The little camera then measures what the brightest red, green, blue, white and black are like on your screen using a predefined white as base. It also measures how gray the color gray is.

It then puts all this information into an ICC profile, which can be used by the computer to correct your colors.

It’s recommended not to change the “calibration” (contrast, brightness, you know the menu) of your screen after profiling. Doing so makes the profile useless, as the qualities of the screen change significantly while calibrating.

To make your screen display more accurate colors, you can do one or two things:
profile your screen or calibrate and profile it.

Just profiling your screen means measuring the colors of your monitor with its native settings and put those values in a color profile, which can be used by color-managed application to adapt source colors to the screen for optimal result.
Calibrating and profiling means the same except that first you try to calibrate the screen colors to match a certain standard setting like sRGB or other more specific profiles.
Calibrating is done first with hardware controls (lightness, contrast, gamma curves), and then with software that creates a vcgt (video card gamma table) to load in the GPU.

So when or why should you do just one or both?

Profiling only:

	With a good monitor
	You can get most of the sRGB colors and lot of extra colors not inside sRGB. So this can be good to have more visible colors.

	With a bad monitor
	You will get just a subset of actual sRGB, and miss lot of details, or even have hue shifts. Trying to calibrate it before profiling can help to get closer to full-sRGB colors.

Calibration+profiling:

	Bad monitors
	As explained just before.

	Multi-monitor setup
	When using several monitors, and specially in mirror mode where both monitor have the same content, you can’t have this content color-managed for both screen profiles. In such case, calibrating both screens to match sRGB profile (or another standard for high-end monitors if they both support it) can be a good solution.

	Soft-proofing
	When you need to match an exact rendering context for soft-proofing, calibrating can help getting closer to the expected result. Though switching through several monitor calibration and profiles should be done extremely carefully.

Scene Linear Painting

Previously referred to as HDR painting and Scene Referred painting, Scene Linear Painting is doing digital painting in a peculiar type of colorspace. It is painting in a color space that is…

	Linear - there’s no gamma encoding, or tone-mapping or whatever going on with the pixels you manipulate. (This is different from the pixels you see, but we’ll get to that later)

	Floating Point - So 16bit or 32bit floating point per channel.

These are the two important characteristics. The colorspace has a few more properties than this, such as the white point, or more importantly, the colorants that make up the gamut. But here’s the thing, those two could be anything, as long as the space is linear and the color depth is floating point.

So, Scene Linear is not a single one colorspace, but a TYPE of colorspace. You can have a scene linear space that uses the sRGB/Rec. 709 colorants, or one that uses adobeRGB, or maybe one that uses Rec. 2020, as long as it is linear and in a floating point bit depth.

Note

If you want to create images for display on an HDR canvas, you will need to select the Rec. 2020 space profile with a linear gamma. The default profile in Krita for that is Rec2020-elle-V4-g10.icc.

These two factors are for one reason: To make black and white arbitrary values. This might seem a bit weird. But when you are dealing with light-sources, you are dealing with a massive range of contrasts, and will have to decide afterwards which white and black you’d like to have. This is what the scene means in scene-linear, the relevant values are unique per scene, like a real world scene: a flower field lit by moonlight, a city in twilight or a sunny beach. You want to be able to put the right emphasis on the most important contrasting values, and being able to choose what is white and what is black is a very powerful tool here. After all, humans in the real world can see much more when they get used to the dark, or to the sun, so why not apply that to how we make our images?

This is also why it needs to be Linear. Gamma and Tone-mapped color spaces are already choosing which contrast is the most important to you. But for that, they too need to choose what is white or black. Linear doesn’t make such assumptions, so much better for when you want to choose yourself. You will eventually want to stick your image through some tone-mapping or gamma correction, but only at the end after you have applied filters and mixed colors!

In fact, there’s always a non-destructive sort of transform going on while you are working on your image which includes the tone-mapping. This is called a display or view transform, and they provide a sort of set of binoculars into the world of your image. Without it, your computer cannot show these colors properly; it doesn’t know how to interpret it properly, often making the image too dark. Providing such a transform and allowing you to configure it is the prime function of color management.

Between different view and display transforms, there’s also a difference in types. Some are really naive, others are more sophisticated, and some need to be used in a certain manner to work properly. The ICC color management can only give a certain type of view transforms, while OCIO color management in the LUT docker can give much more complex transforms easily configurable and custom settings that can be shared between programs.

[image: ../../_images/Krita_scenelinear_cat_01.png]

Above, an example of the more naive transform provided by going from scene-linear sRGB to regular sRGB, and to the right a more sophisticated transform coming from the filmic blender OCIO configuration. Look at the difference between the paws. Image by Wolthera van Hövell tot Westerflier, License: CC-BY-SA

Conversely, transforming and interpreting your image’s colors is the only thing OCIO can do, and it can do it with really complex transforms, really fast. It doesn’t understand what your image’s color space is originally, doesn’t understand what CMYK is, and there’s also no such thing as a OCIO color profile. Therefore you will need to switch to an ICC workflow if you wish to prepare for print.

Yes, but what is the point?

The point is making things easier in the long run:

	It is easier to keep saturated non-muddy colors in a linear space.

	The high bit depth makes it easier to get smoother color mixes.

	Filters are more powerful and give nicer results in this space. It is far more easy to get nice blurring and bokeh results.

	Simple Blending Modes like Multiply or Addition are suddenly black magic. This is because Scene-Linear is the closest you can get to the physical (as in, physics, not material) model of color where multiplying colors with one another is one of the main ways to calculate the effect of light.

	Combining painting with other image results such as photography and physically based rendering is much easier as they too work in such a type of colorspace. So you could use such images as a reference with little qualms, or make textures that play nice with such a renderer.

So the advantages are prettier colors, cooler filter results, more control and easier interchange with other methods.

Okay, but why isn’t this all the rage then?

Simply put, because while it’s easier in the long run, you will also have to drop tools and change habits…

In particular, there are many tools in a digital painter’s toolbox that have hard-coded assumptions about black and white.

A very simple but massive problem is one with inversion. Inverting colors is done code-wise by taking the color for white and subtracting the color you want to invert from it. It’s used in many blending modes. But often the color white is hardcoded in these filters. There’s currently no application out there that allows you to define the value range that inversion is done with, so inverting is useless. And that also means the filters and blending modes that use it, such as (but not limited to)…

	Screen (invert+multiply+invert)

	Overlay (screens values below midtone-value, in sRGB this would be middle gray)

	Color-dodge (divides the lower color with an inversion of the top one)

	Color-burn (inverts the lower color and then divides it by the top color)

	Hardlight (a different way of doing overlay, including the inversion)

	Softlight (uses several inversions along the way)

Conversely Multiply, Linear Dodge/Addition (they’re the same thing), Subtract, Divide, Darker (only compares colors’ channel values), Lighter (ditto), and Difference are fine to use, as long as the program you use doesn’t do weird clipping there.

Another one is HSL, HSI and HSY algorithms. They too need to assume something about the top value to allow scaling to white. HSV doesn’t have this problem. So it’s best to use an HSV color selector.

For the blending modes that use HSY, there’s always the issue that they tend to be hardcoded to sRGB/Rec. 709 values, but are otherwise fine (and they give actually far more correct results in a linear space). So these are not a good idea to use with wide-gamut colorspaces, and due to the assumption about black and white, not with scene linear painting. The following blending modes use them:

	Color

	Luminosity

	Saturation

	Darker Color (uses luminosity to determine the color)

	Lighter Color (Ditto)

So that is the blending modes. Many filters suffer from similar issues, and in many applications, filters aren’t adjusted to work with arbitrary whites.

Speaking of filters, when using the transform tool, you should also avoid using lanczos3, it’ll give a weird black halo to sharp contrasts in scene-linear. The bilinear interpolation filter will work just fine in this case.

The second big problem is that black doesn’t work quite the same.

If you have mixed pigments before, you will know that black can quite easily overpower the other colors, so you should only add the tiniest amount of it to a mixture. White in contrast gets dirtied quite easily.

In a Scene Linear Color space, this is flipped. White is now more overpowering and black gets washed out super quickly. This relates to the additive nature of digital color theory, that becomes more obvious when working in linear.

This makes sketching a bit different, after all, it’s really difficult to make marks now. To get around this, you can do the following:

	Sketch on a mid-gray background. This is recommended anyway, as it serves as a neutral backdrop. For a linear space, 18% or 22% gray would be a good neutral.

	Make a special brush that is more opaque than the regular sketching brushes you use.

	Or conversely, sketch with white instead.

	For painting, block out the shapes with a big opaque brush before you start doing your mixing.

Overall, this is something that will take a little while getting used to, but you will get used to it soon enough.

Finally, there’s the issue of size.

16 bit float per channel images are big. 32 bit float per channel images are bigger. This means that they will eat RAM and that painting and filtering will be slower. This is something that will fix itself over the years, but not many people have such a high-end PC yet, so it can be a blocker.

So the issues are tools, expectations and size.

In Summary

Scene Linear Painting is painting an image in a color space that is linear and has a floating point bit depth. This does not assume anything about the values of black and white, so you can only use tools that don’t assume anything about the values of black and white. It has the advantage of having nicer filter results and better color mixtures as well as better interoperability with other scene-linear output.

To be able to view such an image you use a view transform, also called a display conversion. Which means that if you wish to finalize your image for the web, you make a copy of the image that goes through a display conversion or view transform that then gets saved to PNG, JPEG or TIFF.

Getting to actual painting

Now we’ve covered the theory, let us look at a workflow for painting scene linear.

Setting up the Canvas

Select either a 16bit or 32bit image. By default Krita will select a linear sRGB profile. If you want to create images for HDR display, you will need to make sure that the profile selected is the Rec2020-elle-V4-g10.icc profile. HDR images are standardised to use the Rec. 2020 gamut, which is much larger than sRGB in size, so this ensures you’ve got access to all the colors.

If you’re working on a non-HDR enabled monitor, you should enable OCIO in the LUT docker.

Keep in mind everything mentioned above. Not all filters and not all blending modes work. This will improve in the future. Other than that, everything else is the same.

Picking really bright colors

Picking regular colors is easy, but how do we pick the really bright colors? There are three ways of getting access to the really bright colors in Krita:

	By lowering the exposure in the LUT docker. This will increase the visible range of colors in the color selectors. You can even hotkey the exposure in the canvas input settings.

	By setting the nits slider in the Small Color Selector higher than 100.

	Or simply by opening the internal color selector by double clicking the dual color button and typing in values higher than 1 into the input field.

	And finally by picking a really bright color from an image that has such values.

Then paint. It’s recommended to make a bunch of swatches in the corner, at the least, until Krita’s new Palette docker allows you to save the values properly.

Lighting based workflow

So, we have our typical value based workflow, where we only paint the grays of the image so that we can focus on the values of the image. We can do something similar with Scene Linear Painting.

Where with the value based workflow you paint the image as if it were a grayscale of what you intended to paint, with a lighting based workflow you paint as if all the objects are white. The effect of the color of an object can be determined by multiplying its base color with the color of the light. So you could paint objects as if they were white, paint the colors on a separate layer and just use the Multiply blending mode to get the right colors.

[image: ../../_images/Krita_scenelinear_cat_02.png]

The leftmost image is both the lighting based one and the color layer separate, the middle with the two layers multiplied and the right a luminosity based view. This cat is a nice example as it demonstrates why having textures and lighting separate could be interesting.

You can even combine this with a value based workflow by opening a new view and setting the component to luminosity. That way you can see both the grayscale as well as the lighting based version of the image next to one another.

The keen minded will notice that a lighting based workflow kind of resembles the idea of a light pass and a color pass in 3d rendering. And indeed, it is basically the same, so you can use lighting passes from 3d renders here, just save them as EXR and import them as a layer. One of the examples where scene linear painting simplifies combining methods.

Finishing up

When you are done, you will want to apply the view transform you have been using to the image (at the least, if you want to post the end result on the Internet)… This is called LUT baking and not possible yet in Krita. Therefore you will have to save out your image in EXR and open it in either Blender or Natron. Then, in Blender it is enough to just use the same OCIO config, select the right values and save the result as a PNG.

For saving HDR images, check the HDR Display page.

You can even use some of Blender’s or Natron’s filters at this stage, and when working with others, you would save out in EXR so that others can use those.

Viewing Conditions

We mentioned viewing conditions before, but what does this have to do with ‘white points’?

A lot actually, rather, white points describe a type of viewing condition.

So, usually what we mean by viewing conditions is the lighting and decoration of the room that you are viewing the image in. Our eyes try to make sense of both the colors that you are looking at actively (the colors of the image) and the colors you aren’t looking at actively (the colors of the room), which means that both sets of colors affect how the image looks.

[image: ../../_images/Meisje_met_de_parel_viewing.png]

Left: Let’s ruin Vermeer by putting a bright purple background that asks for more attention than the famous painting itself. Center: a much more neutral backdrop that an interior decorator would hate but brings out the colors. Right: The approximate color that this painting is displayed against in real life in the Maurits House, at the least, last time I was there. Original image from wikipedia commons.

This is for example, the reason why museum exhibitioners can get really angry at the interior decorators when the walls of the museum are painted bright red or blue, because this will drastically change the way how the painting’s colors look. (Which, if we are talking about a painter known for their colors like Vermeer, could result in a really bad experience).

[image: ../../_images/Krita_example_metamerism.png]

Lighting is the other component of the viewing condition which can have dramatic effects. Lighting in particular affects the way how all colors look. For example, if you were to paint an image of sunflowers and poppies, print that out, and shine a bright yellow light on it, the sunflowers would become indistinguishable from the white background, and the poppies would look orange. This is called metamerism [https://en.wikipedia.org/wiki/Metamerism_%28color%29], and it’s generally something you want to avoid in your color management pipeline.

An example where metamerism could become a problem is when you start matching colors from different sources together.

[image: ../../_images/White_point_mix_up_ex1_01.svg]
For example, if you are designing a print for a red t-shirt that’s not bright red, but not super grayish red either. And you want to make sure the colors of the print match the color of the t-shirt, so you make a dummy background layer that is approximately that red, as correctly as you can observe it, and paint on layers above that dummy layer. When you are done, you hide this dummy layer and sent the image with a transparent background to the press.

[image: ../../_images/White_point_mixup_ex1_02.png]

But when you get the t-shirt from the printer, you notice that all your colors look off, mismatched, and maybe too yellowish (and when did that T-Shirt become purple?).

This is where white points come in.

You probably observed the t-shirt in a white room where there were incandescent lamps shining, because as a true artist, you started your work in the middle of the night, as that is when the best art is made.
However, incandescent lamps have a black body temperature of roughly 2300-2800K, which makes them give a yellowish light, officially called White Point A.

Your computer screen on the other hand, has a black body temperature of 6500K, also known as D65. Which is a far more blueish color of light than the lamps you are hanging.

What’s worse, Printers print on the basis of using a white point of D50, the color of white paper under direct sunlight.

[image: ../../_images/White_point_mix_up_ex1_03.svg]
So, by eye-balling your t-shirt’s color during the evening, you took its red color as transformed by the yellowish light. Had you made your observation in diffuse sunlight of an overcast (which is also roughly D65), or made it in direct sunlight light and painted your picture with a profile set to D50, the color would have been much closer, and thus your design would not be as yellowish.

[image: ../../_images/White_point_mixup_ex1_03.png]

Applying a white balance filter will sort of match the colors to the tone as in the middle, but you would have had a much better design had you designed against the actual color to begin with.

Now, you could technically quickly fix this by using a white balancing filter, like the ones in G’MIC, but because this error is caught at the end of the production process, you basically limited your use of possible colors when you were designing, which is a pity.

Another example where metamerism messes things up is with screen projections.

We have a presentation where we mark one type of item with red, another with yellow and yet another with purple. On a computer the differences between the colors are very obvious.

[image: ../../_images/Krita_metamerism_presentation.svg]
However, when we start projecting, the lights of the room aren’t dimmed, which means that the tone scale of the colors becomes crunched, and yellow becomes near indistinguishable from white. Furthermore, because the light in the room is slightly yellowish, the purple is transformed into red, making it indistinguishable from the red. Meaning that the graphic is difficult to read.

In both cases, you can use Krita’s color management a little to help you, but mostly, you just need to be ‘’aware’’ of it, as Krita can hardly fix that you are looking at colors at night, or the fact that the presentation hall owner refuses to turn off the lights.

That said, unless you have a display profile that uses LUTs, such as an OCIO LUT or a cLUT ICC profile, white point won’t matter much when choosing a working space, due to weirdness in the ICC v4 workflow which always converts matrix profiles with relative colorimetric, meaning the white points are matched up.

File Formats

This category is for graphics file-formats. While most file-formats can be looked up on wikipedia, this doesn’t always explain what the format can be used for and what its strengths and weaknesses are.

In this category we try to describe these in a manner that can be read by beginners.

Generally, there are the following features that people pay attention to in regards to file formats:

Compression

Compression is how the file-format tries to describe the image with as little data as possible, so that the resulting file is as small as it can get without losing quality.

What we generally see is that formats that are small on disk either lose image quality, or require the computer to spend a lot of time thinking about how the image should look.

Vector file-formats like SVG are a typical example of the latter. They are really small because the technology used to create them is based on mathematics, so it only stores maths-variables and can achieve very high quality. The downside is that the computer needs to spend a lot of time thinking about how it should look, and sometimes different programs have different ways of interpreting the values. Furthermore, vector file-formats imply vector graphics, which is a very different way of working than Krita is specialized in.

Lossy file formats, like JPG or WebP are an example of small on disk, but lowering the quality, and are best used for very particular types of images. Lossy thus means that the file format plays fast and loose with describing your image to reduce filesize.

Non-lossy or lossless formats, like PNG, GIF or BMP are in contrast, much heavier on disk, but much more likely to retain quality.

Then, there’s proper working file formats like Krita’s KRA, Gimp’s XCF, Photoshop’s PSD, but also interchange formats like ORA and EXR. These are the heaviest on the hard-drive and often require special programs to open them up, but on the other hand these are meant to keep your working environment intact, and keep all the layers and guides in them.

Metadata

Metadata is the ability of a file format to contain information outside of the actual image contents. This can be human readable data, like the date of creation, the name of the author, a description of the image, but also computer readable data, like an ICC profile which tells the computer about the qualities of how the colors inside the file should be read.

Openness

This is a bit of an odd quality, but it’s about how easy it to open or recover the file, and how widely it’s supported.

Most internal file formats, like PSD are completely closed, and it’s really difficult for human outsiders to recover the data inside without opening Photoshop. Other examples are camera raw files which have different properties per camera manufacturer.

SVG, as a vector file format, is on the other end of the spectrum, and can be opened with any text-editor and edited.

Most formats are in-between, and thus there’s also a matter of how widely supported the format is. JPG and PNG cannot be read or edited by human eyes, but the vast majority of programs can open them, meaning the owner has easy access to them.

Contents

	*.bmp

	*.csv

	*.exr

	*.gbr

	*.gif

	*.gih

	*.heif and *.avif

	*.jpg

	*.jxl

	*.kpl

	*.kra

	*.ora

	*.pbm, *.pgm and *.ppm

	*.pdf

	*.png

	*.psd

	*.svg

	*.tiff

	*.webp

	Lossy and Lossless Image Compression

*.bmp

.bmp, or Bitmap, is the simplest raster file format out there, and, being patent-free, most programs can open and save bitmap files.

However, most programs don’t compress bitmap files, leading to BMP having a reputation for being very heavy. If you need a lossless file format, we actually recommend *.png.

*.csv

.csv is the abbreviation for Comma Separated Values. It is an open, plain text spreadsheet format. Since the CSV format is a plain text itself, it is possible to use a spreadsheet program or even a text editor to edit the *.csv file.

Krita supports the CSV version used by TVPaint, to transfer layered animation between these two softwares and probably with others, like Blender. This is not an image sequence format, so use the document loading and saving functions in Krita instead of the Import animation frames and Render Animation menu items.

The format consists of a text file with .csv extension, together with a folder under the same name and a .frames extension. The CSV file and the folder must be on the same path location. The text file contains the parameters for the scene, like the field resolution and frame rate, and also contains the exposure sheet for the layers. The folder contains *.png picture files. Unlike image sequences, a key frame instance is only a single file and the exposure sheet links it to one or more frames on the timeline.

[image: ../../_images/Csv_spreadsheet.png]

A .csv file as a spreadsheet in LibreOffice Calc.

Krita can both export and import this format. It is recommended to use 8bit sRGB color space because that’s the only color space for TVPaint. Layer groups and layer masks are also not supported.

TVPaint can only export this format by itself. In TVPaint 11, use the Export to… option of the File menu, and on the upcoming Export footage window, use the Clip: Layers structure tab.

[image: ../../_images/Csv_tvp_csvexport.png]

Exporting into .csv in TVPaint.

To import this format back into TVPaint there is a George language script extension. See the “Packs, Plugins, Third party” section on the TVPaint community forum for more details and also if you need support for other softwares. Moho/Anime Studio and Blender also have plugins to import this format.

See also

	CSV import script for TVPaint [https://forum.tvpaint.com/viewtopic.php?f=26&t=9759].

	CSV import script for Moho/Anime Studio [https://forum.tvpaint.com/viewtopic.php?f=26&t=10050].

	CSV import script for Blender [https://developer.blender.org/T47462].

*.exr

.exr is the prime file format for saving and loading floating point bit depths, and due to the library made to load and save these images being fully open source, the main interchange format as well.

Floating point bit-depths are used by the computer graphics industry to record scene referred values, which can be made via a camera or a computer renderer. Scene referred values means that the file can have values whiter than white, which in turn means that such a file can record lighting conditions, such as sunsets very accurately. These EXR files can then be used inside a renderer to create realistic lighting.

Krita can load and save EXR for the purpose of paint-over (yes, Krita can paint with scene referred values) and interchange with applications like Blender, Mari, Nuke and Natron.

*.gbr

The GIMP brush format. Krita can open, save and use these files as predefined brushes.

There’s three things that you can decide upon when exporting a *.gbr:

	Name
	This name is different from the file name, and will be shown inside Krita as the name of the brush.

	Spacing
	This sets the default spacing.

	Use color as mask
	This’ll turn the darkest values of the image as the ones that paint, and the whitest as transparent. Untick this if you are using colored images for the brush.

GBR brushes are otherwise unremarkable, and limited to 8bit color precision.

*.gif

.gif is a file format mostly known for the fact that it can save animations. It’s a fairly old format, and it does its compression by indexing the colors to a maximum of 256 colors per frame. Because we can technically design an image for 256 colors and are always able save over an edited GIF without any kind of extra degradation, this is a lossless compression technique.

This means that it can handle most grayscale images just fine and without losing any visible quality. But for color images that don’t animate it might be better to use *.jpg or *.png.

*.gih

The GIMP image hose format. Krita can open and save these, as well as import via the predefined brush tab.

Image Hose means that this file format allows you to store multiple images and then set some options to make it specify how to output the multiple images.

[image: ../../_images/Gih-examples.png]

From top to bottom: Incremental, Pressure and Random

Dimension and ranks.

The GIMP image hose format allows multiple dimensions for a given brush. You could for example have a dimension that updates incrementally, and one that updates on pressure, or updates randomly. Upon export, Krita will use the ranks to subdivide the layers per dimension. If you have a 24 layer image and three ranks, and the first dimension is set to 2, the second to 4 and the third to 3, then Krita will divide 24 into 2 groups of 12, each of which have unique images for the 2 parts of the first dimension. Then those 2 groups of 12 get divided into 8 groups of 4, each of which have unique brush tips for the four parts of the second dimension, and finally, the grouped three images have each a unique brush for the final dimension.

So, the following image has a table where dimension 1 is unique in one of 4 numbers, while dimension 2 is unique in one of 3 shapes. So our ranks for dimension 1 and dimension 2 need to be 4 and 3 respectively. Now, to order the layers, you need to subdivide the table first by the first dimension, and then by the second. So we end up with three layers each for a shape in the second dimension but for the first number, then another three layers, each for a shape, but then for the second number, and so forth.

[image: ../../_images/gih_multi_dimension_explaination.png]

See the GIMP documentation [https://docs.gimp.org/2.8/en/gimp-using-animated-brushes.html] for a more thorough explanation.

GIMP image hose format options:

	Constant
	This’ll use the first image, no matter what.

	Incremental
	This’ll paint the image layers in sequence. This is good for images that can be strung together to create a pattern.

	Pressure
	This’ll paint the images depending on pressure. This is good for brushes imitating the hairs of a natural brush.

	Random
	This’ll draw the images randomly. This is good for image-collections used in speedpainting as well as images that generate texture. Or perhaps more graphical symbols.

	Angle
	This’ll use the dragging angle to determine with image to draw.

When exporting a Krita file as a .gih, you will also get the option to set the default spacing, the option to set the name (very important for looking it up in the UI) and the ability to choose whether or not to generate the mask from the colors.

	Use Color as Mask
	This’ll turn the darkest values of the image as the ones that paint, and the whitest as transparent. Untick this if you are using colored images for the brush.

We have a Krita Brush tip page on how to create your own GIH brush.

*.heif and *.avif

The High Efficiency Image Format (*.heif, *.heic), and its cousin, AV1 Image Format (*.avif) are formats which use video codecs (H264, H265 and AV1) to store their data. They are more and more popular with mobile phones as their default image file format, and *.avif is to be natively supported by all web browsers within the next few years.

Krita supports saving Grayscale and RGB images to these formats. Furthermore, it can save 8 bit, will save 16 bit integer as 12 bit, and can save 16 and 32 bit float as 12 bit, with an HDR color space.

Compared to *.png and *.jpg, these formats tend to smooth out textures to make them easier to compress, and therefore great for sharp images with a lot of smooth gradients. Images with a lot of texture or fine details may lose said detail (for example, cat whiskers seem to get lost), and thus *.jpg might be better suited.

Import Options

Krita supports all the color spaces that these formats can handle, and will convert in the case of the few formats it cannot handle. This has been automated for the most part, with Krita selecting or generating the appropriate ICC profile where necessary.

Images that are HDR images, so the ones that have the Perceptual Quantizer, Hybrid Log Gamma or SMPTE ST 428 transfer functions, will be converted to a linear 32 bit floating point version of that color space.

However, Hybrid Log Gamma needs an extra conversion step inbetween, as Krita currently does not support sending HLG data to the display. For this Scene Linear to Display Linear conversion, it would need to know your display gamma and maximum brightness. The default brightness and gamma values are the ones used for a HLG to PQ conversion, and probably your best bet when your monitor is able to display Krita’s HDR. When exporting this image with HLG, it’s recommended to reuse the same values for the reverse OOTF there.

	Apply Hybrid Log Gamma OOTF
	Whether to apply the extra conversion step. This will convert scene linear values to display linear, and thus it’s necessity is completely dependent on your HDR workflow. If in doubt, apply.

	Gamma
	Approximate display gamma. Default value is 1.2 for conversion to PQ.

	Brightness
	Maximum display brightness. Default value is 10.000 cd/m² for conversion to PQ.

Export Options

	Lossless
	Use the lossless encoding options. Disables the Lossy Advanced Settings.

	Lossy Advanced Settings
	
	Quality
	Determines how much the encoder should prioritize quality over compression. Higher values look better, but lower values have a lower file size.

	Chroma
	Chroma Subsampling settings. Humans are more sensitive to the brightness of an image than its colorfulness, so halving the colors of an image can be a very useful way to compress an image. This is best used with images that have few sharp contrasts, as that is where the reduced resolution is most obvious.

	420
	The brightness of the image will be at full resolution, while the colorfulness will be halved in both dimensions.

	422
	The brightness of the image will be at full resolution, while the colorfulness will be halved horizontally.

	444
	Both brightness and colorfulness of the image will be at full resolution.

Conversion Settings

These only appear on floating point images, and are used to store the images with values above 1.0 as HDR images by encoding them with a specific transfer function.

	Space:
	Encoding the right color space depends on how compatible the current color space is with the ITU H.273 CICP values [ituh273], as this is how PQ, HLG and SMPTE ST 428 are stored. Rec 2100 PQ or Rec 2100 HLG are the expected values for HDR images [rec2100].

In all cases when we store CICP values instead of an ICC profile, the Matrix Coefficient value will be set to 0 (Identity Matrix), as Krita does no conversion to YUV.

	Rec 2100 PQ
	Image will first be converted to Rec 2020 linear. Then encoded with the Perceptual Quantizer function (also known as SMPTE 2048 curve). This is the most common HDR encoding, and useful for images where the relative brightness is important.

	Rec 2100 HLG
	Image will first be converted to Rec 2020 linear. Then encoded with the Hybrid Log Gamma function, and finally, if chosen, the reverse Hybrid Log Gamma OOTF is applied. This is useful for images where the final display may not understand PQ.

	Keep Colorants, encode PQ
	Shows only for images with an ITU H.273 compatible color space [ituh273]. The image will be linearized first, and then encoded with a perceptual quantizer curve.

	Keep Colorants, encode HLG
	Shows only for images with an ITU H.273 compatible color space [ituh273]. The image will be linearized first, and then encoded with a Hybrid Log Gamma curve. Finally, the reverse HLG OOTF may be applied.

	Keep Colorants, encode SMPTE ST 428
	Shows only for images with an ITU H.273 compatible color space [ituh273]. The image will be linearized first, and then encoded with SMPTE ST 428. Krita always opens images like these as linear floating point, this option is there to save them as ST 428 again.

	No Changes, Clip
	The image will be converted plainly to 12bit integer, and values that are out of bounds are clipped, the ICC profile will be embedded.

	Apply reverse Hybrid Log Gamma OOTF
	Whether to apply the extra conversion step. It’s necessity is completely dependent on your HDR workflow. If in doubt, apply, always apply when you’ve imported an image with OOTF option enabled.

	Gamma
	Approximate display gamma. Default value is 1.2 for conversion to PQ.

	Brightness
	Maximum display brightness. Default value is 10.000 cd/m² for conversion to PQ.

See also

	High Efficiency Image File Format on Wikipedia [https://en.wikipedia.org/wiki/High_Efficiency_Image_File_Format]

[ituh273]
(1,2,3,4)
H.273 : Coding-independent code points for video signal type identification [https://www.itu.int/rec/T-REC-H.273/en]

[rec2100]

	BT.2100 : Image parameter values for high dynamic range television for use in production and international programme exchange [https://www.itu.int/rec/R-REC-BT.2100-2-201807-I/en]

	Perceptual Quantizer on Wikipedia [https://en.wikipedia.org/wiki/Perceptual_quantizer]

	Hybrid Log Gamma on Wikipedia [https://en.wikipedia.org/wiki/Hybrid_log%E2%80%93gamma]

*.jpg

.jpg, .jpeg or .jpeg2000 are a family of file-formats designed to encode photographs.

Photographs have the problem that they have a lot of little gradients, which means that you cannot index the file like you can with *.gif and expect the result to look good. What JPEG instead does is that it converts the file to a perceptual color space (YCrCb), and then compresses the channels that encode the colors, while keeping the channel that holds information about the relative lightness uncompressed. This works really well because human eye-sight is not as sensitive to colorfulness as it is to relative lightness. JPEG also uses other lossy compression techniques, like using cosine waves to describe image contrasts.

However, it does mean that JPEG should be used in certain cases. For images with a lot of gradients, like full scale paintings, JPEG performs better than *.png and *.gif.

But for images with a lot of sharp contrasts, like text and comic book styles, PNG is a much better choice despite a larger file size. For grayscale images, *.png and *.gif will definitely be more efficient.

Because JPEG uses lossy compression, it is not advised to save over the same JPEG multiple times. The lossy compression will cause the file to reduce in quality each time you save it. This is a fundamental problem with lossy compression methods. Instead use a lossless file format, or a working file format while you are working on the image.

*.jxl

JPEG XL (.jxl) is a new royalty-free image file format. It supports lossy compression mode designed for photographs similar to the JPEG file format, and also lossless compression mode similar to formats like PNG. In addition, it also supports saving animations with multiple frames like GIF.

When deciding between lossy and lossless compression modes, the same advice for JPEG and PNG applies. For images with a lot of gradients, like full scale paintings, lossy compression may work very well to produce small files with very little visual quality loss. But for images with a lot of sharp contrasts, like text and comic book styles, lossless compression is usually the better choice.

For JPEG XL files using lossy compression, it is not advised to save over the same file multiple times. The lossy compression will cause the file to reduce in quality each time you save it. This is a fundamental problem with lossy compression methods. Instead you should use the lossless compression mode, or a working file format while you are working on the image.

It is possible to losslessly transcode JPEG images into JPEG XL. Transcoding preserves the already-lossy compression data from the original JPEG image without any quality loss caused by re-encoding, while making the file size smaller than the original. To do this, you need to use specialized tools, for example the cjxl command line tool from libjxl [https://github.com/libjxl/libjxl], to perform the conversion. Beware that you cannot do this by opening the JPEG image in Krita and re-exporting it into JPEG XL. Krita always exports files from the raw pixel data, therefore this does not have the same effect as transcoding directly from JPEG to JPEG XL.

Exporting animations from Krita as JPEG XL is supported, though this flattens all layers in the image. To export JPEG XL animations, use Export… from the File Menu and then saving or exporting to a .jxl file. Make sure to enable Save as animated JPEG XL in the export options. This is different from Render Animation in that it does not use FFmpeg.

Export Options

General

JPEG XL’s encoder is designed to be fairly hands-off. Where in the case of JPEG you’d have to select the appropriate quality, JPEG XL instead tries to find the best quality for your image. What you instead choose is whether the preferred compression is lossy or lossless, and how much effort the encoder should put into finding the best compression for your image, with more effort also meaning longer saving times.

	Save as animated JPEG XL
	JPEG XL has the ability to store small animations like *.gif. Its animation capabilities are simple though, and specifically designed for stylized content that doesn’t have a lot of colors, like cel-animation. This is because JPEG XL doesn’t have intra-frame prediction, which is the best way to store video files with a lot of colors like 3D animation, film and painterly animation. We recommend you try using video rendering for painterly animation instead.

	Flatten the image
	If disabled, JPEG XL has the ability to store frames as layers if it’s not being used as animation, this can be useful to store multi-page images like *.tiff.

Its layered capabilities are very basic, and not designed to store complex layer stacks like *.psd and *.kra does. Some of its limitations are:

	Only raster paint layers are supported, any other type of layer will get rasterized and group layers will be flattened.

	Limited blending modes, only Normal and Addition while other modes will get converted to Normal.

	No partial layer opacity, will only export visible layers with full opacity setting (100%).

	No layer styles, these will get rasterized with Normal blending mode for outside pixels.

	Layer masks will be flattened and rasterized, but Colorize Mask won’t get rendered.

We recommend you leave this option enabled for web delivery.

New in version 5.2.

	Encoding Options
	
	Lossy encoding
	Whether to use Lossy compression. Like *.webp, JPEG XL has a different way of encoding the images in lossless and lossy mode, with the latter being closer to the way the original *.jpg encodes.

	Quality
	This option sets the desired quality for lossy compression. Higher values look better, but lower values have a lower file size.

	Use modular mode
	Use the alternative Modular mode for lossy compression. By default, JPEG XL encodes lossy image with VarDCT mode.

New in version 5.2.

	Tradeoff
	The encoder can give a better result if it is given more time. This slider allows you to decide how much the encoder should prioritize quality over speed. The different modes can be seen as presets [1]:

	Lightning – A fast mode useful for lossless mode. Fastest possible values for lossy compression, for lossless uses gradient predictors and fast histograms, but no MA tree.

	Thunder – Both Lightning and Thunder are similar for Lossy, for lossless, Thunder uses a fixed MA tree and gradient predictors.

	Falcon – Instead of using lossless mode, disables all options.

	Cheetah – Enables coefficient reordering, context clustering, and heuristics for selecting DCT sizes and quantization steps.

	Hare – Enables Gaborish Filtering, Chroma from Luma and estimates quantization steps.

	Wombat – Enables error diffusion quantization and DCT heuristics.

	Squirrel – Enables dots, patches and spline detection as well as context clustering.

	Kitten – Optimizes the adaptive quantization for a psychovisual metric.

	Tortoise – Enables a more thorough adaptive quantization search.

You can force-enable several of the options in the Advanced section even if they are disabled by the Tradeoff preset.

	Decoding Speed
	Decoding speed can be improved by allowing certain optimizations. However, this will lead to some quality loss. For example, if you think your images will be largely viewed on mobile phones it might be a good idea to experiment with this option. Conversely, if your image will only be viewed by desktop computers and quality is of utmost importance, this should be set to 0.

Conversion Settings

This option is only enabled when the image is in a floating point color space, and the options are exactly the same as the conversion settings for *.heif and *.avif.

New in version 5.2.

Advanced

JPEG XL has two major ways of encoding data:

	VarDCT
	This one is in the same family of compression techniques as used by the original JPEG, and thus best for ‘Natural’ images, such as photographs and images with a lot of gradients and textures.

	Modular Mode
	This one has specific features for so-called ‘synthetic’ images, such as line art and images with a lot of wide patches. Modular mode is always used when selecting Lossless Encoding.

You could consider VarDCT to be like ‘lossy’ compression, while Modular Mode is like ‘lossless’ compression. Furthermore, JPEG XL splits up images into smaller chunks called ‘Groups’, these are 256x256 for VarDCT and you can choose one of several sizes for Modular Mode.

	Color channel resampling.
	How to sample the color channels.
This means that there will be less information stored, leading to a smaller file. However, because this only samples a few pixels, sharp contrasts are lost. The effect is similar to if you’d scale down the image by half (for 2x2), quarter (for 4x4) or to an eight (for 8x8) and then scaled it back up to the original size.

This feature is particularly useful for images that are deliberately blurry and devoid of sharp contrast. It’s recommended to set this to No Downsampling in any other case.

	Alpha channel resampling
	Same as Color channel resampling, but then for the transparency of the image.

	Photon noise
	This determines whether noise in the image should be abstracted and added later by the computer, giving a simulation of the noise that cameras sometimes capture.

	Generate dots
	Dots are a form of noise larger than Photon noise. Such dots make images more pleasing to look at, however, they make compressing difficult. This option allows you to choose whether or not to abstract these dots away and have the computer add them later. If this and Generate Patches is on, and the encoder finds both patches and dots, the dots will be encoded as if they were patches.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless Tradeoff.

	Disabled – Never use this regardless Tradeoff.

	Generate patches
	This determines whether or not to try and reuse bits and pieces of an image. This can be useful with images that have a lot of repeating bits, like sprite art, images with text or images using a lot of patterns.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless Tradeoff.

	Disabled – Never use this regardless Tradeoff.

	Edge Preserving Filter
	The edge preserving filter tries to preserve edges without getting artifacts like ‘rings’.

	Gaborish filter
	Whether or not to apply a Gabor-like sharpening filter, which can help emphasize important contrasts that would otherwise be lost during encoding and decoding.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless Tradeoff.

	Disabled – Never use this regardless Tradeoff.

	Modular encoding
	Unlike Modular Mode, which is the lossless compression method, Modular encoding instead splits the image into smaller chunks, allowing for multi-threaded encoding, as well as per-chunk optimization. This option allows you to choose whether the encoder should do so with the lossy VarDCT method, the lossless Modular Mode, or by letting the encoder itself choose.

	Keep color of invisible pixels
	Whether to keep the color values when a pixel is fully transparent or whether to abstract them away as if they were transparent black.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Group order
	How the groups are stored in Modular encoding. This is important for partially downloaded images and images using Progressive Encoding.

	Default
	Depends on Tradeoff.

	Scanline order
	Top left of the image is also the first group.

	Center first
	The centermost group of the image is the first group.

	Chroma-from-luma
	JPEG XL can use some algorithmic trickery to predict the color of a given section from the pixel brightness, meaning it only has to store the pixel brightness and not the color. Experimentation is recommended.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	VarDCT parameters
	The core of JPEG’s compression is the so-called Discrete Cosine Transform (DCT). This allows it to simplify a complex gradient of colors to a mathematical function. One of the new features of JPEG XL is that these DCT don’t have to be 8x8, nor do they have to be the same size over the whole image. This is called ‘Variable DCT’. The compression that is applied on this mathematical function is also finetuned by the encoder, this is called Adaptive Quantization.

Because the encoder is able to pick the best solution for the compression (Depending on what you selected for Tradeoff), the only thing you need to worry about is whether to enable progressive mode. Progressive mode for VarDCT takes the so-called DC values (which are per DCT block) to produce a coarse preview image that gets shown first and then it takes the AC values, which represent the fine details, and sends them out last. In effect this results in progressive images first showing a rough blurry image which, as the download completes, becomes progressively sharper. This is especially useful for images alongside text or images that get served over a slow internet connection.

	Spectral progression
	This enables progressive mode and uses advanced color maths to calculate the fine details of images. This takes more time but generally gives better results.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Quantization
	This enables progressive mode and then uses quantization to compress the fine details. This leads to a smaller file size at the cost of giving the encoder more time to do so.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Low resolution DC
	Where the previous two options covered the fine-grain parts of a progressive-encoded image, the DC is coarse-grain compression, specifically a coefficient for every DCT block that can be used to create the coarse preview image for progressive decoding. Because DCT can be variable-size in JPEG XL, you can opt to use a low-resolution image in addition. This should result in a better preview, though the file size will be a few bytes bigger.

	Default
	Let the encoder choose.

	Disable
	Do not use a lower-resolution image at all.

	64x64 low resolution pass
	Create an 64x64 image to use alongside the DC values to create the progressive preview.

	512x512 + 64x64 low resolution pass
	Create both a 512x512 image and a 64x64 image to use alongside the DC values to create the progressive preview.

	Modular Parameters
	Extra options for Modular Mode. Modular mode uses something akin to a small programming language by way of predictors to describe image data succinct and precise.

	Progressive encoding
	Whether or not to enable progressive encoding/decoding. As explained in VarDCT parameters, this means that the image can be saved in such a way that upon downloading and showing it, a rough previews will get shown first.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Global channel palette range
	Colors will be stored as a palette depending on whether the total amount of different colors used is smaller than the percentage of all color channel values possible. For 8 bit, 100% would mean 255 values total, 50% would mean 128 values total, and 10% would mean a total of 25 values total.

	Local channel palette range
	Like Global channel palette range, but then decided per group.

	Use color palette for … colors or less.
	Select the maximum amount of colors that need to be present in a group before the encoder will try to store them as a palette.

	Delta palette
	Whether to use a Delta-palette, also called a lossy-palette. This compresses the palette, but there’s no official documentation yet on how exactly.

	Default – Encoder will select this option depending on Tradeoff.

	Enabled – Always use this regardless of Tradeoff.

	Disabled – Never use this regardless of Tradeoff.

	Group size
	Images can be split into smaller chunks, which can be encoded separately. You can choose how big these chunks are when using Modular Mode, for VarDCT they will default to 256x256.

	128x128

	256x256

	512x512

	1024x1024

	Predictor
	Which predictor to use in conjunction with the MA tree. Where VarDCT compresses the image by abstracting complex gradients into mathematical functions, Modular Mode compresses sections by determining if it can be described by its neighbouring pixels, like ‘the same color as the pixel to the left’. This is a predictor, and you can select which predictor you’d prefer to be used. Recommended value is Default.

	Default – Let the encoder choose.

	Zero – Always returns the value 0.

	Left – Always returns the value at the left.

	Top – Always returns the value at the top.

	Avg0 – Returns the average of the values to the immediate left and top of the current location.

	Select – Subtracts the left and top neighbour from the top-left, and returns the neighbour whose difference is lower.

	Gradient – Returns the value of the top-left neighbour minus the values of the top and left neighbours.

	Weighted – A complex predictor that weights the top, left and top-left pixels in certain ways to achieve the result.

	Top Right – Returns the value topright of the current location.

	Top Left – Returns the value topleft of the current location.

	Left Left – Returns the value topright of the current location.

	Avg1 – Returns the average of the values to the immediate left and top-left of the current location.

	Avg2 – Returns the average of the values to the immediate top-left and top of the current location.

	Avg3 – Returns the average of the values to the immediate left and top-right of the current location.

	Toptop predictive average – Weights the value of 6 neighbours: the top, left, topright, and their immediately adjacent neighbours in the same direction.

	Gradient + Weighted – Mixes gradient and weighted.

	Use all predictors

	Pixels for MA tree learning.
	Fraction of pixels used for the Meta-Adaptive Context tree. The MA tree is a way of analyzing the pixels surrounding the current pixel, and depending on the context choose a given predictor for this pixel. More pixels mean a better understood context and thus better compression, but these also take more resources while encoding.

Metadata

	Store document metadata.
	Whether to store any metadata at all. You can individually toggle Exif, IPTC and XMP.

	Anonymizer
	Whether to remove author information.

	Tool information
	Whether to add tool information.

See also

	JPEG XL official website [https://jpeg.org/jpegxl/]

	JPEG XL community website [https://jpegxl.info/]

	libjxl – JPEG XL reference implementation [https://github.com/libjxl/libjxl]

[1]
Copied from this libjxl readme [https://github.com/libjxl/libjxl/blob/315247f000cff01fbc7ee2dd8252ea8fb82d0769/doc/benchmarking.md] as well as comments inside the libjxl source code.

*.kpl

Since 4.0, Krita has a new palette file-format that can handle colors that are wide gamut, RGB, CMYK, XYZ, GRAY, or LAB, and can be of any of the available bitdepths, as well as groups. These are Krita Palettes, or *.kpl.

*.kpl files are ZIP files, with two XMLs and ICC profiles inside. The colorset.xml file contains the swatches as ColorSetEntry and Groups as Group. The profiles.xml file contains a list of profiles, and the ICC profiles themselves are embedded to ensure compatibility over different computers.

A technical description in English can be found in here.

*.kra

.kra is Krita’s internal file-format, which means that it is the file format that saves all of the features Krita can handle. It’s construction is vaguely based on the open document standard, which means that you can rename your .kra file to a .zip file and open it up to look at the insides. In Krita’s settings dialog you can enable compression; with compression enabled the files will be smaller, but saving will take longer.

Other applications mostly cannot open .kra files, and you cannot upload .kra as images on websites like twitter or deviantArt.

A .kra file contains a file names mergedimage.png which contains the rendered image as you see it on your canvas. Some applications, like Scribus, can use the mergedimage.png file to open .kra files. This file is always in the RGBA color model, or grayscale for files that are originally grayscale.

The .krz file format is a .kra file without mergedimage.png and with compression always enabled. You can use this format if you want to save disk space and do not care about interchange with those applications that load the mergedimage.png file.

*.ora

.ora, or the Open Raster format, is an interchange format. It was designed to replace *.psd as an interchange format, as the latter isn’t meant for that. Like *.kra it is loosely based on the Open Document structure, thus a ZIP file with a bunch of XMLs and PNGs, but where Krita’s internal file format can sometimes have fully binary chunks, .ora saves its layers as *.png making it fully open and easy to support.

As an interchange format, it can be expected to be heavy and isn’t meant for uploading to the internet.

See also

Open Raster Specification [https://www.openraster.org/]

*.pbm, *.pgm and *.ppm

.pbm, .pgm and .ppm are a series of file-formats with a similar logic to them. They are designed to save images in a way that the result can be read as an ASCII file, from back when email clients couldn’t read images reliably.

They are very old file formats, and not used outside of very specialized usecases, such as embedding images inside code.

	.pbm
	One-bit and can only show strict black and white.

	.pgm
	Can show 255 values of gray (8bit).

	.ppm
	Can show 8bit rgb values.

*.pdf

.pdf is a format intended for making sure a document looks the same on all computers. It became popular because it allows the creator to make sure that the document looks the same and cannot be changed by viewers. These days it is an open standard and there is quite a variety of programs that can read and save PDFs.

Krita can open PDFs with multiple layers. There is currently no PDF export, nor is that planned. If you want to create a PDF with images from Krita, use Scribus [https://www.scribus.net/].

While PDFs can be viewed via most browsers, they can also become very heavy and are thus not recommended outside of official documents. Printhouses will often accept PDF.

*.png

.png, or Portable Network Graphics, is a modern alternative to *.gif and with that and *.jpg it makes up the three main formats that are widely supported on the internet.

PNG is a lossless file format, which means that it is able to maintain all the colors of your image perfectly. It does so at the cost of the file size being big, and therefore it is recommended to try *.jpg for images with a lot of gradients and different colors. Grayscale images will do better in PNG as well as images with a lot of text and sharp contrasts, like comics.

Like *.gif, PNG can support indexed color. Unlike *.gif, PNG doesn’t support animation. There have been two attempts at giving animation support to PNG, APNG and MNG, the former is unofficial and the latter too complicated, so neither have really taken off yet.

New in version 4.2: Since 4.2 we support saving HDR to PNG as according to the W3C PQ HDR PNG standard [https://www.w3.org/TR/png-hdr-pq/]. To save as such files, toggle Save as HDR image (Rec. 2020 PQ), which will convert your image to the Rec 2020 PQ color space and then save it as a special HDR PNG.

*.psd

.psd is Photoshop’s internal file format. For some reason, people like to use it as an interchange format, even though it is not designed for this.

.psd, unlike actual interchange formats like *.pdf, *.tiff, *.exr, *.ora and *.svg doesn’t have an official spec online. Which means that it needs to be reverse engineered. Furthermore, as an internal file format, it doesn’t have much of a philosophy to its structure, as it’s only purpose is to save what Photoshop is busy with, or rather, what all the past versions of Photoshop have been busy with. This means that the inside of a PSD looks somewhat like Photoshop’s virtual brains, and PSD is in general a very disliked file-format.

Due to .psd being used as an interchange format, this leads to confusion amongst people using these programs, as to why not all programs support opening these. Sometimes, you might even see users saying that a certain program is terrible because it doesn’t support opening PSDs properly. But as PSD is an internal file-format without online specs, it is impossible to have any program outside it support it 100%.

Krita supports loading and saving raster layers, blending modes, layerstyles, layer groups, and transparency masks from PSD. It will likely never support vector and text layers, as these are just too difficult to program properly.

We recommend using any other file format instead of PSD if possible, with a strong preference towards *.ora or *.tiff.

As a working file format, PSDs can be expected to become very heavy and most websites won’t accept them.

*.svg

.svg, or Scalable Vector Graphics, is the most modern vector graphics interchange file format out there.

Being vector graphics, SVG is very light weight. This is because it usually only stores coordinates and parameters for the maths involved with vector graphics.

It is maintained by the W3C SVG working group, who also maintain other open standards that make up our modern internet.

While you can open up SVG files with any text-editor to edit them, it is best to use a vector program like Inkscape. Krita 2.9 to 3.3 supports importing SVG via the add shape docker. Since Krita 4.0, SVGs can be properly imported, and you can export singlevector layers via Layer ‣ Import/Export ‣ Save Vector Layer as SVG… menu item. For 4.0, Krita will also use SVG to save vector data into its internal format.

SVG is designed for the internet, though sadly, because vector graphics are considered a bit obscure compared to raster graphics, not a lot of websites accept them yet. Hosting them on your own webhost works just fine though.

*.tiff

.tiff, or Tagged Image File Format, is a raster interchange format that was originally designed to be a common format generated by scanners and used by printers.

It can support multiple color spaces, and even layers.

Changed in version 5.1: If build with libtiff 4.2 or later, Krita can open and save Photoshop style layered .tiff. These are different from regular layered .tiff, as Photoshop stores *.psd data inside the .tiff. This means things like layerstyles and blending modes can be stored and read by Photoshop, but not every software that can open layered .tiff will be able to open these.

As an interchange format, .tiff is not meant for sharing on the internet, and you will not find many websites that do accept it. However, printhouses know the file format, and will likely accept it.

*.webp

WebP is a file format based on the RIFF container specification [https://developers.google.com/speed/webp/docs/riff_container] that, like *.heif and *.avif, builds upon a video codec (VP8 [https://developers.google.com/speed/webp/docs/compression#lossy_webp]) to support Lossy and Lossless Image Compression. WebP tends to be largely used for websites, though not all websites support uploading such files. If you self-host you can investigate whether WebP is an improvement over *.jpg or *.png. However, it is not very widely supported by image editors, so if you are doing collaboration with other artists, it may be better to use a different file format.

Krita has supported simple WebP export for a while, but since 5.1 it supports all the export options offered by libwebp [https://chromium.googlesource.com/webm/libwebp].

Export Options:

Instead of making you responsible for the precise settings, the WebP exporter will try out different techniques to compress better. You give a goal (a given quality or a certain file size) to aim for, and it will try its best to reach that goal. To do this, it may actually try to redo a given step of the encoding process several times. In the end, what you will have to choose is whether you want a high quality result at the cost of a slow export, or a quick export at the cost of quality.

General:

	Preset:
	WebP offers some presets for a given type of photo. For stylized images, use Line Drawing, for painterly images, use Portrait or Outdoor Photo.

	Lossless Compression:
	Use the lossless compression mode, this is a slightly different algorithm, which is heavier but gives better results for sharp contrasts.

	Quality:
	Slider for quality.

With Lossless Compression, 0% means the library will use the fewest amount of algorithmic tricks to reduce file size. This means fast saving times, at the expense of larger files. Conversely, 100% means all algorithmic tricks will be used, leading to the smallest file size, but saving will take longer. The first is best for a situation where speed is more important than size, such as files you share via USB. The latter is useful for situations where the file size can become a problem, such as serving it over the Internet.

Without Lossless Compression, image information considered redundant will be removed, rather than compressed. This means that at 0%, the most information will be lost and thus the smallest file size is achieved. This also reduces the overall quality. Conversely, 100% will remove the least amount of image information and thus maintain quality at the expense of a large file size.

	Trade Off
	A slider that allows you to select whether saving speed is more important than quality.

	Dithering:
	This enables dithering, which allows storing fewer colors while still keeping good gradients.

Advanced

	SNS Strength:
	Specifies the strength of the Spatial Noise Shaping algorithm, which tries to see if parts of the image can be better compressed than other parts.

	Filter Strength:
	Strength of the deblocking filter. 0% will mean there’s no filtering after decoding, with increasing filter strength the image will appear smoother.

	Filter Sharpness:
	Defines the sharpness of the deblocking filter, with 0 being the sharpest and 7 being the least sharp.

	Filter Type:
	Type of deblocking filter, options are Strong and Simple.

	Alpha Plane Compression:
	Whether to losslessly compress the alpha channel (Lossless) or outright discard it (None).
None

	Predictive Filtering for Alpha Plane:
	Whether to use predictive filtering for the alpha/transparency. Best will try all potential predictive filter modes before deciding which one to use, making it slower than Fast, which just makes a guess and selects that.

	Alpha Plane Quality:
	Compression quality for the alpha channel. 0% means smallest size, 100% means no compression. Only with Alpha Plane Compression set to Lossless.

	Show Compressed:
	Tells libwebp to skip the in-loop filtering step. May adversely affect the quality of the end file.

	Multithreaded Encoding:
	Use multithreading for encoding if possible.

	Reduce Memory Usage:
	Try to reduce memory usage at the cost of speed.

	Exact:
	Preserve RGB values in transparent areas instead of defaulting them to transparent black.

	Use Sharp YUV:
	Whether to use the slower, but more accurate, RGB to YUV conversion.

Lossy Compression

The following options only apply if Lossless Compression is off.

	Target Size:
	Specify the amount of bytes to aim for.

	Target PSNR:
	PSNR means Peak Signal to Noise Ratio <https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio_>, and indicates how much noise the image has. Higher values mean less noise is accepted.

	Segments:
	How many segments the VP8 video codec can divide the image into. VP8 accepts between 1 and 4 segments.

	Partitions:
	Sets how many partitions can the VP8 codec use for storing decompression information. Must be between 0 and 3. Default is 0 to make decoding easier.

	Auto Adjust Filter Strength:
	The encoder will spend some time tuning and selecting the best filter options before encoding.

	Entropy Passes:
	Number of passes to do for selecting the best option between target size and target PSNR.

	Emulate JPEG Size:
	The encoder will try to match the size of a jpeg of similar dimensions.

	Minimum Quality:
	Used with ‘entropy passes’, the lowest allowed quality for the image.

	Maximum Quality:
	Used with ‘entropy passes’, the highest allowed quality for the image.

	Preprocessing Filter:
	Whether or not to add Pseudo Random Dithering to the image before converting RGB to YUV.

Lossless compression

The following options only work with Lossless Compression on.

	Partition Limit:
	Limit how big a given segment is in bytes. The higher this is, the less possible information is stored per segment.

	Near Lossless:
	The encoder is able to minimally adjust pixel-values so they compress better in lossless compression mode. This enables this feature.
Automatically triggers Lossless Compression.

See also

https://developers.google.com/speed/webp/docs/compression

Lossy and Lossless Image Compression

When we compress a file, we do this because we want to temporarily make it smaller (like for sending over email), or we want to permanently make it smaller (like for showing images on the internet).

Lossless compression techniques are for when we want to temporarily reduce information. As the name implies, they compress without losing information. In text, the use of abbreviations is a good example of a lossless compression technique. Everyone knows ‘etc.’ expands to ‘etcetera’, meaning that you can half the 8 character long ‘etcetera’ to the four character long ‘etc.’.

Within image formats, examples of such compression is by for example ‘indexed’ color, where we make a list of available colors in an image, and then assign a single number to them. Then, when describing the pixels, we only write down said number, so that we don’t need to write the color definition over and over.

Lossy compression techniques are for when we want to permanently reduce the file size of an image. This is necessary for final products where having a small filesize is preferable such as a website. That the image will not be edited anymore after this allows for the use of the context of a pixel to be taken into account when compressing, meaning that we can rely on psychological and statistical tricks.

One of the primary things JPEG for example does is chroma sub-sampling, that is, to split up the image into a grayscale and two color versions (one containing all red-green contrast and the other containing all blue-yellow contrast), and then it makes the latter two versions smaller. This works because humans are much more sensitive to differences in lightness than we are to differences in hue and saturation.

Another thing it does is to use cosine waves to describe contrasts in an image. What this means is that JPEG and other lossy formats using this are very good at describing gradients, but not very good at describing sharp contrasts.

Conversely, lossless image compression techniques are really good at describing images with few colors thus sharp contrasts, but are not good to compress images with a lot of gradients.

Another big difference between lossy and lossless images is that lossy file formats will degrade if you re-encode them, that is, if you load a JPEG into Krita edit a little, resave, edit a little, resave, each subsequent save will lose some data. This is a fundamental part of lossy image compression, and the primary reason we use working files.

See also

If you’re interested in different compression techniques, Wikipedia’s page(s) on image compression [https://en.wikipedia.org/wiki/Image_compression] are very good, if not a little technical.

Perspective Projection

The Perspective Projection tutorial is one of the Kickstarter 2015 tutorial rewards. It’s about something that humanity has known scientifically for a very long time, and decent formal training will teach you about this. But I think there are very very few tutorials about it in regard to how to achieve it in digital painting programs, let alone open source.

The tutorial is a bit image heavy, and technical, but I hope the skill it teaches will be really useful to anyone trying to get a grasp on a complicated pose. Enjoy, and don’t forget to thank Raghukamath [https://www.raghukamath.com/] for choosing this topic!

[image: ../_images/projection-cube_09.svg]

Parts:

	Orthographic

	Oblique

	Axonometric

	Perspective Projection

	Practical

	Conclusion and afterthoughts

 So let’s start with the basics…

Orthographic

Despite the fancy name, you probably know what orthographic is. It is a schematic representation of an object, draw undeformed. Like the following example:

[image: ../../_images/projection-cube_01.svg]This is a rectangle. We have a front, top and side view. Put into perspective it should look somewhat like this:

[image: ../../_images/projection-cube_02.svg]While orthographic representations are kinda boring, they’re also a good basis to start with when you find yourself in trouble with a pose. But we’ll get to that in a bit.

Oblique

So, if we can say that the front view is the viewer looking at the front, and the side view is the viewer directly looking at the side. (The perpendicular line being the view plane it is projected on)

[image: ../../_images/projection-cube_03.svg]Then we can get a half-way view from looking from an angle, no?

[image: ../../_images/projection-cube_04.svg]If we do that for a lot of different sides…

[image: ../../_images/projection-cube_05.svg]And we line up the sides we get a…

[image: ../../_images/projection-cube_06.svg]But cubes are boring. I am suspecting that projection is so ignored because no tutorial applies it to an object where you actually might NEED projection. Like a face.

First, let’s prepare our front and side views:

[image: ../../_images/projection_image_01.png]
I always start with the side, and then extrapolate the front view from it. Because you are using Krita, set up two parallel rulers, one vertical and the other horizontal. To snap them perfectly, drag one of the nodes after you have made the ruler, and press the Shift key to snap it horizontal or vertical. In 3.0, you can also snap them to the image borders if you have Snap Image Bounds active via the Shift + S shortcut.

Then, by moving the mirror to the left, you can design a front view from the side view, while the parallel preview line helps you with aligning the eyes (which in the above screenshot are too low).

Eventually, you should have something like this:

[image: ../../_images/projection_image_02.png]
And of course, let us not forget the top, it’s pretty important:

[image: ../../_images/projection_image_03.png]

Tip

When you are using Krita, you can just use transform masks to rotate the side view for drawing the top view.

The top view works as a method for debugging your orthos as well. If we take the red line to figure out the orthographics from, we see that our eyes are obviously too inset. Let’s move them a bit more forward, to around the nose.

[image: ../../_images/projection_image_04.png]
If you want to do precision position moving in the tool options docker, just select ‘position’ and the input box for the X. Pressing down then moves the transformed selection left. With Krita 3.0 you can just use the move tool for this and the arrow keys. Using transform here can be more convenient if you also have to squash and stretch an eye.

[image: ../../_images/projection_image_05.png]
We fix the top view now. Much better.

For faces, the multiple slices are actually pretty important. So important even, that I have decided we should have these slices on separate layers. Thankfully, I chose to color them, so all we need to do is go to Layer ‣ Split Layer.

[image: ../../_images/projection_image_06.png]
This’ll give you a few awkwardly named layers… rename them by selecting all and mass changing the name in the properties editor:

[image: ../../_images/projection_image_07.png]
So, after some cleanup, we should have the following:

[image: ../../_images/projection_image_08.png]
Okay, now we’re gonna use animation for the next bit.

Set it up as follows:

[image: ../../_images/projection_image_09.png]

	Both front view and side view are set up as ‘visible in timeline’ so we can always see them.

	Front view has its visible frame on frame 0 and an empty frame on frame 23.

	Side view has its visible frame on frame 23 and an empty view on frame 0.

	The end of the animation is set to 23.

[image: ../../_images/projection_image_10.png]
Krita can’t animate a transformation on multiple layers on multiple frames yet, so let’s just only transform the top layer. Add a semi-transparent layer where we draw the guidelines.

Now, select frame 11 (halfway), add new frames from front view, side view and the guidelines. And turn on the onion skin by toggling the lamp symbols. We copy the frame for the top view and use the transform tool to rotate it 45°.

[image: ../../_images/projection_image_11.png]
So, we draw our vertical guides again and determine a in-between…

[image: ../../_images/projection_image_12.png]
This is about how far you can get with only the main slice, so rotate the rest as well.

[image: ../../_images/projection_image_13.png]
And just like with the cube, we do this for all slices…

[image: ../../_images/projection_image_14.png]
Eventually, if you have the top slices rotate every frame with 15°, you should be able to make a turn table, like this:

[image: ../../_images/projection_animation_01.gif]
Because our boy here is fully symmetrical, you can just animate one side and flip the frames for the other half.

While it is not necessary to follow all the steps in the theory section to understand the tutorial, I do recommend making a turn table sometime. It teaches you a lot about drawing 3/4th faces.

How about… we introduce the top view into the drawing itself?

 This is a continuation of the orthographic and oblique tutorial, be sure to check it out if you get confused!

Axonometric

So, the logic of adding the top is still similar to that of the side.

[image: ../../_images/projection-cube_07.svg]Not very interesting. But it gets much more interesting when we use a side projection:

[image: ../../_images/projection-cube_08.svg]Because our cube is red on both front-sides, and blue on both left and right side, we can just use copies, this simplifies the method for cubes a lot. We call this form of axonometric projection ‘dimetric’ as it deforms two parallel lines equally.

Isometric is sorta like dimetric where we have the same angle between all main lines:

[image: ../../_images/projection-cube_09.svg]True isometric is done with a 90-54.736=35.264° angle from ground plane:

[image: ../../_images/projection-cube_10.svg](as you can see, it doesn’t line up perfectly, because Inkscape, while more designed for making these kinds of diagrams than Krita, doesn’t have tools to manipulate the line’s angle in degrees)

This is a bit of an awkward angle, and on top of that, it doesn’t line up with pixels sensibly, so for videogames an angle of 30° from the ground plane is used.

[image: ../../_images/projection-cube_11.svg]Alright, so, let’s make an isometric out of our boy then.

We make a new document, and add a vector layer.

On the vector layer, we select the straight line tool, start a line and then hold the Shift key to make it snap to angles. This’ll allow us to make a 30° setup like above:

[image: ../../_images/projection_image_15.png]
We then import some of the frames from the animation via Layers ‣ Import/Export ‣ Import layer.

Then crop it by setting the crop tool to Layer, and use Filters ‣ Colors ‣ Color to alpha… to remove any background. I also set the layers to 50% opacity. We then align the vectors to them:

[image: ../../_images/projection_image_16.png]

Tip

To resize a vector but keep its angle, you just select it with the shape handling tool (the white arrow) drag on the corners of the bounding box to start moving them, and then press the Shift key to constrain the ratio. This’ll allow you to keep the angle.

The lower image is ‘the back seen from the front’, we’ll be using this to determine where the ear should go.

Now, we obviously have too little space, so select the crop tool, select Image and tick Grow and do the following:

[image: ../../_images/projection_image_17.png]
Grow is a more practical way of resizing the canvas in width and height immediately.

Then we align the other heads and transform them by using the transform tool options:

[image: ../../_images/projection_image_18.png]
(330° here is 360°-30°)

Our rectangle we’ll be working in slowly becomes visible. Now, this is a bit of a difficult angle to work at, so we go to Image ‣ Rotate ‣ Rotate Image and fill in 30° clockwise:

[image: ../../_images/projection_image_19.png]
[image: ../../_images/projection_image_20.png]
(of course, we could’ve just rotated the left two images 30°, this is mostly to be less confusing compared to the cube)

So, we do some cropping, some cleanup and add two parallel assistants like we did with the orthographic:

[image: ../../_images/projection_image_21.png]
So the idea here is that you draw parallel lines from both sides to find points in the drawing area. You can use the previews of the assistants for this to keep things clean, but I drew the lines anyway for your convenience.

[image: ../../_images/projection_image_22.png]
The best is to make a few sampling points, like with the eyebrows here, and then draw the eyebrow over it.

[image: ../../_images/projection_image_23.png]

Alternative axonometric with the transform tool

Now, there’s an alternative way of getting there that doesn’t require as much space.

We open our orthographic with Open existing Document as Untitled Document so that we don’t save over it.

Our game-safe isometric has its angle at two pixels horizontal is one pixel vertical. So, we shear the ortho graphics with transform masks to -.5/+.5 pixels (this is proportional)

[image: ../../_images/projection_image_24.png]
Use the grid to setup two parallel rulers that represent both diagonals (you can snap them with the Shift + S shortcut):

[image: ../../_images/projection_image_25.png]
Add the top view as well:

[image: ../../_images/projection_image_26.png]
if you do this for all slices, you get something like this:

[image: ../../_images/projection_image_27.png]
Using the parallel rulers, you can then figure out the position of a point in 3d-ish space:

[image: ../../_images/projection_image_28.png]
As you can see, this version both looks more 3d as well as more creepy.

That’s because there are less steps involved as the previous version – We’re deriving our image directly from the orthographic view – so there are less errors involved.

The creepiness is because we’ve had the tiniest bit of stylisation in our side view, so the eyes come out HUGE. This is because when we stylize the side view of an eye, we tend to draw it not perfectly from the side, but rather slightly at an angle. If you look carefully at the turntable, the same problem crops up there as well.

Generally, stylized stuff tends to fall apart in 3d view, and you might need to make some choices on how to make it work.

For example, we can just easily fix the side view (because we used transform masks, this is easy.)

[image: ../../_images/projection_image_29.png]
And then generate a new drawing from that…

[image: ../../_images/projection_animation_02.gif]
Compare to the old one and you should be able to see that the new result’s eyes are much less creepy:

[image: ../../_images/projection_image_30.png]
It still feels very squashed compared to the regular parallel projection above, and it might be an idea to not just skew but also stretch the orthos a bit.

Let’s continue with perspective projection in the next one!

 This is a continuation of the axonometric tutorial, be sure to check it out if you get confused!

Perspective Projection

So, up till now we’ve done only parallel projection. This is called like that because all the projection lines we drew were parallel ones.

However, in real life we don’t have parallel projection. This is due to the lens in our eyes.

[image: ../../_images/Projection_Lens1_from_wikipedia.svg]Convex lenses, as this lovely image from wikipedia [https://en.wikipedia.org/wiki/Lens_%28optics%29] shows us, have the ability to turn parallel lightrays into converging ones.

The point where all the rays come together is called the focal point, and the vanishing point in a 2d drawing is related to it as it’s the expression of the maximum distortion that can be given to two parallel lines as they’re skewed toward the focal point.

As you can see from the image, the focal point is not an end-point of the rays. Rather, it is where the rays cross before diverging again… The only difference is that the resulting image will be inverted. Even in our eyes this inversion happens, but our brains are used to this awkwardness since childhood and turn it around automatically.

Let’s see if we can perspectively project our box now.

[image: ../../_images/projection-cube_12.svg]That went pretty well. As you can see we sort of merged the two sides into one (resulting into the purple side square) so we had an easier time projecting. The projection is limited to one or two vanishing point type projection, so only the horizontal lines get distorted. We can also distort the vertical lines

[image: ../../_images/projection-cube_13.svg]… to get three-point projection, but this is a bit much. (And I totally made a mistake in there…)

Let’s setup our perspective projection again…

[image: ../../_images/projection_image_31.png]
We’ll be using a single vanishing point for our focal point. A guide line will be there for the projection plane, and we’re setting up horizontal and vertical parallel rules to easily draw the straight lines from the view plane to where they intersect.

And now the workflow in GIF format… (don’t forget you can rotate the canvas with the 4 and 6 keys)

[image: ../../_images/projection_animation_03.gif]
Result:

[image: ../../_images/projection_image_32.png]
Looks pretty haughty, doesn’t he?

And again, there’s technically a simpler setup here…

Did you know you can use Krita to rotate in 3d? No?

[image: ../../_images/projection_image_33.png]
Well, now you do.

The ortho graphics are being set to 45 and 135 degrees respectively.

We draw horizontal lines on the originals, so that we can align vanishing point rulers to them.

[image: ../../_images/projection_image_34.png]
And from this, like with the shearing method, we start drawing. (Don’t forget the top-views!)

Which should get you something like this:

[image: ../../_images/projection_image_35.png]
But again, the regular method is actually a bit easier…

But now you might be thinking: gee, this is a lot of work… Can’t we make it easier with the computer somehow?

Uhm, yes, that’s more or less why people spent time on developing 3d graphics technology:

[image: ../../_images/projection_image_36.png]
[image: ../../_images/projection_image_37.png]
(The image above is sculpted in blender using our orthographic reference)

So let us look at what this technique can be practically used for in the next part…

 This is a continuation of the perspective projection tutorial, be sure to check it out if you get confused!

Practical

So, if computers can already automate a ton, and it is fairly complicated, is there still a use for a traditional 2d artist to learn this?

Yes, actually. The benefit that 2d art still has over 3d is that it’s plain faster for single images, especially with complicated subjects like faces and bodies.

Perspective projection can help a lot getting down those annoying poses, like people lying down. It also helps when combining 2d and 3d, as when you know where the camera is in the 3d render, you can use that in a projection to get the character projected.

[image: ../../_images/projection_animation_04.gif]
The side view of a person lying down is often easy to draw, but the top view or the view from the feet isn’t. Hence why we use the side view to do perspective projection on.

[image: ../../_images/projection_image_38.png]
Another example with an equally epic task: sitting.

[image: ../../_images/projection_animation_05.gif]
Now, with this one we have a second vanishing point above the front-view. It should be about the same distance above the front-view as it is above the head of the rotated side-view. The projection plane should also be the same distance from the vanishing point, but that doesn’t mean it has to be behind. This is something I avoided in the earlier examples, because it makes the working field really messy, but if you look up perspective projection you’ll see multiple examples of this method.

Also of note is that you actually should be having the view plane/projection plane perfectly perpendicular to the angle of the focal point, otherwise you get odd distortion, this doesn’t happen here, which means this sitting person is a bit more stretched vertically than necessary.

[image: ../../_images/projection_image_39.png]
One more, for the road…

[image: ../../_images/projection_animation_06.gif]
Here you can see that the misalignment of the vanishing point to the projection plane causes skewing which was then fixed by Krita’s transform tools, technically it’s of course correct, but what is correct doesn’t always look good. (I also mess up the position of the shoulder for a good while if you look closely.)

[image: ../../_images/projection_image_40.png]

Conclusion and afterthoughts

I probably didn’t make as nice result images as I could have, especially if you compare it to the 3d images. However, you can still see that the main landmarks are there. The real use of this technique lies in poses though, and it allows you to iterate on a pose quite quickly once you get the hang of it.

Generally, it’s worth exploring, if only because it improves your spatial sense.

See also

	https://en.wikipedia.org/wiki/Axonometric_projection

	https://blenderartists.org/t/creating-an-isometric-camera/440743

	http://flarerpg.org/tutorials/isometric_tiles/

	https://en.wikipedia.org/wiki/Isometric_graphics_in_video_games_and_pixel_art

	https://en.wikipedia.org/wiki/Lens_%28optics%29

Reference Manual

A quick run-down of all the tools that are available.

Contents:

	Audio for Animation

	Blending Modes

	Brushes

	Clones Array

	Create New Document

	Pre-installed Python plugins

	Dockers

	Dr. MinGW Debugger

	Filters

	HDR Display

	Image Split

	Import Animation

	Instant Preview

	Krita 4 Preset Bundle Overview

	Layers and Masks

	Linux Command Line

	The List of Supported Tablets

	Main Menu

	Maths Input

	Pop-up Palette

	Preferences

	Render Animation

	Resource Management

	SeExpr Quick Reference

	Separate Image

	Getting Krita logs

	Split Layer

	SVG Storyboard Export Templates

	Stroke Selection

	Tools

	Welcome Screen

Audio for Animation

Within Krita you can load an audio file into your document to help synchronize your animation with dialogue or music. This functionality is available from the audio menu in the Timeline Docker’s titlebar.

Importing Audio Files

Krita supports a variety of audio file types, including WAV, FLAC, OGG, MP3, and more.

To load an audio file into your Krita document, first open the Timeline Docker.

On the right-hand side of the Timeline Docker’s toolbar, you’ll find the Audio Menu button with an icon that looks like a speaker.
This is the main area where you will interact with Krita’s audio system, including loading and removing audio tracks and adjusting the playback volume.

Specifically, these options and widgets are available in the Audio Menu:

	Load Audio File

	Remove Audio File

	Mute Audio

	Audio Volume Slider

Crucially, Krita only saves the location (file path) of your audio file inside your Krita document. Because of that, if you happen to move or rename an audio file that you’ve referenced in one of your Krita animations, Krita will no longer be able to find it and you will need to re-load it manually. However, Krita will tell you the file was moved or deleted the next time you try to open the Krita file up.

Using Audio

Once you’ve imported some audio, you will be able scrub through frames on the timeline and Krita will play the audio chunk associated with the frame that you want on. Then, when you press the Play button, your audio will playback while you animation plays synchronized with the image frame changes.

As of now there is no visual audio waveform display in Krita’s UI, so you will need to use your ears and the scrubbing functionality to line your keyframes up with specific parts of the audio.

Exporting with Audio

To have audio included with your exported animation video you will need to check enable it in the Render Animation options. In the File ‣ Render Animation options there is a checkbox Include Audio. Make sure that is checked before you export and you should be good to go.

Blending Modes

Blending modes are a little difficult to explain. Basically, when one layer is above the other, the computer uses a bit of programming to decide how the combination of both layers will look.

Blending modes can not just apply to Layers, but also to individual strokes.

Favorites

These are the blending modes that have been ticked as favorites, defaulting these are:

	Addition

	Burn

	Color, HSV, HSI, HSL, HSY

	Color Dodge

	Darken

	Erase

	Lighten

	Luminosity

	Multiply

	Normal

	Overlay

	Saturation HSI, HSV, HSL, HSY

Hotkeys associated with Blending modes

By default, the following hotkeys are associated with blending modes used for painting. Note: these shortcuts do not change the blending mode of the current layer.

You first need to use modifiers Alt + Shift, then use the following hotkey to have the associated blending mode:

	A Linear Burn

	B Burn

	C Color, HSV, HSI, HSL, HSY

	D Color Dodge

	E Difference

	F Soft Light (Photoshop) & Soft Light SVG

	G Lighten

	H Hard Light

	I Dissolve

	J Linear Light

	K Darken

	L Hard Mix

	M Multiply

	N Normal

	O Overlay

	P Hard Overlay

	Q Behind

	S Screen

	T Saturation HSI, HSV, HSL, HSY

	U Hue HSV, HSI, HSL, HSY

	V Vivid Light

	W Exclusion

	X Linear Dodge

	Y Luminosity

	Z Pin Light

	Next Blending Mode +

	Previous Blending Mode -

Available Blending Modes

	Arithmetic
	Addition

	Divide

	Inverse Subtract

	Multiply

	Subtract

	Binary
	AND

	CONVERSE

	IMPLICATION

	NAND

	NOR

	NOT CONVERSE

	NOT IMPLICATION

	OR

	XOR

	XNOR

	Darken
	Burn

	Easy Burn

	Fog Darken (IFS Illusions)

	Darken

	Darker Color

	Gamma Dark

	Linear Burn

	Shade (IFS Illusions)

	HSX
	HSI

	HSL

	HSV

	HSY

	HSX Blending Modes

	Lighten
	Color Dodge

	Gamma Illumination

	Gamma Light

	Hard Light

	Lighten

	Lighter Color

	Linear Dodge

	Easy Dodge

	Flat Light

	Fog Lighten (IFS Illusions)

	Linear Light

	Luminosity/Shine (SAI)

	P-Norm A

	P-Norm B

	Pin Light

	Screen

	Soft Light (Photoshop) & Soft Light SVG

	Soft Light (IFS Illusions) & Soft Light (Pegtop-Delphi)

	Super Light

	Tint (IFS Illusions)

	Vivid Light

	Misc
	Bumpmap

	Combine Normal Map

	Copy

	Copy Red, Green, Blue

	Dissolve

	Mix
	Allanon

	Interpolation

	Interpolation - 2X

	Alpha Darken

	Behind

	Erase

	Geometric Mean

	Grain Extract

	Grain Merge

	Greater

	Hard Mix

	Hard Mix (Photoshop)

	Hard Mix Softer (Photoshop)

	Hard Overlay

	Normal

	Overlay

	Parallel

	Penumbra A

	Penumbra B

	Penumbra C

	Penumbra D

	Modulo
	Divisive Modulo

	Divisive Modulo - Continuous

	Modulo

	Modulo - Continuous

	Modulo Shift

	Modulo Shift - Continuous

	Negative
	Additive Subtractive

	Arcus Tangent

	Difference

	Equivalence

	Exclusion

	Negation

	Quadratic
	Freeze

	Freeze-Reflect

	Glow

	Glow-Heat

	Heat

	Heat-Glow

	Heat-Glow and Freeze-Reflect Hybrid

	Reflect

	Reflect-Freeze

See also

	Basic blending modes:
	https://en.wikipedia.org/wiki/Blend_modes

	Grain Extract/Grain Merge:
	https://docs.gimp.org/en/gimp-concepts-layer-modes.html

Arithmetic

These blending modes are based on simple maths.

Addition

Adds the numerical values of two colors together:

Yellow(1, 1, 0) + Blue(0, 0, 1) = White(1, 1, 1)

Darker Gray(0.4, 0.4, 0.4) + Lighter Gray(0.5, 0.5, 0.5) = Even Lighter Gray (0.9, 0.9, 0.9)

[image: ../../_images/Blending_modes_Addition_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Addition.

Light Blue(0.1608, 0.6274, 0.8274) + Orange(1, 0.5961, 0.0706) = (1.1608, 1.2235, 0.8980) → Very Light Yellow(1, 1, 0.8980)

[image: ../../_images/Blending_modes_Addition_Light_blue_and_Orange.png]

Left: Normal. Right: Addition.

Red(1, 0, 0) + Gray(0.5, 0.5, 0.5) = Pink(1, 0.5, 0.5)

[image: ../../_images/Blending_modes_Addition_Red_plus_gray.png]

Left: Normal. Right: Addition.

When the result of the addition is more than 1, white is the color displayed. Therefore, white plus any other color results in white. On the other hand, black plus any other color results in the added color.

[image: ../../_images/Blending_modes_Addition_Sample_image_with_dots.png]

Left: Normal. Right: Addition.

Divide

Divides the numerical value from the lower color by the upper color.

Red(1, 0, 0) / Gray(0.5, 0.5, 0.5) = (2, 0, 0) → Red(1, 0, 0)

Darker Gray(0.4, 0.4, 0.4) / Lighter Gray(0.5, 0.5, 0.5) = Even Lighter Gray (0.8, 0.8, 0.8)

[image: ../../_images/Blending_modes_Divide_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Divide.

Light Blue(0.1608, 0.6274, 0.8274) / Orange(1, 0.5961, 0.0706) = (0.1608, 1.0525, 11.7195) → Aqua(0.1608, 1, 1)

[image: ../../_images/Blending_modes_Divide_Light_blue_and_Orange.png]

Left: Normal. Right: Divide.

[image: ../../_images/Blending_modes_Divide_Sample_image_with_dots.png]

Left: Normal. Right: Divide.

Inverse Subtract

This inverts the lower layer before subtracting it from the upper layer.

Lighter Gray(0.5, 0.5, 0.5)_(1_Darker Gray(0.4, 0.4, 0.4)) = (-0.1, -0.1, -0.1) → Black(0, 0, 0)

[image: ../../_images/Blending_modes_Inverse_Subtract_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Inverse Subtract.

Orange(1, 0.5961, 0.0706)_(1_Light Blue(0.1608, 0.6274, 0.8274)) = (0.1608, 0.2235, -0.102) → Dark Green(0.1608, 0.2235, 0)

[image: ../../_images/Blending_modes_Inverse_Subtract_Light_blue_and_Orange.png]

Left: Normal. Right: Inverse Subtract.

[image: ../../_images/Blending_modes_Inverse_Subtract_Sample_image_with_dots.png]

Left: Normal. Right: Inverse Subtract.

Multiply

Multiplies the two colors with each other, but does not go beyond the upper limit.

This is often used to color in a black and white lineart.
One puts the black and white lineart on top, sets the layer to ‘Multiply’, and then draws in color on a layer beneath. Multiply will allow all the color to go through.

White(1,1,1) x White(1, 1, 1) = White(1, 1, 1)

White(1, 1, 1) x Gray(0.5, 0.5, 0.5) = Gray(0.5, 0.5, 0.5)

Darker Gray(0.4, 0.4, 0.4) x Lighter Gray(0.5, 0.5, 0.5) = Even Darker Gray (0.2, 0.2, 0.2)

[image: ../../_images/Blending_modes_Multiply_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Multiply.

Light Blue(0.1608, 0.6274, 0.8274) x Orange(1, 0.5961, 0.0706) = Green(0.1608, 0.3740, 0.0584)

[image: ../../_images/Blending_modes_Multiply_Light_blue_and_Orange.png]

Left: Normal. Right: Multiply.

[image: ../../_images/Blending_modes_Multiply_Sample_image_with_dots.png]

Left: Normal. Right: Multiply.

Subtract

Subtracts the top layer from the bottom layer.

White(1, 1, 1)_White(1, 1, 1) = Black(0, 0, 0)

White(1, 1, 1)_Gray(0.5, 0.5, 0.5) = Gray(0.5, 0.5, 0.5)

Darker Gray(0.4, 0.4, 0.4)_Lighter Gray(0.5, 0.5, 0.5) = (-0.1, -0.1, -0.1) → Black(0, 0, 0)

[image: ../../_images/Blending_modes_Subtract_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Subtract.

Light Blue(0.1608, 0.6274, 0.8274) - Orange(1, 0.5961, 0.0706) = (-0.8392, 0.0313, 0.7568) → Blue(0, 0.0313, 0.7568)

[image: ../../_images/Blending_modes_Subtract_Light_blue_and_Orange.png]

Left: Normal. Right: Subtract.

[image: ../../_images/Blending_modes_Subtract_Sample_image_with_dots.png]

Left: Normal. Right: Subtract.

Binary

Binary modes are a special class of blending modes which utilize binary operators for calculations. Binary modes are unlike every other blending modes as these modes have a fractal attribute with falloff similar to other blending modes. Binary modes can be used for generation of abstract art using layers with very smooth surfaces. All binary modes have capitalized letters to distinguish themselves from other blending modes.

To clarify on how binary modes work, convert decimal values to binary values, then treat 1 or 0 as T or F respectively, and use binary operation to get the end result, and then convert the result back to decimal.

Warning

Binary blending modes do not work on float images or negative numbers! So, don’t report bugs about using binary modes on unsupported color spaces.

AND

Performs the AND operation for the base and blend layer. Similar to multiply blending mode.

[image: ../../_images/Blend_modes_AND_map.png]

Left: Base Layer. Middle: Blend Layer. Right: AND.

[image: ../../_images/Blending_modes_AND_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: AND.

CONVERSE

Performs the inverse of IMPLICATION operation for the base and blend layer. Similar to screen mode with blend layer and base layer inverted.

[image: ../../_images/Blend_modes_CONVERSE_map.png]

Left: Base Layer. Middle: Blend Layer. Right: CONVERSE.

[image: ../../_images/Blending_modes_CONVERSE_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: CONVERSE.

IMPLICATION

Performs the IMPLICATION operation for the base and blend layer. Similar to screen mode with base layer inverted.

[image: ../../_images/Blend_modes_IMPLIES_map.png]

Left: Base Layer. Middle: Blend Layer. Right: IMPLICATION.

[image: ../../_images/Blending_modes_IMPLIES_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: IMPLICATION.

NAND

Performs the inverse of AND operation for base and blend layer. Similar to the inverted multiply mode.

[image: ../../_images/Blend_modes_NAND_map.png]

Left: Base Layer. Middle: Blend Layer. Right: NAND.

[image: ../../_images/Blending_modes_NAND_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: NAND.

NOR

Performs the inverse of OR operation for base and blend layer. Similar to the inverted screen mode.

[image: ../../_images/Blend_modes_NOR_map.png]

Left: Base Layer. Middle: Blend Layer. Right: NOR.

[image: ../../_images/Blending_modes_NOR_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: NOR.

NOT CONVERSE

Performs the inverse of CONVERSE operation for base and blend layer. Similar to the multiply mode with base layer and blend layer inverted.

[image: ../../_images/Blend_modes_NOT_CONVERSE_map.png]

Left: Base Layer. Middle: Blend Layer. Right: NOT CONVERSE.

[image: ../../_images/Blending_modes_NOT_CONVERSE_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: NOT CONVERSE.

NOT IMPLICATION

Performs the inverse of IMPLICATION operation for base and blend layer. Similar to the multiply mode with the blend layer inverted.

[image: ../../_images/Blend_modes_NOT_IMPLICATION_map.png]

Left: Base Layer. Middle: Blend Layer. Right: NOT IMPLICATION.

[image: ../../_images/Blending_modes_NOT_IMPLICATION_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: NOT IMPLICATION.

OR

Performs the OR operation for base and blend layer. Similar to screen mode.

[image: ../../_images/Blend_modes_OR_map.png]

Left: Base Layer. Middle: Blend Layer. Right: OR.

[image: ../../_images/Blending_modes_OR_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: XOR.

XOR

Performs the XOR operation for base and blend layer. This mode has a special property that if you duplicate the blend layer twice, you get the base layer.

[image: ../../_images/Blend_modes_XOR_map.png]

Left: Base Layer. Middle: Blend Layer. Right: XOR.

[image: ../../_images/Blending_modes_XOR_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: XOR.

XNOR

Performs the XNOR operation for base and blend layer. This mode has a special property that if you duplicate the blend layer twice, you get the base layer.

[image: ../../_images/Blend_modes_XNOR_map.png]

Left: Base Layer. Middle: Blend Layer. Right: XNOR.

[image: ../../_images/Blending_modes_XNOR_Gradients.png]

Left: Base Layer. Middle: Blend Layer. Right: XNOR.

Darken

Burn

A variation on Divide, sometimes called ‘Color Burn’ in some programs.

This inverts the bottom layer, then divides it by the top layer, and inverts the result.
This results in a darkened effect that takes the colors of the lower layer into account, similar to the burn technique used in traditional darkroom photography.

1_{[1_Darker Gray(0.4, 0.4, 0.4)] / Lighter Gray(0.5, 0.5, 0.5)} = (-0.2, -0.2, -0.2) → Black(0, 0, 0)

[image: ../../_images/Blending_modes_Burn_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Burn.

1_{[1_Light Blue(0.1608, 0.6274, 0.8274)] / Orange(1, 0.5961, 0.0706)} = (0.1608, 0.3749, -1.4448) → Green(0.1608, 0.3749, 0)

[image: ../../_images/Blending_modes_Burn_Light_blue_and_Orange.png]

Left: Normal. Right: Burn.

[image: ../../_images/Blending_modes_Burn_Sample_image_with_dots.png]

Left: Normal. Right: Burn.

Easy Burn

Aims to solve issues with Color Burn blending mode by using a formula which falloff is similar to Dodge, but the falloff rate is softer. It is within the range of 0.0f and 1.0f unlike Color Burn mode.

[image: ../../_images/Blending_modes_Easy_Burn_Sample_image_with_dots.png]

Left: Normal. Right: Easy Burn.

Fog Darken (IFS Illusions)

Darken the image in a way that there is a ‘fog’ in the end result. This is due to the unique property of Fog Darken in which midtones combined are lighter than non-midtones blend.

[image: ../../_images/Blending_modes_Fog_Darken_Sample_image_with_dots.png]

Left: Normal. Right: Fog Darken (exactly the same as Addition).

Darken

With Darken, the upper layer’s colors are checked for their lightness. Only if they are darker than the underlying color on the lower layer, will they be visible.

Is Lighter Gray(0.5, 0.5, 0.5) darker than Darker Gray(0.4, 0.4, 0.4)? = (no, no, no) → Darker Gray(0.4, 0.4, 0.4)

[image: ../../_images/Blending_modes_Darken_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Darken.

Is Orange(1, 0.5961, 0.0706) darker than Light Blue(0.1608, 0.6274, 0.8274)? = (no, yes, yes) → Green(0.1608, 0.5961, 0.0706)

[image: ../../_images/Blending_modes_Darken_Light_blue_and_Orange.png]

Left: Normal. Right: Darken.

[image: ../../_images/Blending_modes_Darken_Sample_image_with_dots.png]

Left: Normal. Right: Darken.

Darker Color

[image: ../../_images/Blending_modes_Darker_Color_Sample_image_with_dots.png]

Left: Normal. Right: Darker Color.

Gamma Dark

Divides 1 by the upper layer, and calculates the end result using that as the power of the lower layer.

Darker Gray(0.4, 0.4, 0.4)^[1 / Lighter Gray(0.5, 0.5, 0.5)] = Even Darker Gray(0.1600, 0.1600, 0.1600)

[image: ../../_images/Blending_modes_Gamma_Dark_Gray_0.4_and_Gray_0.5_n.png]

Left: Normal. Right: Gamma Dark.

Light Blue(0.1608, 0.6274, 0.8274)^[1 / Orange(1, 0.5961, 0.0706)] = Green(0.1608, 0.4575, 0.0683)

[image: ../../_images/Blending_modes_Gamma_Dark_Light_blue_and_Orange.png]

Left: Normal. Right: Gamma Dark.

[image: ../../_images/Blending_modes_Gamma_Dark_Sample_image_with_dots.png]

Left: Normal. Right: Gamma Dark.

Linear Burn

Adds the values of the two layers together and then subtracts 1. Seems to produce the same result as Inverse Subtract.

[Darker Gray(0.4, 0.4, 0.4) + Lighter Gray(0.5, 0.5, 0.5)]_1 = (-0.1000, -0.1000, -0.1000) → Black(0, 0, 0)

[image: ../../_images/Blending_modes_Linear_Burn_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Linear Burn.

[Light Blue(0.1608, 0.6274, 0.8274) + Orange(1, 0.5961, 0.0706)]_1 = (0.1608, 0.2235, -0.1020) → Dark Green(0.1608, 0.2235, 0)

[image: ../../_images/Blending_modes_Linear_Burn_Light_blue_and_Orange.png]

Left: Normal. Right: Linear Burn.

[image: ../../_images/Blending_modes_Linear_Burn_Sample_image_with_dots.png]

Left: Normal. Right: Linear Burn.

Shade (IFS Illusions)

Basically, the blending mode only ends in shades of shades. This means that it’s very useful for painting shading colors while still in the range of shades.

[image: ../../_images/Blending_modes_Shade_Sample_image_with_dots.png]

Left: Normal. Right: Shade.

HSX

Krita has four different HSX coordinate systems. The difference between them is how they handle tone.

HSI

HSI is a color coordinate system, using Hue, Saturation and Intensity to categorize a color.
Hue is roughly the wavelength, whether the color is red, yellow, green, cyan, blue or purple. It is measured in 360°, with 0 being red.
Saturation is the measurement of how close a color is to gray.
Intensity, in this case, is the tone of the color. What makes intensity special is that it recognizes yellow (rgb:1,1,0) having a higher combined rgb value than blue (rgb:0,0,1). This is a non-linear tone dimension, which means it’s gamma-corrected.

HSL

HSL is a color coordinate system that describes colors in Hue, Saturation and Lightness.
Lightness specifically puts both yellow (rgb:1,1,0), blue (rgb:0,0,1) and middle gray (rgb:0.5,0.5,0.5) at the same lightness (0.5).

HSV

HSV, occasionally called HSB, is a color coordinate system that measures colors in Hue, Saturation, and Value (also called Brightness).
Value or Brightness specifically refers to strength at which the pixel-lights on your monitor have to shine. It sets Yellow (rgb:1,1,0), Blue (rgb:0,0,1) and White (rgb:1,1,1) at the same Value (100%).

HSY

HSY is a color coordinate system categorizing colors in Hue, Saturation and Luminosity. Well, not really, it uses Luma instead of true luminosity, the difference being that Luminosity is linear while Luma is gamma-corrected and just weights the rgb components.
Luma is based on scientific studies of how much light a color reflects in real-life. While like intensity it acknowledges that yellow (rgb:1,1,0) is lighter than blue (rgb:0,0,1), it also acknowledges that yellow (rgb:1,1,0) is lighter than cyan (rgb:0,1,1), based on these studies.

HSX Blending Modes

Color, HSV, HSI, HSL, HSY

This takes the Luminosity/Value/Intensity/Lightness of the colors on the lower layer, and combines them with the Saturation and Hue of the upper pixels. We refer to Color HSY as ‘Color’ in line with other applications.

[image: ../../_images/Blending_modes_Color_HSI_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Color HSI.

[image: ../../_images/Blending_modes_Color_HSI_Light_blue_and_Orange.png]

Left: Normal. Right: Color HSI.

[image: ../../_images/Blending_modes_Color_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Color HSI.

[image: ../../_images/Blending_modes_Color_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Color HSL.

[image: ../../_images/Blending_modes_Color_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Color HSV.

[image: ../../_images/Blending_modes_Color_Sample_image_with_dots.png]

Left: Normal. Right: Color.

Hue HSV, HSI, HSL, HSY

Takes the saturation and tone of the lower layer and combines them with the hue of the upper-layer.
Tone in this case being either Value, Lightness, Intensity or Luminosity.

[image: ../../_images/Blending_modes_Hue_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Hue HSI.

[image: ../../_images/Blending_modes_Hue_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Hue HSL.

[image: ../../_images/Blending_modes_Hue_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Hue HSV.

[image: ../../_images/Blending_modes_Hue_Sample_image_with_dots.png]

Left: Normal. Right: Hue.

Increase Value, Lightness, Intensity or Luminosity.

Similar to Lighten, but specific to tone.
Checks whether the upper layer’s pixel has a higher tone than the lower layer’s pixel. If so, the tone is increased, if not, the lower layer’s tone is maintained.

[image: ../../_images/Blending_modes_Increase_Intensity_Sample_image_with_dots.png]

Left: Normal. Right: Increase Intensity.

[image: ../../_images/Blending_modes_Increase_Lightness_Sample_image_with_dots.png]

Left: Normal. Right: Increase Lightness.

[image: ../../_images/Blending_modes_Increase_Value_Sample_image_with_dots.png]

Left: Normal. Right: Increase Value.

[image: ../../_images/Blending_modes_Increase_Luminosity_Sample_image_with_dots.png]

Left: Normal. Right: Increase Luminosity.

Increase Saturation HSI, HSV, HSL, HSY

Similar to Lighten, but specific to Saturation.
Checks whether the upper layer’s pixel has a higher Saturation than the lower layer’s pixel. If so, the Saturation is increased, if not, the lower layer’s Saturation is maintained.

[image: ../../_images/Blending_modes_Increase_Saturation_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Increase Saturation HSI.

[image: ../../_images/Blending_modes_Increase_Saturation_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Increase Saturation HSL.

[image: ../../_images/Blending_modes_Increase_Saturation_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Increase Saturation HSV.

[image: ../../_images/Blending_modes_Increase_Saturation_Sample_image_with_dots.png]

Left: Normal. Right: Increase Saturation.

Intensity

Takes the Hue and Saturation of the lower layer and outputs them with the intensity of the upper layer.

[image: ../../_images/Blending_modes_Intensity_Sample_image_with_dots.png]

Left: Normal. Right: Intensity.

Value

Takes the Hue and Saturation of the lower layer and outputs them with the Value of the upper layer.

[image: ../../_images/Blending_modes_Value_Sample_image_with_dots.png]

Left: Normal. Right: Value.

Lightness

Takes the Hue and Saturation of the lower layer and outputs them with the Lightness of the upper layer.

[image: ../../_images/Blending_modes_Lightness_Sample_image_with_dots.png]

Left: Normal. Right: Lightness.

Luminosity

As explained above, actually Luma, but called this way as it’s in line with the terminology in other applications.
Takes the Hue and Saturation of the lower layer and outputs them with the Luminosity of the upper layer.
The most preferred one of the four Tone blending modes, as this one gives fairly intuitive results for the Tone of a hue.

[image: ../../_images/Blending_modes_Luminosity_Sample_image_with_dots.png]

Left: Normal. Right: Luminosity.

Saturation HSI, HSV, HSL, HSY

Takes the Intensity and Hue of the lower layer, and outputs them with the HSI saturation of the upper layer.

[image: ../../_images/Blending_modes_Saturation_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Saturation HSI.

[image: ../../_images/Blending_modes_Saturation_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Saturation HSL.

[image: ../../_images/Blending_modes_Saturation_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Saturation HSV.

[image: ../../_images/Blending_modes_Saturation_Sample_image_with_dots.png]

Left: Normal. Right: Saturation.

Decrease Value, Lightness, Intensity or Luminosity

Similar to Darken, but specific to tone.
Checks whether the upper layer’s pixel has a lower tone than the lower layer’s pixel. If so, the tone is decreased, if not, the lower layer’s tone is maintained.

[image: ../../_images/Blending_modes_Decrease_Intensity_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Decrease Intensity.

[image: ../../_images/Blending_modes_Decrease_Intensity_Light_blue_and_Orange.png]

Left: Normal. Right: Decrease Intensity.

[image: ../../_images/Blending_modes_Decrease_Intensity_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Intensity.

[image: ../../_images/Blending_modes_Decrease_Lightness_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Lightness.

[image: ../../_images/Blending_modes_Decrease_Value_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Value.

[image: ../../_images/Blending_modes_Decrease_Luminosity_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Luminosity.

Decrease Saturation HSI, HSV, HSL, HSY

Similar to Darken, but specific to Saturation.
Checks whether the upper layer’s pixel has a lower Saturation than the lower layer’s pixel. If so, the Saturation is decreased, if not, the lower layer’s Saturation is maintained.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSI_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Decrease Saturation HSI.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSI_Light_blue_and_Orange.png]

Left: Normal. Right: Decrease Saturation HSI.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSI_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Saturation HSI.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSL_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Saturation HSL.

[image: ../../_images/Blending_modes_Decrease_Saturation_HSV_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Saturation HSV.

[image: ../../_images/Blending_modes_Decrease_Saturation_Sample_image_with_dots.png]

Left: Normal. Right: Decrease Saturation.

Lighten

Blending modes that lighten the image.

Color Dodge

Similar to Divide.
Inverts the top layer, and divides the lower layer by the inverted top layer.
This results in a image with emphasized highlights, like Dodging would do in traditional darkroom photography.

[image: ../../_images/Blending_modes_Color_Dodge_Sample_image_with_dots.png]

Left: Normal. Right: Color Dodge.

Gamma Illumination

Inverted Gamma Dark blending mode.

[image: ../../_images/Blending_modes_Gamma_Illumination_Sample_image_with_dots.png]

Left: Normal. Right: Gamma Illumination.

Gamma Light

Outputs the upper layer as a power of the lower layer.

[image: ../../_images/Blending_modes_Gamma_Light_Sample_image_with_dots.png]

Left: Normal. Right: Gamma Light.

Hard Light

Similar to Overlay.
A combination of the Multiply and Screen blending modes, switching between both at a middle-lightness.

Hard Light checks if the color on the upper layer has a lightness above 0.5. Unlike Overlay, if the pixel is lighter than 0.5, it is blended like in Multiply mode, if not the pixel is blended like in Screen mode.

Effectively, this decreases contrast.

[image: ../../_images/Blending_modes_Hard_Light_Sample_image_with_dots.png]

Left: Normal. Right: Hard Light.

Lighten

With Lighten, the upper layer’s colors are checked for their lightness. Only if they are Lighter than the underlying color on the lower layer, will they be visible.

[image: ../../_images/Blending_modes_Lighten_Sample_image_with_dots.png]

Left: Normal. Right: Lighten.

Lighter Color

[image: ../../_images/Blending_modes_Lighter_Color_Sample_image_with_dots.png]

Left: Normal. Right: Lighter Color.

Linear Dodge

Exactly the same as Addition.

Put in for compatibility purposes.

[image: ../../_images/Blending_modes_Linear_Dodge_Sample_image_with_dots.png]

Left: Normal. Right: Linear Dodge (exactly the same as Addition).

Easy Dodge

Aims to solve issues with Color Dodge blending mode by using a formula in which falloff is similar to Dodge, but the falloff rate is softer. It is within the range of 0.0f and 1.0f unlike Color Dodge mode.

[image: ../../_images/Blending_modes_Easy_Dodge_Sample_image_with_dots.png]

Left: Normal. Right: Easy Dodge.

Flat Light

The spreadout variation of Vivid Light mode in which range is between 0.0f and 1.0f.

[image: ../../_images/Blending_modes_Flat_Light_Sample_image_with_dots.png]

Left: Normal. Right: Flat Light.

Fog Lighten (IFS Illusions)

Lightens the image in a way that there is a ‘fog’ in the end result. This is due to the unique property of Fog Lighten in which midtones combined are lighter than non-midtones blend.

[image: ../../_images/Blending_modes_Fog_Light_Sample_image_with_dots.png]

Left: Normal. Right: Fog Lighten.

Linear Light

Similar to Overlay.

Combines Linear Dodge and Linear Burn. When the lightness of the upper-pixel is higher than 0.5, it uses Linear Dodge, if not, Linear Burn to blend the pixels.

[image: ../../_images/Blending_modes_Linear_Light_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Linear Light.

[image: ../../_images/Blending_modes_Linear_Light_Light_blue_and_Orange.png]

Left: Normal. Right: Linear Light.

[image: ../../_images/Blending_modes_Linear_Light_Sample_image_with_dots.png]

Left: Normal. Right: Linear Light.

Luminosity/Shine (SAI)

Similar to Addition.

Takes the opacity of the new color (combined opacity of the layer, the brush, any used transparency masks, etc.) and multiplies the color by the opacity, then adds to the original/previous color.

\[c_{new} = c_{above}*{\alpha}_{above} + c_{below}\]

The result of this operation is the same as combining the new pixels with a fully opaque black layer in a Normal mode and then combining the result with the original layer using Addition mode. It should be also the same as the results of “Luminosity” blending mode in SAI1 or “Shine” blending mode in SAI2.

[image: ../../_images/Blending_modes_Luminosity_Shine_SAI_Sample_image_with_dots.png]

Left: Normal. Right: Luminosity/Shine (SAI).

P-Norm A

P-Norm A is similar to Screen blending mode which slightly darken images, and the falloff is more consistent all-around in terms of outline of values. Can be used an alternative to Screen blending mode at times.

[image: ../../_images/Blending_modes_P-Norm_A_Sample_image_with_dots.png]

Left: Normal. Right: P-Norm A.

P-Norm B

P-Norm B is similar to Screen blending mode which slightly darken images, and the falloff is more consistent all-around in terms of outline of values. The falloff is sharper in P-Norm B than in P-Norm A. Can be used as an alternative to Screen blending mode at times.

[image: ../../_images/Blending_modes_P-Norm_B_Sample_image_with_dots.png]

Left: Normal. Right: P-Norm B.

Pin Light

Checks which is darker between the lower layer’s pixel or the upper layer’s double so bright.
Then checks which is brighter of that result or the inversion of the doubled lower layer.

[image: ../../_images/Blending_modes_Pin_Light_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Pin Light.

[image: ../../_images/Blending_modes_Pin_Light_Light_blue_and_Orange.png]

Left: Normal. Right: Pin Light.

[image: ../../_images/Blending_modes_Pin_Light_Sample_image_with_dots.png]

Left: Normal. Right: Pin Light.

Screen

Perceptually the opposite of Multiply.

Mathematically, Screen takes both layers, inverts them, then multiplies them, and finally inverts them again.

This results in light tones being more opaque and dark tones transparent.

[image: ../../_images/Blending_modes_Screen_Gray_0.4_and_Gray_0.5.png]

Left: Normal. Right: Screen.

[image: ../../_images/Blending_modes_Screen_Light_blue_and_Orange.png]

Left: Normal. Right: Screen.

[image: ../../_images/Blending_modes_Screen_Sample_image_with_dots.png]

Left: Normal. Right: Screen.

Soft Light (Photoshop) & Soft Light SVG

These are less harsh versions of Hard Light, not resulting in full black or full white.

The SVG version is slightly different to the Photoshop version in that it uses a slightly different bit of formula when the lightness of the lower pixel is lower than 25%, this prevents the strength of the brightness increase.

[image: ../../_images/Blending_modes_Soft_Light_Photoshop_Sample_image_with_dots.png]

Left: Normal. Right: Soft Light (Photoshop).

[image: ../../_images/Blending_modes_Soft_Light_SVG_Sample_image_with_dots.png]

Left: Normal. Right: Soft Light (SVG).

Soft Light (IFS Illusions) & Soft Light (Pegtop-Delphi)

These are alternative versions of standard Soft Light modes which are made to solve discontinuities seen with the standard blend modes. Sometimes, these modes offer subtle advantages by offering more contrast within some areas, and these advantages are more or less noticeable within different color spaces and depth.

[image: ../../_images/Blending_modes_Soft_Light_IFS_Sample_image_with_dots.png]

Left: Normal. Right: Soft Light (IFS Illusions).

[image: ../../_images/Blending_modes_Soft_Light_PEGTOP_Sample_image_with_dots.png]

Left: Normal. Right: Soft Light (Pegtop-Delphi).

Super Light

Smoother variation of Hard Light blending mode with more contrast in it.

[image: ../../_images/Blending_modes_Super_Light_Sample_image_with_dots.png]

Left: Normal. Right: Super Light.

Tint (IFS Illusions)

Basically, the blending mode only ends in shades of tints. This means that it’s very useful for painting light colors while still in the range of tints.

[image: ../../_images/Blending_modes_Tint_Sample_image_with_dots.png]

Left: Normal. Right: Tint.

Vivid Light

Similar to Overlay.

Mixes both Color Dodge and Burn blending modes. If the color of the upper layer is darker than 50%, the blending mode will be Burn, if not the blending mode will be Color Dodge.

Warning

This algorithm doesn’t use color dodge and burn, we don’t know WHAT it does do but for Color Dodge and Burn you need to use Hard Mix.

[image: ../../_images/Blending_modes_Vivid_Light_Sample_image_with_dots.png]

Left: Normal. Right: Vivid Light.

Misc

Bumpmap

This filter seems to both multiply and respect the alpha of the input.

Combine Normal Map

Mathematically robust blending mode for normal maps, using Reoriented Normal Map Blending [https://blog.selfshadow.com/publications/blending-in-detail/].

Copy

Copies the previous layer exactly.
Useful for when using filters and filter-masks.

[image: ../../_images/Blending_modes_Copy_Sample_image_with_dots.png]

Left: Normal. Right: Copy.

Copy Red, Green, Blue

This is a blending mode that will just copy/blend a source channel to a destination channel.
Specifically, it will take the specific channel from the upper layer and copy that over to the lower layers.

So, if you want the brush to only affect the red channel, set the blending mode to ‘Copy Red’.

[image: ../../_images/Krita_Filter_layer_invert_greenchannel1.png]

The copy red, green and blue blending modes also work on filter-layers.

This can also be done with filter layers. So if you quickly want to flip a layer’s green channel, make an Invert filter layer with ‘Copy Green’ above it.

[image: ../../_images/Blending_modes_Copy_Red_Sample_image_with_dots.png]

Left: Normal. Right: Copy Red.

[image: ../../_images/Blending_modes_Copy_Green_Sample_image_with_dots.png]

Left: Normal. Right: Copy Green.

[image: ../../_images/Blending_modes_Copy_Blue_Sample_image_with_dots.png]

Left: Normal. Right: Copy Blue.

Dissolve

Instead of using transparency, this blending mode will use a random dithering pattern to make the transparent areas look sort of transparent.

[image: ../../_images/Blending_modes_Dissolve_Sample_image_with_dots.png]

Left: Normal. Right: Dissolve.

Mix

Allanon

Blends the upper layer as half-transparent with the lower. (It adds the two layers together and then halves the value).

[image: ../../_images/Blending_modes_Allanon_Sample_image_with_dots.png]

Left: Normal. Right: Allanon.

Interpolation

Subtract 0.5f by 1/4 of cosine of base layer subtracted by 1/4 of cosine of blend layer assuming 0-1 range.
The result is similar to Allanon mode, but with more contrast and functional difference to 50% opacity.

[image: ../../_images/Blending_modes_Interpolation_Sample_image_with_dots.png]

Left: Normal. Right: Interpolation.

Interpolation - 2X

Applies Interpolation blend mode to base and blend layers, then duplicates to repeat interpolation blending.

[image: ../../_images/Blending_modes_Interpolation_X2_Sample_image_with_dots.png]

Left: Normal. Right: Interpolation - 2X.

Alpha Darken

As far as I can tell this seems to premultiply the alpha, as is common in some file-formats.

[image: ../../_images/Blending_modes_Alpha_Darken_Sample_image_with_dots.png]

Left: Normal. Right: Alpha Darken.

Behind

Does the opposite of Normal, and tries to have the upper layer rendered below the lower layer.

[image: ../../_images/Blending_modes_Behind_Sample_image_with_dots.png]

Left: Normal. Right: Behind.

Erase

This subtracts the opaque pixels of the upper layer from the lower layer, effectively erasing.

[image: ../../_images/Blending_modes_Erase_Sample_image_with_dots.png]

Left: Normal. Right: Erase.

Geometric Mean

This blending mode multiplies the top layer with the bottom, and then outputs the square root of that.

[image: ../../_images/Blending_modes_Geometric_Mean_Sample_image_with_dots.png]

Left: Normal. Right: Geometric Mean.

Grain Extract

Similar to Subtract, the colors of the upper layer are subtracted from the colors of the lower layer, and then 50% gray is added.

[image: ../../_images/Blending_modes_Grain_Extract_Sample_image_with_dots.png]

Left: Normal. Right: Grain Extract.

Grain Merge

Similar to Addition, the colors of the upper layer are added to the colors, and then 50% gray is subtracted.

[image: ../../_images/Blending_modes_Grain_Merge_Sample_image_with_dots.png]

Left: Normal. Right: Grain Merge.

Greater

A blending mode which checks whether the painted color is painted with a higher opacity than the existing colors. If so, it paints over them, if not, it doesn’t paint at all.

[image: ../../_images/Greaterblendmode.gif]

Hard Mix

Similar to Overlay.

Mixes both Color Dodge and Burn blending modes. If the color of the upper layer is darker than 50%, the blending mode will be Burn, if not the blending mode will be Color Dodge.

[image: ../../_images/Blending_modes_Hard_Mix_Sample_image_with_dots.png]

Left: Normal. Right: Hard Mix.

Hard Mix (Photoshop)

This is the Hard Mix blending mode as it is implemented in Photoshop.

[image: ../../_images/Krita_4_0_hard_mix_ps.png]

Left: Dots are mixed in with the normal blending mode, on the Right: Dots are mixed in with hardmix.

This add the two values, and then checks if the value is above the maximum. If so it will output the maximum, otherwise the minimum.

Hard Mix Softer (Photoshop)

New in version 5.0.

This is the Hard Mix blending mode as it is implemented in Photoshop for texturing brushes. It produces softer edges
than the normal Hard Mix (Photoshop).

[image: ../../_images/Blending_modes_Hard_Mix_Softer_Photoshop_Sample_image_with_dots.png]

Left: Dots are mixed in with the normal blending mode, on the Right: Dots are mixed in with hard mix softer.

This is like the Inverse Subtract mode but the two terms are scaled up to increase the contrast. This is not really a
Hard Mix mode in the sense that it doesn’t choose between a result or another based on a threshold, although in most
cases the result looks like the normal Hard Mix (Photoshop) but with softer edges.

Hard Overlay

New in version 4.0.

Similar to Hard Light but Hard Light use Screen when the value is above 50%. Divide gives better results than Screen, especially on floating point images.

[image: ../../_images/Blending_modes_Hard_Overlay_Sample_image_with_dots.png]

Left: Normal. Right: Hard Overlay.

Normal

As you may have guessed this is the default Blending mode for all layers.

In this mode, the computer checks on the upper layer how transparent a pixel is, which color it is, and then mixes the color of the upper layer with the lower layer proportional to the transparency.

[image: ../../_images/Blending_modes_Normal_50_Opacity_Sample_image_with_dots.png]

Left: Normal 100% Opacity. Right: Normal 50% Opacity.

Overlay

A combination of the Multiply and Screen blending modes, switching between both at a middle-lightness.

Overlay checks if the color on the upper layer has a lightness above 0.5. If so, the pixel is blended like in Screen mode, if not the pixel is blended like in Multiply mode.

This is useful for deepening shadows and highlights.

[image: ../../_images/Blending_modes_Overlay_Sample_image_with_dots.png]

Left: Normal. Right: Overlay.

Parallel

This one first takes the percentage in decimals for both layers.
It then adds the two values.
Divides 2 by the sum.

[image: ../../_images/Blending_modes_Parallel_Sample_image_with_dots.png]

Left: Normal. Right: Parallel.

Penumbra A

Creates a linear penumbra falloff. This means most tones will be in the midtone ranges.

[image: ../../_images/Blending_modes_Penumbra_A_Sample_image_with_dots.png]

Left: Normal. Right: Penumbra A.

Penumbra B

Penumbra A with source and destination layer swapped.

[image: ../../_images/Blending_modes_Penumbra_B_Sample_image_with_dots.png]

Left: Normal. Right: Penumbra B.

Penumbra C

Creates a penumbra-like falloff using arc-tangent formula. This means most tones will be in the midtone ranges.

[image: ../../_images/Blending_modes_Penumbra_C_Sample_image_with_dots.png]

Left: Normal. Right: Penumbra C.

Penumbra D

Penumbra C with source and destination layer swapped.

[image: ../../_images/Blending_modes_Penumbra_D_Sample_image_with_dots.png]

Left: Normal. Right: Penumbra D.

Modulo

Modulo modes are a special class of blending modes which loop values when the value of the channel blend layer is less than the value of the channel in base layers. All modes in modulo modes retains the absolute of the remainder if the value is greater than the maximum value or the value is less than minimum value. Continuous modes assume if the calculated value before modulo operation is within the range between a odd number to even number, then values are inverted in the end result, so values are perceived to be wave-like.

Furthermore, this would imply that modulo modes are beneficial for abstract art, and manipulation of gradients.

Divisive Modulo

First, the base layer is divided by the sum of blend layer and the minimum possible value after zero. Then, performs a modulo calculation using the value found with the sum of the blend layer and the minimum possible value after zero.

[image: ../../_images/Blending_modes_Divisive_Modulo_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Divisive Modulo.

Divisive Modulo - Continuous

First, base layer is divided by the sum of the blend layer and the minimum possible value after zero. Then, performs a modulo calculation using the value found with the sum of the blend layer and the minimum possible value after zero. As this is a continuous mode, anything between odd to even numbers are inverted.

[image: ../../_images/Blending_modes_Divisive_Modulo_Continuous_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Divisive Modulo - Continuous.

Modulo

Performs a modulo calculation using the sum of the blend layer and the minimum possible value after zero.

[image: ../../_images/Blending_modes_Modulo_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Modulo.

Modulo - Continuous

Performs a modulo calculation using the sum of the blend layer and the minimum possible value after zero. As this is a continuous mode, anything between odd to even numbers are inverted.

[image: ../../_images/Blending_modes_Modulo_Continuous_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Modulo - Continuous.

Modulo Shift

Performs a modulo calculation with the result of the sum of the base and blend layers by the sum of the blend layer with the minimum possible value after zero.

[image: ../../_images/Blending_modes_Modulo_Shift_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Modulo Shift.

Modulo Shift - Continuous

Performs a modulo calculation with the result of the sum of the base and blend layers by the sum of the blend layer with the minimum possible value after zero. As this is a continuous mode, anything between odd to even numbers are inverted.

[image: ../../_images/Blending_modes_Modulo_Shift_Continuous_Gradient_Comparison.png]

Left: Base Layer. Middle: Blend Layer. Right: Modulo Shift - Continuous.

Negative

These are all blending modes which seem to make the image go negative.

Additive Subtractive

Subtracts the square root of the lower layer from the upper layer.

[image: ../../_images/Blending_modes_Additive_Subtractive_Sample_image_with_dots.png]

Left: Normal. Right: Additive Subtractive.

Arcus Tangent

Divides the lower layer by the top. Then divides this by Pi.
Then uses that in an Arc tangent function, and multiplies it by two.

[image: ../../_images/Blending_modes_Arcus_Tangent_Sample_image_with_dots.png]

Left: Normal. Right: Arcus Tangent.

Difference

Checks per pixel of which layer the pixel-value is highest/lowest, and then subtracts the lower value from the higher-value.

[image: ../../_images/Blending_modes_Difference_Sample_image_with_dots.png]

Left: Normal. Right: Difference.

Equivalence

Subtracts the underlying layer from the upper-layer. Then inverts that. Seems to produce the same result as Difference.

[image: ../../_images/Blending_modes_Equivalence_Sample_image_with_dots.png]

Left: Normal. Right: Equivalence.

Exclusion

This multiplies the two layers, adds the source, and then subtracts the multiple of two layers twice.

[image: ../../_images/Blending_modes_Exclusion_Sample_image_with_dots.png]

Left: Normal. Right: Exclusion.

Negation

The absolute of the 1.0f value subtracted by the base subtracted by the blend layer. abs(1.0f - Base - Blend)

[image: ../../_images/Blending_modes_Negation_Sample_image_with_dots.png]

Left: Normal. Right: Negation.

Quadratic

New in version 4.2.

The quadratic blending modes are a set of modes intended to give various effects when adding light zones or overlaying shiny objects.

Freeze

The Freeze blending mode. Inversion of the Reflect blending mode.

[image: ../../_images/Blending_modes_Q_Freeze_Light_blue_and_Orange.png]

Left: Normal. Right: Freeze.

Freeze-Reflect

Mix of Freeze and Reflect blending modes.

[image: ../../_images/Blending_modes_Q_Freeze_Reflect_Light_blue_and_Orange.png]

Left: Normal. Right: Freeze-Reflect.

Glow

The Reflect blending mode with source and destination layers swapped.

[image: ../../_images/Blending_modes_Q_Glow_Light_blue_and_Orange.png]

Left: Normal. Right: Glow.

Glow-Heat

Mix of Glow and Heat blending modes.

[image: ../../_images/Blending_modes_Q_Glow_Heat_Light_blue_and_Orange.png]

Left: Normal. Right: Glow_Heat.

Heat

The Heat blending mode. Inversion of the Glow blending mode.

[image: ../../_images/Blending_modes_Q_Heat_Light_blue_and_Orange.png]

Left: Normal. Right: Heat.

Heat-Glow

Mix of Heat, and Glow blending modes.

[image: ../../_images/Blending_modes_Q_Heat_Glow_Light_blue_and_Orange.png]

Left: Normal. Right: Heat-Glow.

Heat-Glow and Freeze-Reflect Hybrid

Mix of the continuous quadratic blending modes. Very similar to Overlay, and sometimes provides better result than Overlay.

[image: ../../_images/Blending_modes_Q_Heat_Glow_Freeze_Reflect_Light_blue_and_Orange.png]

Left: Normal. Right: Heat-Glow and Freeze-Reflect Hybrid.

Reflect

Reflect is essentially the Color Dodge blending mode with quadratic falloff.

[image: ../../_images/Blending_modes_Q_Reflect_Light_blue_and_Orange.png]

Left: Normal. Right: Reflect.

Reflect-Freeze

Mix of Reflect and Freeze blending modes.

[image: ../../_images/Blending_modes_Q_Reflect_Freeze_Light_blue_and_Orange.png]

Left: Normal. Right: Reflect-Freeze.

Brushes

One of the most important parts of a painting program, Krita has a very extensive brush system.

	Brush Engines
	Bristle Brush Engine

	Chalk Brush Engine

	Clone Brush Engine

	Color Smudge Brush Engine

	Curve Brush Engine

	Deform Brush Engine

	Dyna Brush Engine

	Filter Brush Engine

	Grid Brush Engine

	Hatching Brush Engine

	MyPaint Brush Engine

	Particle Brush Engine

	Pixel Brush Engine

	Quick Brush Engine

	Shape Brush Engine

	Sketch Brush Engine

	Spray Brush Engine

	Tangent Normal Brush Engine

	Brush Settings
	Brush Tips

	Locked Brush Settings

	Masked Brush

	Opacity and Flow

	Options

	Sensors

	Texture

Brush Engines

Information on the brush engines that can be accessed in the brush editor.

Available Engines:

	Bristle Brush Engine

	Chalk Brush Engine

	Clone Brush Engine

	Color Smudge Brush Engine

	Curve Brush Engine

	Deform Brush Engine

	Dyna Brush Engine

	Filter Brush Engine

	Grid Brush Engine

	Hatching Brush Engine

	MyPaint Brush Engine

	Particle Brush Engine

	Pixel Brush Engine

	Quick Brush Engine

	Shape Brush Engine

	Sketch Brush Engine

	Spray Brush Engine

	Tangent Normal Brush Engine

Bristle Brush Engine

[image: ../../../_images/bristlebrush.svg]A brush intended to mimic real-life brushes by drawing the trails of their lines or bristles.

Brush Tip

Simply put:

	The brush tip defines the areas with bristles in them.

	Lower opacity areas have lower-opacity bristles. With this brush, this may give the illusion that lower-opacity areas have fewer bristles.

	The Size and Rotation dynamics affect the brush tip, not the bristles.

You can:

	Use different shapes for different effects. Be aware that complex brush shapes will draw more slowly though, while the effects aren’t always visible (since in the end, you’re passing over an area with a certain number of bristles).

	To decrease bristle density, you can also just use an autobrush and decrease the brush tip’s density, or increase its randomness.

[image: ../../../_images/Krita-tutorial7-B.I.1.png]

Bristle Options

The core of this particular brush-engine.

	Scale
	Think of it as pressing down on a brush to make the bristles further apart.

	Larger values basically give you larger brushes and larger bristle spacing. For example, a value of 4 will multiply your base brush size by 4, but the bristles will be 4 times more spaced apart.

	Use smaller values if you want a “dense” brush, i.e. you don’t want to see so many bristles within the center.

	Negative values have the same effect as corresponding positive values: -1.00 will look like 1.00, etc.

	Random Offset
	Adds a jaggy look to the trailing lines.

	At 0.00, all the bristles basically remain completely parallel.

	At other values, the bristles are offset randomly. Large values will increase the brush size a bit because of the bristles spreading around, but not by much.

	Negative values have the same effect as corresponding positive values.

	Shear
	Shear introduces an angle to your brush, as though you’re drawing with an oval brush (or the side of a round brush).

	Density
	This controls the density of bristles. Scale takes a number of bristles and expands or compresses them into a denser area, whereas density takes a fixed area and determines the number of bristles in it. See the difference?

[image: ../../../_images/Krita-tutorial7-B.I.2-1.png]

	Mouse Pressure
	This one maps “Scale” to mouse speed, thus simulating pressure with a graphics tablet!

	Rather, it uses the “distance between two events” to determine scale. Faster drawing, larger distances.

	This doesn’t influence the “pressure” input for anything else (size, opacity, rotation etc.) so you still have to map those independently to something else.

	Threshold
	This is a tablet feature. When you turn this on, only bristles that are able to “touch the canvas” will be painted.

	Connect Hairs
	The bristles get connected. See for yourself.

	Anti-Aliasing
	This will decrease the jaggy-ness of the lines.

	Composite Bristles
	This “composes the bristle colors within one dab,” but explains that the effect is “probably subtle”.

[image: ../../../_images/Krita-tutorial7-B.I.2-2.png]

Ink Depletion

This simulated ink depletion over drawing time. The value dictates how long it will take. The curve dictates the speed.

	Opacity
	The brush will go transparent to simulate ink-depletion.

	Saturation
	The brush will be desaturated to simulate ink-depletion.

[image: ../../../_images/Krita-tutorial7-B.I.3-1.png]

	Soak Ink
	The brush will pick up colors from other brushes. You don’t need to have Ink depletion checked to activate this option, you just have to check Soak ink. What this does is cause the bristles of the brush to take on the colors of the first area they touch. Since the Bristle brush is made up of independent bristles, you can basically take on several colors at the same time.

Note

	It will only take colors in the unscaled area of the brush, so if you’re using a brush with 4.00 scale for example, it will only take the colors in the 1/4 area closest to the center.

	When the source is transparent, the bristles take black color.

[image: ../../../_images/Krita-tutorial7-B.I.3-2.png]

Warning

Be aware that this feature is a bit buggy though. It’s supposed to take the color from the current layer, but some buggy behavior causes it to often use the last layer you’ve painted on (with a non-Bristle brush?) as source. To avoid these weird behaviors, stick to just one layer, or paint something on the current active layer first with another brush (such as a Pixel brush).

	Weighted saturation
	Works by modifying the saturation with the following:

	Pressure weight

	Bristle length weight

	Bristle ink amount weight

	Ink depletion curve weight

Chalk Brush Engine

Deprecated since version 4.0: This brush engine has been removed in 4.0. There are other brush engines such as pixel that can do everything this can…plus more.

Apparently, the Bristle brush engine is derived from this brush engine. Now, all of Krita's brushes have a great variety of uses, so you must have tried out the Chalk brush and wondered what it is for. Is it nothing but a pixel brush with opacity and saturation fade options?
As per the developers this brush uses a different algorithm than the Pixel Brush, and they left it in here as a simple demonstration of the capabilities of Krita's brush engines.

So there you go, this brush is here for algorithmic demonstration purposes. Don’t lose sleep because you can’t figure out what it’s for, it Really doesn’t do much. For the sake of description, here’s what it does:

[image: ../../../_images/Krita-tutorial7-C.png]
Yeah, that’s it, a round brush with some chalky texture, and the option to fade in opacity and saturation. That’s it.

Clone Brush Engine

[image: ../../../_images/clonebrush.svg]The clone brush is a brush engine that allows you to paint with a duplication of a section of a paint-layer. This is useful in manipulation of photos and textures. You have to select a source and then you can paint to copy or clone the source to a different area. Other applications normally have a separate tool for this, Krita has a brush engine for this.

Usage and Hotkeys

To see the source, you need to set the brush-cursor settings to brush outline.

The clone tool can now clone from the projection and it’s possible to change the clone source layer. Press the Ctrl + [image: mouseleft] shortcut to select a new clone source on the current layer.

Settings

	Size

	Blending Modes

	Opacity and Flow

Painting mode

	Healing
	This turns the clone brush into a healing brush: often used for removing blemishes in photo retouching, and maybe blemishes in painting.

	Perspective correction
	Only works when there’s a perspective grid visible.

Warning

This feature is currently disabled.

	Source Point move
	This will determine whether you will replicate the source point per dab or per stroke. Can be useful when used with the healing brush.

	Source Point reset before a new stroke
	This will reset the source point everytime you make a new stroke. So if you were cloning a part in one stroke, having this active will allow you to clone the same part again in a single stroke, instead of using the source point as a permanent offset.

	Clone from all visible layers
	Tick this to force cloning of all layers instead of just the active one.

Color Smudge Brush Engine

[image: ../../../_images/colorsmudge.svg]The Color Smudge Brush is a brush engine that allows you to mix colors by smearing or dulling. A very powerful brush engine to the painter.

Options

	Brush Tips

	Blending Modes

	Opacity and Flow

	Size

	Ratio

	Spacing

	Paint Thickness

	Mirror

	Rotation

	Scatter

	Gradient

	Airbrush

	Texture

	Overlay

	Hue, Saturation, Value

Options Unique to the Color Smudge Brush

Color Rate

How much of the foreground color is added to the smudging mix. Works together with Smudge Length and Smudge Radius.

[image: ../../../_images/brushengine_color_rate_smear.svg]
A variety of color smudge strokes in the Smear Mode with different opacities, smudge lengths and spacing. All are with 50% Color Rate. Left-hand set being the old algorithm and the right-hand set the new algorithm. The bottom two strokes are using the Color Dodge blending mode.

New in version 5.0: The option Use new smudge algorithm greatly affects how the Color Rate works. With the old algorithm, the Color Rate will be affected by both smudge length and opacity, while with the new algorithm, Color Rate will only interact with Opacity.

At first glance, this may seem like it reduces nuance. But instead, the new algorithm simplifies brush creation, with it being far clearer which elements interact with Color Rate.

[image: ../../../_images/brushengine_color_rate_dulling.svg]
Same as figure above, but then in Dulling Mode.

Using the new algorithm, turning off the smudge length is all that’s needed to make a brush that is similar to the Pixel Brush Engine. This is useful as a starting point for brushes that only need a little smudge.

When using the gradient mode, the Color Rate will control the colored brush tip instead of a flat color.

Blending modes are applied when the color part is composed onto the smudge part. This effectively means that color smudge brushes with a blending mode other than Normal will be greatly affected by Color Rate in addition to Spacing and opacity.

Smudge Length

Affects smudging and allows you to set it to Sensors. Smudging is greatly affected by Spacing as well as Opacity. The former controls how many dabs are placed, and thus how many samples are made. This results in a smoother result for Smear Mode, and a more opaque result for Dulling Mode.

There are two major types:

	Smearing
	Copies the area underneath the previous position of the brush onto the new position, taking opacity into account. This tends to result in a smear-effect.

Great for making brushes that have a very impasto oil feel to them. It’s recommended to have a low spacing for Smear, as this will result in a less grainy looking smear.

[image: ../../../_images/brushengine_smudge_length_smear.svg]
A variety of color smudge strokes in the Smear Mode with different opacities, smudge lengths and spacing. Left-hand set being the old algorithm and the right-hand set the new algorithm. The bottom two strokes are using the Color Dodge blending mode, which does not have any meaningful effect, given the Color Rate is set to 0%.

	Dulling
	Picks the color underneath the brush dab (using the Smudge Radius, if applicable), and first fills the whole dab with that before applying the color and the opacity. Named so because it dulls strong colors.

Using an arithmetic blending type, Dulling is great for more smooth type of painting. It’s recommended to increase the spacing on dulling brushes as much as possible without the stroke looking choppy, as it speeds up the brush without losing smudge quality. The resulting stroke can be made stronger by increasing the smudge radius or the opacity.

[image: ../../../_images/brushengine_smudge_length_dulling.svg]
Same as above, but then for the Dulling Mode.

	Strength
	Affects how much the smudge length takes from the previous dab its sampling. This means that smudge length at 100% will never decrease, but smudge lengths under that will decrease based on Spacing and Opacity.

	Smear Alpha
	Controls whether the transparency of the smeared pixels is taken into account when painting. This can be helpful to get a more opaque effect, as if laying down thick layers of paint, without losing the smudge effect.

[image: ../../../_images/brushengine_smudge_length_smear_alpha.png]

Different strokes showing how smear alpha functions.

	Smear Mode with Smear Alpha.

	Smear Mode without Smear Alpha.

	Dulling Mode with Smear Alpha.

	Dulling Mode without Smear Alpha.

	Dulling Mode without Smear Alpha, and Smudge Radius set to 100%.

	Use new smudge algorithm
	
New in version 5.0.

The new smudge algorithm was initially introduced to allow lightness and gradient modes on the color smudge. But it allows for more: it is a little quicker, and it has a better separation between the Color Rate and the Smudge Length.

Common behaviors:

	Unchecking the smudge length function sets smudge length to 100% (not 0.00).

	Opacity: Below 50%, there is practically no smudging left: keep opacity over 50%.

Differences:

	Spacing with Smearing: the lower the spacing, the smoother the effect, so for smearing with a round brush you may prefer a value of 0.05 or less. Spacing affects the length of the smudge trail, but to a much lesser extent. The strength of the effect remains more or less the same however.

	Spacing with Dulling: the lower the spacing, the stronger the effect: lowering the spacing too much can make the dulling effect too strong (it picks up a color and never lets go of it). The length of the effect is also affected.

	Both Smearing and Dulling have a “smudge trail”, but in the case of Dulling, the brush shape is preserved. Instead, the trail determines how fast the color it picked up is dropped off.

Smudge Radius

The Smudge Radius allows you to sample a larger radius when using smudge-length in Dulling mode.

The slider is percentage of the brush-size. You can have it modified with Sensors.

[image: ../../../_images/brushengine_smudge_radius.png]

A variety of brush strokes using 50% color rate, 50% smudge length and 50% opacity, but different smudge radii. The top stroke is in smear mode and thus smudge radius is not in effect.

Changed in version 5.0: In versions prior to 5.0, Smudge Radius can go up to 3,00,00%, while the program’s internal value is 1/100 of the displayed value. Starting from 5.0, the displayed and the internal value of Smudge Radius are unified, they can only go up to 300%, as intended.

Overlay

Overlay is a toggle that determine whether the smudge brush will sample all layers (overlay on), or only the current one.

By default, the Color Smudge Brush only takes information from the layer it is on. However, if you want it to take color information from all the layers, you can turn on the Overlay mode.

Be aware though, that it does so by “picking up” bits of the layer underneath, which may mess up your drawing if you later make changes to the layer underneath.

Paint Thickness

New in version 5.0.

This affects how strong the lightness modes affect the current color. Because the Color Smudge Brush smudges, what actually happens is that the lightness part is painted into a separate height map. This prevents the shadows and highlights of the current lightness brush tip from being mixed into the smudge, which would have resulted in all smudges becoming white or black. The height map is discarded when switching brush engines, layers or tools. Because this heightmap only exists for the layer currently being edited, lightness brushes and paint thickness cannot be used together with Overlay.

[image: ../../../_images/brushengine_paint_thickness_strength.png]

Image showing off different variations of Paint Thickness, with the top three strokes being in Smear Mode and the bottom three in Dulling Mode. Strengths are 100%, 50%, and 0% from top to bottom.

This has two modes, which change how the existing heightmap is interpreted:

	Overwrite (Smooth out when low) existing paint thickness
	Here the lightness value of the brushstroke overrides the value that was there before, effectively smoothing out previous paint if the thickness value is low. The Opacity setting will cause it to blend with the previous paint height, but that will also bring down the color. This mode is useful for a brush that can paint with thickness, but can also smooth out existing paint if you wish.

	Paint over existing paint thickness (controlled by smudge length)
	Here the lightness value blends with the previous values, based on the Smudge Length, as described above. It allows the kind of blending with previous paint height that Opacity allows in the Overwrite mode, but without affecting the color rate.

[image: ../../../_images/brushengine_paint_thickness_type.svg]
Image demonstrating the two modes, with the top strokes being Overwrite Existing Paint Thickness and the bottom strokes Paint over existing paint thickness. In both cases, a red stroke was laid with 100% paint thickness. Blue strokes were overlaid going from thin to thick. Notice how the Paint over existing type differs between 0% and 100% Smudge Length.

Hue, Saturation, Value

Identical to Hue, Saturation, Value in the Pixel Brush Engine, this will adjust the current foreground color before it is mixed in via Color Rate. Introduced because this brush engine used to have a small rounding error leading to iridescent smears, which was fixed. Artists who liked this effect can now emulate it by enabling Hue, enabling Fuzzy Dab and disabling Pressure and finally setting Strength to 40%.

[image: ../../../_images/brushengine_smudge_hue_variance.png]

Top: without hue variance, Bottom: with hue variance.

Hue, Saturation and Value don’t affect brush-tips using the gradient mode.

Brush tips

The Color Smudge Brush has all the same Brush Tips as the Pixel Brush Engine!

[image: ../../../_images/Krita-tutorial5-I.4.png]
Just remember that the smudge effects are weaker when a brush tip’s opacity is lower, so for low-opacity brush tips, increase the opacity and smudge/color rates.

Scatter and other shape dynamics

The Color Smudge Brush shares a number of options with the Pixel Brush Engine.

However, because of the Smudge effects, the outcome will be different from the Pixel Brush. In particular, the Scatter option becomes much more significant.

[image: ../../../_images/Krita-tutorial5-I.5-1.png]
A few things to note:

	Scattering is proportional to the brush size. It’s fine to use a scattering of 500% for a tiny round brush, but for bigger brushes, you may want to get it down to 50% or less.

	You may notice the lines with the Smearing option. Those are caused by the fact that it picked up the hard lines of the rectangle.

	For scattering, the brush picks up colors within a certain distance, not the color directly under the paintbrush:

[image: ../../../_images/Krita-tutorial5-I.5-2.png]

Tutorial: Color Smudge Brushes

I recommend at least skimming over the first part to get an idea of what does what.

Smudging and blending

This part describes use cases with color rate off.

I won’t explain the settings for dynamics in detail, as you can find the explanations in the Pixel Brush tutorial.

Smudging effects

For simple smudging:

	Pick the Color Smudge Brush. You can use either Smearing or Dulling.

	Turn off Color Rate

	Smudge away

[image: ../../../_images/Krita-tutorial5-II.2.png]
When using lower opacity brush tips, remember to “compensate” for the less visible effects by increasing both Smudge Rate and Opacity, if necessary to maximum.

Some settings for Smearing

	For smoother smearing, decrease spacing. Remember that spacing is proportional to brush tip size. For a small round brush, 0.10 spacing is fine, but for mid-sized and large brushes, decrease spacing to 0.05 or less.

Some settings for Dulling

	Lowering the spacing will also make the smudging effect stronger, so find a right balance. 0.10 for most mid-sized round brushes should be fine.

	Unlike Smearing, Dulling preserves the brush shape and size, so it won’t “fade off” in size like Smearing brushes do. You can mimic that effect through the simple size fade dynamic.

Textured blending

In this case, what I refer to as “Blending” here is simply using one of the following two dynamics:

	Rotation set to Distance or Fuzzy

	
	And/or Scatter:
	
	For most mid-sized brushes you will probably want to lower the scatter rate to 50% or lower. Higher settings are okay for tiny brushes.

	Note that Scatter picks colors within a certain distance, not the color directly under the brush (see Brush Tips).

	Optional: Pile on size and other dynamics and vary brush tips. In fact, the Color Smudge Brush is not a blur brush, so smudging is not a very good method of “smooth” blending. To blend smoothly, you’ll have better luck with:

	Building up the transition by painting with intermediate values, described later

	Or using the “blur with feathered selection” method that I’ll briefly mention at the end of this tutorial.

I’ve tried to achieve smooth blending with Color Smudge Brush by adding rotation and scatter dynamics, but honestly they looked like crap.

However, the Color Smudge Brush is very good at “textured blending”:

[image: ../../../_images/Krita-tutorial5-II.3.png]
Basically you can paint first and add textured transitions after.

Coloring

For this last section, Color Rate is on.

Layer options

Before we get started, notice that you have several possibilities for your set-up:

	Shading on the same layer

	Shading on a separate layer, possibly making use of alpha-inheritance. The brush blends with the transparency of the layer it’s on. This means:

	If the area underneath is more of less uniform, the output is actually similar as if shading on the same layer

	But if the area underneath is not uniform, then you’ll get fewer color variations.

	Shading on a separate layer, using Overlay mode. Use this only if you’re fairly sure you don’t need to adjust the layer below, or the colors may become a mess.

[image: ../../../_images/Krita-tutorial5-III.1-1.png]

Issue with transparency

The Color Smudge Brush blends with transparency. What this means is that when you start a new, transparent layer and “paint” on this layer, you will nearly always get less than full opacity.

Basically:

	It may look great when you’re coloring on a blank canvas

	But it won’t look so great when you add something underneath

[image: ../../../_images/Krita-tutorial5-III.1-2.png]
The solution is pretty simple though:

	
	Make sure you have the area underneath colored in first:
	
	With tinting, you already have the color underneath colored, so that’s done

	For painting, roughly color in the background layer first

	Or color in the shape on a new layer and make use of alpha-inheritance

	For the last solution, use colors that contrast highly with what you’re using for best effect. For example, shade in the darkest shadow area first, or the lightest highlights, and use the color smudge brush for the contrasting color.

[image: ../../../_images/Krita-tutorial5-III.1-3.png]

Soft-shading

Suppose you want more or less smooth color transitions. You can either:

	Color Rate as low as 10% for round brushes, higher with non fully opaque brush tips.

	Or set the Smudge Rate as low as 10% instead.

	Or a combination of the two. Please try yourself for the output you like best.

	Optional: turn on Rotation for smoother blending.

	Optional: turn on Scatter for certain effects.

	Optional: fiddle with Size and Opacity dynamics as necessary.

[image: ../../../_images/Krita-tutorial5-III.2-1.png]
This remains, in fact, a so-so way of making smooth transitions. It’s best to build up intermediate values instead. Here:

	I first passed over the blue area three times with a red color. I select 3 shades.

	I color picked each of these values with the Ctrl + [image: mouseleft] shortcut, then used them in succession.

[image: ../../../_images/Krita-tutorial5-III.2-2.png]

Painting: thick oil style

Many of the included color smudge brush presets produce a thick oil paint-like effect.
This is mainly achieved with the Smearing mode on. Basically:

	
	Smearing mode with high smudge and color rates
	
	Both at 0.50 are fine for normal round brushes or fully opaque predefined brushes

	Up to 1.00 each for brushes with less density or non fully-opaque predefined brushes

	Add Size/Rotation/Scatter dynamics as needed. When you do this, increase smudge and color rates to compensate for increased color mixing.

[image: ../../../_images/Krita-tutorial5-III.3-1.png]
One thing I really like to do is to set different foreground and background colors, then turn on Gradient ‣ Fuzzy. Alternatively, just paint with different colors in succession (bottom-right example).

[image: ../../../_images/Krita-tutorial5-III.3-2.png]
Here’s some final random stuff. With pixel brushes, you can get all sorts of frill designs by using elongated brushes and setting the dynamics to rotation. You won’t get that with Color Smudge Brushes. Instead, you’ll get something that looks more like… yarn. Which is cool too. Here, I just used oval brushes and Rotation ‣ Distance.

[image: ../../../_images/Krita-tutorial5-III.3-3.png]

Painting: Digital watercolor style

When I say “digital watercolor”, it refers to a style often seen online, i.e. a soft, smooth shading style rather than realistic watercolor. For this you mostly need the Dulling mode. A few things:

	Contrary to the Smearing mode, you may want to lower opacity for normal round brushes to get a smoother effect, to 70% for example.

	Vary the brush tip fade value as well.

	When using Scatter or other dynamics, you can choose to set smudge and color values to high or low values, for different outcomes.

[image: ../../../_images/Krita-tutorial5-III.4.png]

Blurring

You can:

	Paint then smudge, for mostly texture transitions

	Or build up transitions by using intermediate color values

If you want even smoother effects, well, just use blur. Gaussian blur to be exact.

[image: ../../../_images/Krita-tutorial5-III.5.png]
And there you go. That last little trick concludes this tutorial.

Curve Brush Engine

[image: ../../../_images/curvebrush.svg]The curve brush is a brush engine which creates strokes made of evenly spaced lines. It has, among other things been used as a replacement for pressure sensitive strokes in lieu of a tablet.

Settings

First off, the line produced by the Curve brush is made up of 2 sections:

	The connection line, which is the main line drawn by your mouse.

	The curve lines I think, which are the extra fancy lines that form at curves. The curve lines are formed by connecting one point of the curve to a point earlier on the curve. This also means that if you are drawing a straight line, these lines won’t be visible, since they’ll overlap with the connection line. Drawing faster gives you wider curves areas.

[image: ../../../_images/Krita-tutorial6-I.1-1.png]
You have access to 3 settings from the Lines tab, as well as 2 corresponding dynamics:

	Line width: this applies to both the connection line and the curve lines.

	Line width dynamics: use this to vary line width dynamically.

	History size: this determines the distance for the formation of curve lines.

	If you set this at low values, then the curve lines can only form over a small distances, so they won’t be too visible.

	On the other hand, if you set this value too high, the curve lines will only start forming relatively “late”.

	So in fact, you’ll get maximum curve lines area with a mid-value of say… 40~60, which is about the default value. Unless you’re drawing at really high resolutions.

	Curves opacity: you can’t set different line widths for the connection line and the curve lines, but you can set a different opacity for the curve lines. With low opacity, this will produce the illusion of thinner curve lines.

	Curves opacity dynamics: use this to vary Curves opacity dynamically.

In addition, you have access to two checkboxes:

	Paint connection line, which toggles the visibility of the connection line.

	Smoothing, which… I have no idea actually. I don’t see any differences with or without it. Maybe it’s for tablets?

[image: ../../../_images/Krita-tutorial6-I.1-2.png]

Drawing variable-width lines

And here’s the only section of this tutorial that anyone cares about: pretty lineart lines! For this:

	Use the Draw Dynamically mode: I tend to increase drag to at least 50. Vary Mass and Drag until you get the feel that’s most comfortable for you.

[image: ../../../_images/Krita-tutorial6-I.2-1.png]

	Set line width to a higher value (ex.: 5), then turn line width dynamics on:

	If you’re a tablet user, just set this to Pressure (this should be selected by default so just turn on the Line Width dynamics). I can’t check myself, but a tablet user confirmed to me that it works well enough with Draw Dynamically.

	If you’re a mouse user hoping to get variable line width, set the Line Width dynamics to Speed.

[image: ../../../_images/Krita-tutorial6-I.2-2.png]

	Set Curves opacity to 0: This is the simplest way to turn off the Curve lines. That said, leaving them on will get you more “expressive” lines.

Additional tips:

	Zig-zag a lot if you want a lot of extra curves lines.

	Use smooth, sweeping motions when you’re using Draw Dynamically with Line Width set to Speed: abrupt speed transitions will cause abrupt size transitions. It takes a bit of practice, and the thicker the line, the more visible the deformities will be. Also, zoom in to increase control.

	If you need to vary between thin and thick lines, I suggest creating presets of different widths, since you can’t vary the base line width from the canvas.

Alternative:

	Use the Draw Dynamically mode

	Set Curves opacity to 100

	Optionally decrease History size to about 30

The curve lines will fill out the area they cover completely, resulting in a line with variable widths. Anyway, here are some comparisons:

[image: ../../../_images/Krita-tutorial6-I.2-3.png]
And here are examples of what you can do with this brush:

[image: ../../../_images/Krita-tutorial6-I.2-4.png]

Deform Brush Engine

[image: ../../../_images/deformbrush.svg]The Deform Brush is a brush that allows you to pull and push pixels around. It’s quite similar to the Liquify, but where liquify has higher quality, the deform brush has the speed.

Options

	Brush Tips

	Deform Options

	Blending Modes

	Opacity and Flow

	Size

	Rotation

	Airbrush

Deform Options

[image: ../../../_images/Krita_deform_brush_examples.png]

1: undeformed, 2: Move, 3: Grow, 4: Shrink, 5: Swirl Counter Clock Wise, 6: Swirl Clockwise, 7: Lens Zoom In, 8: Lens Zoom Out

These decide what strangeness may happen underneath your brush cursor.

	Grow
	This bubbles up the area underneath the brush-cursor.

	Shrink
	This pinches the Area underneath the brush-cursor.

	Swirl Counter Clock Wise
	Swirls the area counter clock wise.

	Swirl Clock Wise
	Swirls the area clockwise.

	Move
	Nudges the area to the painting direction.

	Color Deformation
	This seems to randomly rearrange the pixels underneath the brush.

	Lens Zoom In
	Literally paints a enlarged version of the area.

	Lens Zoom Out
	Paints a minimized version of the area.

[image: ../../../_images/Krita_deform_brush_colordeform.png]

Showing color deform.

	Deform Amount
	Defines the strength of the deformation.

[image: ../../../_images/Krita_deform_brush_bilinear.png]

Bilinear Interpolation

	Bilinear Interpolation
	Smoothens the result. This causes calculation errors in 16bit.

	Use Counter
	Slows down the deformation subtlety.

[image: ../../../_images/Krita_deform_brush_useundeformed.png]

Without ‘use undeformed’ to the left and with to the right.

	Use Undeformed Image
	Samples from the previous version of the image instead of the current. This works better with some deform options than others. Move for example seems to almost stop working, but it works really well with Grow.

Dyna Brush Engine

[image: ../../../_images/dynabrush.svg]Dyna brush uses dynamic setting like mass and drag to draw strokes. The results are fun and random spinning strokes. To experiment more with this brush you can play with values in ‘dynamic settings’ section of the brush editor under Dyna Brush.

Deprecated since version 4.0: This brush engine has been removed in 4.0. This engine mostly had smoothing results that the dyna brush tool has in the toolbox. The stabilizer settings can also give you further smoothing options from the tool options.

Options

	Brush Size (Dyna)

	Blending Modes

	Opacity and Flow

	Airbrush

Brush Size (Dyna)

Dynamics Settings

	Initial Width
	Initial size of the dab.

	Mass
	How much energy there is in the satellite like movement.

	Drag
	How close the dabs follow the position of the brush-cursor.

	Width Range
	How much the dab expands with speed.

Shape

	Diameter
	Size of the shape.

	Angle
	Angle of the shape. Requires Fixed Angle active to work.

	Circle
	Make a circular dab appear.

	Two
	Draws an extra circle between other circles.

	Line
	Connecting lines are drawn next to each other. The number boxes on the right allows you to set the spacing between the lines and how many are drawn.

	Polygon
	Draws a black polygon as dab.

	Wire
	Draws the wireframe of the polygon.

	Paint Connection
	Draws the connection line.

Filter Brush Engine

[image: ../../../_images/filterbrush.svg]Where in other programs you have a ‘dodge tool’, ‘blur tool’ and ‘sharpen tool’, Krita has a special brush engine for this: The Filter Brush engine. On top of that, due to Krita’s great integration of the filters, a huge amount of filters you’d never thought you wanted to use for a drawing are possible in brush form too!

Options

The filter brush has of course some basic brush-system parameters:

	Brush Tips

	Blending Modes

	Opacity and Flow

	Size

	Mirror

	Rotation

Grid Brush Engine

[image: ../../../_images/gridbrush.svg]The grid brush engine draws shapes on a grid. It helps you produce retro and halftone effects.

If you’re looking to setup a grid for snapping, head to Grids and Guides Docker.

Options

	Brush Size

	Particle Type

	Blending Modes

	Opacity and Flow

	Color Options

Brush Size

	Grid Width
	Width of the cursor area.

	Grid Height
	Height of the cursor area.

	Division
	Subdivides the cursor area and uses the resulting area to draw the particles.

	Division by pressure
	The more you press, the more subdivisions. Uses Division as the finest subdivision possible.

	Scale
	Scales up the area.

	Vertical Border
	Forces vertical borders in the particle space, between which the particle needs to squeeze itself.

	Horizontal Border
	Forces a horizontal borders in the particle space, between which the particle needs to squeeze itself.

	Jitter Borders
	Randomizes the border values with the Border values given as maximums.

Particle Type

Decides the shape of the particle.

	Ellipse
	Fills the area with an ellipse.

	Rectangle
	Fills the area.

	Line
	Draws lines from the lower left to the upper right corner of the particle.

	Pixel
	Looks like an aliased line on high resolutions.

	Anti-aliased Pixel
	Fills the area with little polygons.

Color Options

	Random HSV
	Randomize the HSV with the strength of the sliders. The higher, the more the color will deviate from the foreground color, with the direction indicating clock or counter clockwise.

	Random Opacity
	Randomizes the opacity.

	Color Per Particle
	Has the color options be per particle instead of area.

	Sample Input Layer
	Will use the underlying layer as reference for the colors instead of the foreground color.

	Fill Background
	Fills the area before drawing the particles with the background color.

	Mix with background color
	Gives the particle a random color between foreground/input/random HSV and the background color.

Hatching Brush Engine

[image: ../../../_images/hatchingbrush.svg]When I first tried this brush, my impression of it was “plain parallel lines” (and the award for most boring brush goes to…). Fortunately, existing presets gave me an idea of the possibilities of this brush.

Settings

Brush tip

The brush tip simply defines the area where the hatching will be rendered.

	Transparent brush tip areas give more transparent hatching, but as with a normal brush, passing over the area again will increase opacity.

	The hatching itself is mostly fixed in location, so drawing with a hatching brush usually acts more like “revealing” the hatching underneath than drawing with brushes of parallel lines. The exception is for Moiré pattern with Crosshatching dynamics on.

	Vary the brush shape or texture for a variety of effects. Decreasing the density of the autobrush will give a grainy texture to your hatching, for example.

	The Size dynamic affects the brush tip, not the hatching thickness.

[image: ../../../_images/Krita-tutorial8-A.I.1.png]

Hatching preferences

Before going on: at the time of this writing, there is a bug that causes line thickness to not vary on default settings. To get around this, go to Hatching preferences and check Antialiased Lines. Pentalis is aware of this issue so the bug may get fixed soon.

The three options are:

	Antialiased lines: This controls aliasing. If changing line thickness isn’t working, check this option and it should work, because it switches to a different algorithm.

	Subpixel precision: I’m guessing this affects the rendering quality, but you won’t see much of a difference. Check this if you want to.

	Color background: Checking this will color in the background at the back of the hatching.

The output is slightly different depending on whether the first two options are checked, but the difference isn’t enough for you to worry about. I recommend just keeping the first two options checked.

[image: ../../../_images/Krita-tutorial8-A.I.2.png]

Hatching options

This is where the main hatching options go. They’re intuitive enough:

	Angle: The angle of the hatching.

	Separation: This is the distance between the centers of the lines.

	Use a value of 2 pixels or higher, or the lines won’t be distinct anymore.

	The Separations dynamic doesn’t actually assign random values to Separation, instead it will take the value in “Input-based intervals” to divide the grid further. “Input-based intervals” can take values between 2 and 7.

	Thickness: The line thickness.

	Actually, this is the thickness of the line + blank area, so the line itself has a thickness of half this value.

	If you use the same separation value and the same line thickness value, then the lines and the area between them will be of the same thickness.

	You can vary this value dynamically with the Thickness dynamics.

	If the line thickness isn’t changing for you, go to Hatching Preferences and check “Antialiased Lines”.

	Origin X and Origin Y: The hatching has a fixed location, painting acts as though you’re revealing the existing hatching underneath. To nudge the hatching, you can tweak these two values. You can get various grid effects this way.

[image: ../../../_images/Krita-tutorial8-A.I.3-1.png]
Finally, we have the hatching styles:

	No crosshatching: basic parallel lines

	Perpendicular plane only: grid lines

	-45 degrees plane then +45 degrees plane: see example.

	+45 degrees plane then -45 degrees plane: see example, actually not much different from the above, it’s mostly the order that changes when using dynamics.

	Moiré pattern: See example.

The Crosshatching dynamic only works if you have already chosen a crosshatching style. When that happens, the crosshatching only gets drawn according to the conditions of the dynamics (pressure, speed, angle…).

	With most hatching styles, using crosshatching dynamics basically gets you the same hatching style, minus the occasional line.

	The exception is with Moire, which will produce a different pattern.

[image: ../../../_images/Krita-tutorial8-A.I.3-2.png]

Use cases

If you don’t want the edges to be fuzzy, go to Brush Tip and set the Fade values to 1.00. I recommended doing the hatching on a separate layer, then erasing the extra areas.

Now for the uses:

	You can, of course, just use this for completely normal hatching. In versions I’m using, the default Separation is 1, which is too low, so increase Separation to a value between 2 to 10.

	If you find normal hatching too boring, increase the Thickness and set the Thickness dynamic to either Pressure (if you have a tablet) or Speed (if you’re using a mouse). Doesn’t that look more natural? (When using a mouse, pass over the areas where you want thicker lines again while drawing faster).

	Grittier texture: add some density and/or randomness to your autobrush for a grittier texture.

	You can also set Painting Mode to Build up, and Mode to Multiply, to make some colors have more depth. (see my grid example).

	Vary Origin X and Origin Y while using the same patterns.

	Use the Separations dynamic for more complex patterns. Add in Line Thickness and other dynamics for more effect.

	Now, the Moiré pattern is quite boring on its own, but it is much more interesting with Crosshatching dynamics set on Fuzzy.

	For more texture, set Line Thickness to Fuzzy, decrease Density a bit and increase Randomness and you get a nice gritty texture.

[image: ../../../_images/Krita-tutorial8-A.II.png]

MyPaint Brush Engine

[image: ../../../_images/mypaintbrush.svg]MyPaint [http://www.mypaint.org] is a free painting program that comes with a lot of specific brushes. Krita can use those brushes for painting using the MyPaint brush engine.

Warning

You can create new brush presets using the MyPaint brush engine in Krita, but the presets are saved in Krita’s .kpp file format, not mypaints .myb format, so you cannot reuse those presets in MyPaint.

Dynamic Inputs

Dynamic Inputs are a way for MyPaint to get information of the external devices as a drawing tablet; for instance the pressure over the drawing tablet, the speed of pencil movement, the pencil tilt .. etc. They are equivalent to Sensors in Krita.

MyPaint has 9 inputs:

	
	Pressure
	The pressure handled by a tablet. Typically in the range 0.0 to 1.0.

	
	Fine Speed
	How quickly the stylus is moving. This can vary quite a lot.

	
	Gross Speed
	Similar to fine speed but it changes very slowly.

	
	Random
	Fast and random noise, changes with every brush stroke.

	
	Stroke
	This input goes slowly from 0.0 to 1.0 while the stroke is being applied. This is related to “stroke duration” and “stroke holdtime” settings.

	
	Direction
	This input defines the angle of a stroke, in degrees.

	
	Declination
	This input defines the declination of the stylus tilt. This is the same as tilt-elevation in Krita.

	
	Ascension
	Straight pen ascension. When the active tip points to it, it is 0. When the pen turns 90 degrees clockwise is +90. When it turns 90 degrees counterclockwise is -90. This is the same as tilt-direction in Krita.

	
	Custom
	This is a user-defined input. It is related to the “customized input” setting.

Parameters

Has the following parameters:

	Basic

	Color

	Speed

	Dabs

	Opacity

	Tracking

	Smudge

	Stroke

	Custom Input

Basic

Radius

This is to set the radius of the brush. Please note that all of the mypaint radii are logarithmic. For instance, if you are setting the radius of a preset to say, 2.0 then the actual radius of the preset is going to be e^(2.0) which is equal to 7.389. This makes the size of the brush equal to 14.78. So, we can say that mypaint_radius = log(actual_radius).

Hardness

Hardness defines the sharpness of the brushes.

[image: ../../../_images/hardness.png]

Eraser

If this option is checked the brush will act as an eraser.

Radius by Random

This option is used to generate a brush preset whose radii and opacity change randomly during the stroke. This should not be confused with the random dynamic option in the radius setting.

Anti Aliasing

This option is used to smoothen the edges of the brush and remove the jagging effect. Most useful for very small presets.

Elliptical Dab: Angle

Sets the angle of the brush dabs. Gives the best results for brushes with a low ratio and a direction filter, and allows for strokes akin to a calligraphic pen.

Elliptical Dab: Ratio

This option is used to change the aspect ratio of dab.

[image: ../../../_images/elliptical_dab_ratio.png]

Direction Filter

This option is used to make the dabs adhere to a specific vector direction. In simple words, at times you might find the dabs not following the vector path of your strokes, this setting helps us rectify that.

Color

Change color Hue

This option is used to shift the hue in a clockwise or anti-clockwise direction.

Change color Lightness

This option is used to change color luminance using the HSL color model.

Change color Value

This option is used to change color value (brightness, intensity) in HSV color model.

Change color Saturation HSL

This option is used to change color saturation using HSL color model.

Change color Saturation HSV

This option is used to change color saturation using HSV color model.

Speed

Fine Speed Gamma

This option is used to change the reaction of the fine speed input to extreme physical speed.

Gross Speed Gamma

This option is used to change the reaction of gross speed to extreme physical speed.

Fine Speed Slowness / Fine Speed Filter

This option describes how slow the input fine speed is following the real speed.

Gross Speed Slowness / Gross Speed Filter

This option describes how slow the input gross speed is following the real speed.

Offset by Speed

This option is used to change the position of dabs based on stroke speed.

Offset By Random [Jitter]

This option adds a random offset to the position where each dab is drawn.

Dabs

Dabs per Actual Radius

This option describes how many dabs to draw when the pointer moves the distance of the brush radius.

Dabs per Second

This option describes how many dabs to draw per second irrespective of any other parameter.

Opacity

Opaque

Opaque describe the translucency or transparency of mypaint brushes.

Opaque Linearize

This option lets you correct the nonlinearity introduced by blending multiple dabs on top of each other.

Opaque Multiply

This makes opacity depend on pressure.

Tracking

Slow Tracking

Slow pointer tracking speed. Higher values remove jitter in cursor movements. Useful for drawing smooth outlines.

Slow Tracking per Dab

Similar to above but at a brushdab level.

Tracking Noise

Add randomness to the mouse pointer. This usually generates many small lines in random directions.

Smudge

Smudge

This option lets you smudge, by picking a color from the canvas and mixing this with the brush color. The color slowly changes to the color you are painting on.

Smudge Length

This option controls how much the painting color is mixed with the colors from the canvas.

Smudge Radius logarithmic

This option modifies the radius of the circle where the color is picked up for smudging.

Stroke

Stroke Duration logarithmic

This option describes how far you have to move until the stroke input becomes 1.0

Stroke Holdtime

This option defines how long the stroke input stays at 1.0. After that it will go back towards 0.0 and then start increasing again.

Stroke Threshold

This option defines how much pressure is needed to start the stroke. This affects stroke input only. The MyPaint brush engine does not need any minimum pressure level to start drawing.

Custom Input

Custom Input

The idea of this input is that you make this input depend on a mixture of pressure/speed/whatever, and then make other settings depend on this ‘custom input’ instead of repeating this combination everywhere you need.

Custom Input Slowness

This option defines how slow the custom input setting actually follows the desired value.

Particle Brush Engine

[image: ../../../_images/particlebrush.svg]A brush that draws wires using parameters. These wires always get more random and crazy over drawing distance. Gives very intricate lines best used for special effects.

Options

	Brush Size

	Blending Modes

	Opacity and Flow

	Airbrush

Brush Size

	Particles
	How many particles there’s drawn.

	Opacity Weight
	The Opacity of all particles. Is influenced by the painting mode.

	Dx Scale (Distance X Scale)
	How much the horizontal cursor distance affects the placing of the pixel. Is unstable on negative values. 1.0 is equal.

	Dy Scale (Distance Y Scale)
	How much the vertical cursor distance affects the placing of the pixel. Is unstable on negative values. 1.0 is equal.

	Gravity
	Multiplies with the previous particle’s position, to find the new particle’s position.

	Iterations
	The higher, the higher the internal acceleration is, with the furthest away particle from the brush having the highest acceleration. This means that the higher iteration is, the faster and more randomly a particle moves over time, giving a messier result.

Pixel Brush Engine

[image: ../../../_images/pixelbrush.svg]Brushes are ordered alphabetically. The brush that is selected by default when you start with Krita is the Pixel Brush. The pixel brush is the traditional mainstay of digital art. This brush paints impressions of the brush tip along your stroke with a greater or smaller density.

[image: ../../../_images/Krita_Pixel_Brush_Settings_Popup.png]
Let’s first review these mechanics:

	Select a brush tip. This can be a generated brush tip (round, square, star-shaped), a predefined bitmap brush tip, a custom brush tip or a text.

	Select the spacing: this determines how many impressions of the tip will be made along your stroke.

	Select the effects: the pressure of your stylus, your speed of painting or other inputs can change the size, the color, the opacity or other aspects of the currently painted brush tip instance – some applications call that a “dab”.

	Depending on the brush mode, the previously painted brush tip instance is mixed with the current one, causing a darker, more painterly stroke, or the complete stroke is computed and put on your layer. You will see the stroke grow while painting in both cases, of course!

Since 4.0, the Pixel Brush Engine has Multithreaded brush-tips, with the default brush being the fastest mask.

Available Options:

	Brush Tips

	Blending Modes

	Opacity and Flow

	Size

	Ratio

	Spacing

	Mirror

	Softness

	Sharpness

	Rotation

	Scatter

	Source

	Mix

	Airbrush

	Texture

	Masked Brush

Specific Parameters to the Pixel Brush Engine

Darken

Allows you to Darken the source color with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_darken_01.png]
The color will always become black in the end, and will work with Plain Color, Gradient and Uniform random as source.

Hue, Saturation, Value

These parameters allow you to do an HSV adjustment filter on the Source and control it with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_HSV_01.png]
Works with Plain Color, Gradient and Uniform random as source.

Uses

[image: ../../../_images/Krita_2_9_brushengine_HSV_02.png]
Having all three parameters on Fuzzy will help with rich color texture. In combination with Mix, you can have even finer control.

Quick Brush Engine

[image: ../../../_images/quickbrush.svg]A Brush Engine inspired by the common artist’s workflow where a simple big brush, like a marker, is used to fill large areas quickly, the Quick Brush engine is an extremely simple, but quick brush, which can give the best performance of all Brush Engines.

It can only change size, blending mode and spacing, and this allows for making big optimisations that aren’t possible with other brush engines.

	Blending Modes

	Spacing

	Size

Brush

The only parameter specific to this brush.

	Diameter
	The size. This brush engine can only make round dabs, but it can make them really fast despite size.

	Spacing
	The spacing between the dabs. This brush engine is particular in that it’s faster with a lower spacing, unlike all other brush engines.

See also

Phabricator Task [https://phabricator.kde.org/T3492]

Shape Brush Engine

[image: ../../../_images/shapebrush.svg]An Al.chemy inspired brush-engine. Good for making chaos with!

Parameters

	Experiment Option

	Blending Modes

Experiment Option

	Speed
	This makes the outputted contour jaggy. The higher the speed, the jaggier.

	Smooth
	Smoothens the output contour. This slows down the brush, but the higher the smooth, the smoother the contour.

	Displace
	This displaces the shape. The slow the movement, the higher the displacement and expansion. Fast movements shrink the shape.

	Winding Fill
	This gives you the option to use a ‘non-zero’ fill rules instead of the ‘even-odd’ fill rule, which means that where normally crossing into the shape created transparent areas, it now will not.

	Hard Edge
	Removes the anti-aliasing, to get a pixelized line.

Sketch Brush Engine

[image: ../../../_images/sketchbrush.svg]A line based brush engine, based on the Harmony brushes. Very messy and fun.

Parameters

Has the following parameters:

	Brush Tips

	Blending Modes

	Opacity and Flow

	Size

	Ratio

	Line Width

	Offset Scale

	Density

	Rotation

	Airbrush

Line Width

The width of the rendered lines.

[image: ../../../_images/Krita_2_9_brushengine_sketch_linewidth.png]

Offset Scale

When curve lines are formed, this value roughly determines the distance from the curve lines to the connection lines:

	This is a bit misleading, because a value of 0% and a value of 100% give similar outputs, as do a value of say 30% and 70%. You could think that the actual value range is between 50% and 200%.

	0% and 100% correspond to the curve lines touching the connection lines exactly.

	Above 100%, the curve lines will go further than the connection lines, forming a fuzzy effect.

[image: ../../../_images/Krita_2.9_brushengine_sketch_offset.png]
[image: ../../../_images/Krita-sketch_offset_scale2.png]

Density

The density of the lines. This one is highly affected by the Brush-tip, as determined by the Distance Density toggle.

[image: ../../../_images/Krita_2.9_brushengine_sketch_density.png]

	Use Distance Density
	The further the line covered is from the center of the area of effect, the less the density of the resulting curve lines.

	Magnetify
	Magnetify is on by default. It’s what causes curve lines to form between two close line sections, as though the curve lines are attracted to them like magnets.
With Magnetify off, the curve line just forms on either side of the current active portion of your connection line. In other words, your line becomes fuzzier when another portion of the line is nearby, but the lines don’t connect to said previous portion.

	Random RGB
	Causes some slight RGB variations.

	Random Opacity
	The curve lines get random opacity. This one is barely visible, so for the example I used line width 12 and 100% opacity.

	Distance Opacity
	The distance based opacity. When you move your pen fast when painting, the opacity will be calculated based on the distance from the center of the effect area.

	Simple Mode
	This mode exists for performance reasons, and doesn’t affect the output in a visible way. Check this for large brushes or thick lines for faster rendering.

	Paint Connection Line
	What appears to be the connection line is usually made up of an actual connection line and many smaller curve lines. The many small curve lines make up the majority of the line. For this reason, the only time this option will make a visible difference is if you’re drawing with 0% or near 0% density, and with a thick line width. The rest of the time, this option won’t make a visible difference.

	Anti-aliasing
	This applies anti-aliasing to the lines, giving a smoother feel.

New in version 5.1.

Spray Brush Engine

[image: ../../../_images/spraybrush.svg]A brush that can spray particles around in its brush area.

Options

	Spray Area

	Spray Shape

	Brush Tips (Used as particle if spray shape is not active)

	Opacity and Flow

	Size

	Blending Modes

	Shape Dynamics

	Color Options

	Rotation

	Airbrush

Spray Area

Here you can set different properties related to the area where the particles are distributed and how they are distributed.

Area

	Diameter
	The size of the area.

	Aspect Ratio
	It’s aspect ratio: 1.0 is fully circular.

	Angle
	The angle of the spray size: works nice with aspect ratios other than 1.0.

	Scale
	Scales the diameter up.

	Spacing
	Increases the spacing of the diameter’s spray.

	Jitter Movement
	Jitters the spray area around for extra randomness.

Particles

	Amount
	
	Count
	Use a specified number of particles.

	Density
	Use a percentage for the number of particles.

	Distribution
	
New in version 5.1.

Here you can set how the particles are distributed in the spray area. The particles are distributed using polar coordinates [https://en.wikipedia.org/wiki/Polar_coordinate_system], so you can set different distributions for the angle and the distance of the particles relative to the center of the spray area.

	Angular
	You can specify how the particles are distributed around the center using one of the following options:

	Uniform: Distributes the particles uniformly. Each angle is equally likely to receive a particle.

	Curve: You can set a custom curve that models how the particles should be distributed. The left side of the curve represents an angle of 0 degrees and the right side an angle of 360 degrees. Higher values in the vertical direction mean that there is a higher probability that a particle ends up at that particular angle. In the spray area the angle increases clockwise.

	Repeat: Have the curve repeat itself multiple times from 0 to 360 degrees. Without this, you would need to build a very complex curve with too many control points to achieve the same result.

	Radial
	You can specify how the particles are distributed from the center to the edge of the spray area using one of the following options:

	Uniform: Distributes the particles uniformly.

	Center-biased spread (legacy): This option ensures compatibility with the brushes made prior to version 5.1. Before, the particles were distributed uniformly in terms of distance from the center, but that ended up concentrating more particles in the center of the spray area from a 2d space perspective. For example, a circumference at a distance of 10 pixels from the center ended having roughly the same number of particles as a circumference at a distance of 100 pixels, while being 10 times smaller in length.

	Gaussian: distributes the particles using a gaussian or normal distribution [https://en.wikipedia.org/wiki/Normal_distribution].

	Standard deviation: Sets the standard deviation of the distribution. Higher values will make the particles more spread.

	Center-biased spread (legacy): This option ensures compatibility with the brushes made prior to version 5.1. See the previous point for more information.

	Cluster: This will allow you to quickly concentrate the particles towards the center or the edge of the spray area.

	Clustering amount: Positive values will make the particles concentrate towards the center of the spray area. Negative values will make the particles concentrate towards the border of the spray area. Values near 0 will make the particles spread more uniformly.

	Curve: You can set a custom curve that models how the particles should be distributed. The left side of the curve represents the center of the spray area and the right side represents its border. Higher values in the vertical direction mean that there is a higher probability that a particle ends up at that particular distance.

	Repeat: Have the curve repeat itself multiple times from the center of the spray area to its edge. Without this, you would need to build a very complex curve with too many control points to achieve the same result.

[image: ../../../_images/krita-spray-brush-engine-distribution.png]

Different distribution types on display:

	Uniform for both Angular and Radial, with Center-biased spread (legacy) turned on.

	Uniform for both Angular and Radial, with Center-biased spread (legacy) turned off.

	Clustered for Radial, with Clusting Amount: 0.0.

	Clustered for Radial, with Clusting Amount: -5.0.

	Clustered for Radial, with Clusting Amount: +5.0.

	Curve for Angular, using the default curve and 0 repeats.

	Curve for Angular, using the default curve and 5 repeats.

	Curve for Radial, using the default curve with 3 repeats.

	Curve for Angular using a hill shaped curve, 7 repeats, and Clustered for Radial, with Clusting Amount: -5.0.

	Gaussian for Radial, with Standard Deviation: 25.

	Gaussian for Radial, with Standard Deviation: 50.

	Gaussian for Radial, with Standard Deviation: 80.

Spray Shape

If activated, this will generate a special particle. If not, the brush-tip will be the particle.

	Shape
	Can be…

	Ellipse

	Rectangle

	Anti-aliased Pixel

	Pixel

	Image

	Width & Height
	Decides the width and height of the particle.

	Proportional
	Locks Width & Height to be the same.

	Texture
	Allows you to pick an image for the Image shape.

Shape Dynamics

	Random Size
	Randomizes the particle size between 1x1 px and the given size of the particle in brush-tip or spray shape.

	Fixed Rotation
	Gives a fixed rotation to the particle to work from.

	Randomized Rotation
	Randomizes the rotation.

	Follow Cursor Weight
	How much the pressure affects the rotation of the particles. At 1.0 and high pressure it’ll seem as if the particles are exploding from the middle.

	Angle Weight
	How much the spray area angle affects the particle angle.

Color Options

	Random HSV
	Randomize the HSV with the strength of the sliders. The higher, the more the color will deviate from the foreground color, with the direction indicating clock or counter clockwise.

	Random Opacity
	Randomizes the opacity.

	Color Per Particle
	Has the color options be per particle instead of area.

	Sample Input Layer.
	Will use the underlying layer as reference for the colors instead of the foreground color.

	Fill Background
	Fills the area before drawing the particles with the background color.

	Mix with background color.
	Gives the particle a random color between foreground/input/random HSV and the background color.

Tangent Normal Brush Engine

[image: ../../../_images/tangentnormal.svg]The Tangent Normal Brush Engine is an engine that is specifically designed for drawing normal maps, of the tangent variety. These are in turn used in 3d programs and game engines to do all sorts of lightning trickery. Common uses of normal maps include faking detail where there is none, and to drive transformations (Flow Maps).

A Normal map is an image that holds information for vectors. In particular, they hold information for Normal Vectors, which is the information for how the light bends on a surface. Because Normal Vectors are made up of 3 coordinates, just like colors, we can store and see this information as colors.

Normals can be seen similar to the stylus on your tablet. Therefore, we can use the tilt-sensors that are available to some tablets to generate the color of the normals, which can then be used by a 3d program to do lighting effects.

In short, you will be able to paint with surfaces instead of colors.

The following options are available to the tangent normal brush engine:

	Brush Tips

	Blending Modes

	Opacity and Flow

	Size

	Ratio

	Spacing

	Mirror

	Softness

	Sharpness

	Rotation

	Scatter

	Airbrush

	Texture

Specific Parameters to the Tangent Normal Brush Engine

Tangent Tilt

These are the options that determine how the normals are calculated from tablet input.

	Tangent Encoding
	This allows you to set what each color channel means. Different programs set different coordinates to different channels, a common version is that the green channel might need to be inverted (-Y), or that the green channel is actually storing the x-value (+X).

	Tilt Options
	Allows you to choose which sensor is used for the X and Y.

	Tilt
	Uses Tilt for the X and Y.

	Direction
	Uses the drawing angle for the X and Y and Tilt-elevation for the Z, this allows you to draw flowmaps easily.

	Rotation
	Uses rotation for the X and Y, and tilt-elevation for the Z. Only available for specialized Pens.

	Elevation Sensitivity
	Allows you to change the range of the normal that are outputted. At 0 it will only paint the default normal, at 1 it will paint all the normals in a full hemisphere.

Usage

The Tangent Normal Map Brush Engine is best used with the Tilt Cursor, which can be set in Settings ‣ Configure Krita ‣ General ‣ Outline Shape ‣ Tilt Outline.

Normal Map authoring workflow

	Create an image with a background color of (128, 128, 255) blue/purple.

[image: ../../../_images/Krita-normals-tutorial_1.png]

Setting up a background with the default color.

	Set up group with a Phong Bumpmap filter mask. Use the Use Normal map checkbox on the filter to make it use normals.

[image: ../../../_images/Krita-normals-tutorial_2.png]

Creating a phong bump map filter layer, make sure to check ‘Use Normal map’.

[image: ../../../_images/Krita-normals-tutorial_3.png]

These settings give a nice daylight-esque lighting setup, with light 1 being the sun, light 3 being the light from the sky, and light 2 being the light from the ground.

	Make a Normalize filter layer or mask to normalize the normal map before feeding it into the Phong bumpmap filter for the best results.

	Then, paint on layers in the group to get direct feedback.

[image: ../../../_images/Krita-normals-tutoria_4.png]

Paint on the layer beneath the filters with the tangent normal brush to have them be converted in real time.

	Finally, when done, hide the Phong bumpmap filter layer (but keep the Normalize filter layer!), and export the normal map for use in 3d programs.

Drawing Direction Maps

Direction maps are made with the Direction option in the Tangent Tilt options. These normal maps are used to distort textures in a 3d program (to simulate for example, the flow of water) or to create maps that indicate how hair and brushed metal is brushed. Krita can’t currently give feedback on how a given direction map will influence a distortion or shader, but these maps are a little easier to read.

Just set the Tangent Tilt option to Direction, and draw. The direction your brush draws in will be the direction that is encoded in the colors.

Only editing a single channel

Sometimes you only want to edit a single channel. In that case set the blending mode of the brush to Copy <channel>, with <channel> replaced with red, green or blue. These are under the Misc section of the blending modes.

So, if you want the brush to only affect the red channel, set the blending mode to Copy Red.

[image: ../../../_images/Krita_Filter_layer_invert_greenchannel.png]

The copy red, green and blue blending modes also work on filter-layers.

This can also be done with filter layers. So if you quickly want to flip a layer’s green channel, make an invert filter layer with Copy Green above it.

Mixing Normal Maps

For mixing two normal maps, Krita has the Combine Normal Map blending mode under Misc.

Brush Settings

Overall Brush Settings for the various brush engines.

Contents:

	Brush Tips

	Locked Brush Settings

	Masked Brush

	Opacity and Flow

	Options

	Sensors

	Texture

Brush Tips

[image: ../../../_images/Krita_Pixel_Brush_Settings_Popup.png]

Auto Brush

The generic circle or square. These brush tips are generated by Krita through certain parameters.

Types

First, there are three mask-types, with each the circle and square shape:

	Default
	This is the ultimate generic type. The Fade parameter produces the below results. Of the three auto brushes, this is the fastest.

[image: ../../../_images/Krita_29_brushengine_brushtips_default.png]

	Soft
	This one’s fade is controlled by a curve!

[image: ../../../_images/Krita_2_9_brushengine_brushtips_soft.png]

	Gaussian
	This one uses the gaussian algorithm to determine the fade. Out of the three auto brushes, this is the slowest.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_gaussian.png]

Parameters

	Diameter
	The pixel size of the brush.

	Ratio
	Whether the brush is elongated or not.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_ratio.png]

	Fade
	this sets the softness of the brush. You can click the chain-symbol to lock and unlock these settings. Fade has a different effect per mask-type, so don’t be alarmed if it looks strange, perhaps you have the wrong mask-type.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_default2b.png]
With fade locked.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_default_3.png]
With fade separately horizontal and vertical.

	Angle
	This changes the angle a which the brush is at.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_angle.png]

	Spikes
	This gives the amount of tips related to the ratio.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_spikes.png]

	Density
	This determines how much area the brush-covers over its size: It makes it noisy. In the example below, the brush is set with density 0%, 50% and 100% respectively.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_density.png]

	Randomness
	This changes the randomness of the density. In the example below, the brush is set with randomness 0%, 50% and 100% respectively.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_randomness.png]

	Spacing
	This affects how far brushes are spaced apart. In the below picture, the three examples on the left are with spacing 0, 1 and 5.

	Auto (spacing)
	Ticking this will set the brush-spacing to a different (quadratic) algorithm. The result is fine control over the spacing. In the below picture, the three examples on right are with auto spacing, 0, 1 and 5 respectively.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_spacing.png]

	Smooth lines
	This toggles the super-smooth anti-aliasing. In the below example, both strokes are drawn with a default brush with fade set to 0. On the left without smooth lines, and the right with. Very useful for inking brushes. This option is best used in combination with Auto Spacing.

[image: ../../../_images/Krita_2_9_brushengine_brushtips_default_2.png]

	Precision
	This changes how smooth the brush is rendered. The lower, the faster the brush, but the worse the rendering looks.
You’d want an inking brush to have a precision of 5 at all times, but a big filling brush for painting doesn’t require such precision, and can be easily sped up by setting precision to 1.

	Auto (precision)
	This allows you to set the precision linked to the size. The first value is the brush size at which precision is at last 5, and the second is the size-difference at which the precision will decrease.

For example: A brush with ‘’starting brush size’’ 10 and ‘’delta’’ 4, will have…

	precision 5 at size 10

	precision 4 at size 14

	precision 3 at size 18

	precision 2 at size 22

	precision 1 at sizes above 26.

Predefined Brushes

[image: ../../../_images/Krita_Predefined_Brushes.png]
If you have used other applications like GIMP or Photoshop, you will have used this kind of brush. Krita is (mostly) compatible with the brush tip definitions files of these applications:

	abr
	Gimp autobrush tip definitions.

	*.gbr
	Gimp single bitmap brush tip. Can be black and white or colored.

	*.gih
	Gimp Image Hose brush tip: contains a series of brush tips that are painted randomly or in order after each other. Can be black and white or colored. Krita does not yet support all the parameters yet.

	abr
	Photoshop brush tip collections. We support many of the features of these brush files, though some advanced features are not supported yet.

Note that the definition of ABR brushes has been reverse engineered since Adobe does not make the specification public. We strongly recommend every Krita user to share brush tips in GBR and GIH format and more complex brushes as Krita presets.

All predefined brush tips are shown in one selector. There are four more options that influence the initial bitmap brush tip you start painting with:

	Size
	Scales the brush tip. 1.0 is the native size of the brush tip. This can be fairly large! When painting with variable size (for instance governed by pressure), this is the base for the calculations.

	Rotation
	Initial rotation of the brush tip.

	Spacing
	Distance between the brush tip impressions.

Brush Mode

[image: the different modes demonstrated.]

Different modes shown with different brush tips.

	Alpha Mask
	For colored brushes, don’t paint the actual colors, but make a grayscale brush tip that will be colored by your selected foreground/background color. Lighter areas will be interpreted as more transparent.

	Color Image
	Use the brush tip image exactly as it is. Especially useful for image stamps.

	Lightness Map
	
New in version 4.3: Combines the features of Alpha Mask and Image Stamp modes. Transparency is preserved as it is in Image Stamp mode, but colors or gray tones in the brush are replaced by the foreground color. The Lightness values of the brush tip image (if thinking in HSL mode) are preserved, so dark parts of the image are dark, and bright parts are bright. This allows image stamps where you can choose the color, but preserve highlights and shadows, and can even create an effect of thick paint in a brush stroke by simulating the highlights and shadows caused by the texture of the paint and brush stroke (sometimes called an “impasto” effect).

There are three sliders here, to control the exact feel of the current brush tip in Lightness or Gradient mode:

	Neutral point
	This is the lightness level that will be the same as your current foreground color. Higher values than this will be lighter versions of the current foreground color, and lower, darker versions of the current color.

	Brightness
	Makes the tip as a whole brighter or darker.

	Contrast
	Increase the contrast between dark and light areas in the tip.

	Gradient Map
	
New in version 4.4: Use the lightness values of the brush tip image as a map to a gradient. Black maps to the left side of the gradient, and white to the right side of the gradient. The gradient used is the currently selected gradient in the main window, so you can change the gradient quickly and easily while painting. This mode allows image stamps with multiple colors that can be changed (great for flowers or other colorful vegetation), and can allow paint brushes that have multiple colors. Image adjustment sliders for Lightness Map mode can be used for this mode too. A tutorial for this mode is here: Gradient Map Brush Tips .

Locked Brush Settings

Normally, a changing to a different brush preset will change all brush settings. Locked presets are a way for you to prevent Krita from changing all settings. So, if you want to have the texture be that same over all brushes, you lock the texture parameter. That way, all brush-preset you select will now share the same texture!

Locking a brush parameter

[image: ../../../_images/Krita_2_9_brushengine_locking_01.png]
To lock an option, [image: mouseright] the little lock icon next to the parameter name, and set it to Lock. It will now be highlighted to show it’s locked:

[image: ../../../_images/Krita_2_9_brushengine_locking_02.png]
And on the canvas, it will show that the texture-option is locked.

[image: ../../../_images/Krita_2_9_brushengine_locking_04.png]

Unlocking a brush parameter

To unlock, [image: mouseright] the icon again.

[image: ../../../_images/Krita_2_9_brushengine_locking_03.png]
There will be two options:

	Unlock (Drop Locked)
	This will get rid of the settings of the locked parameter and take that of the active brush preset. So if your brush had no texture on, using this option will revert it to having no texture.

	Unlock (Keep Locked)
	This will keep the settings of the parameter even though it’s unlocked.

Masked Brush

New in version 4.0.

Masked brush is new feature that is only available in the Pixel Brush Engine. They are additional settings you will see in the brush editor. Masked brushes allow you to combine two brush tips in one stroke. One brush tip will be a mask for your primary brush tip. A masked brush is a good alternative to texture for creating expressive and textured brushes.

[image: ../../../_images/Masking-brush1.jpg]

Note

Due to technological constraints, the masked brush only works in the wash painting mode. However, do remember that flow works as opacity does in the build-up painting mode.

	Brush Tips
	Like with normal brush tip you can choose any brush tip and change it size, spacing, and rotation. Masking brush size is relative to main brush size. This means when you change your brush size masking tip will be changed to keep the ratio.

	Blending mode (drop-down inside Brush tip):
	Blending modes changes how tips are combined.

[image: ../../../_images/Masking-brush2.jpg]

	Size
	The size sensor option of the second tip.

	Opacity and Flow
	The opacity and flow of the second tip. This is mapped to a sensor by default. Flow can be quite aggressive on subtract mode, so it might be an idea to turn it off there.

	Ratio
	This affects the brush ratio on a given brush.

	Mirror
	The Mirror option of the second tip.

	Rotation
	The rotation option of the second tip. Best set to “fuzzy dab”.

	Scatter
	The scatter option. The default is quite high, so don’t forget to turn it lower.

Difference from Texture:

	You don’t need seamless texture to make cool looking brush.

	Stroke generates on the fly, it always different.

	Brush strokes looks same on any brush size.

	Easier to fill some areas with solid color but harder to make it hard textured.

Opacity and Flow

Opacity and flow are parameters for the transparency of a brush.

[image: ../../../_images/Krita_Pixel_Brush_Settings_Flow.png]
They are interlinked with the painting mode setting.

[image: ../../../_images/Krita_2_9_brushengine_opacity-flow_02.png]

	Opacity
	The transparency of a stroke.

	Flow
	The transparency of separate dabs. Finally separated from Opacity in 2.9.

[image: ../../../_images/Krita_4_2_brushengine_opacity-flow_01.svg]
Changed in version 4.2: In Krita 4.1 and below, the flow and opacity when combined with brush sensors would add up to one another, being only limited by the maximum opacity. This was unexpected compared to all other painting applications, so in 4.2 this finally got corrected to the flow and opacity multiplying, resulting in much more subtle strokes. This change can be switched back in the Tools Settings, but we will be deprecating the old way in future versions.

The old behavior can be simulated in the new system by…

	Deactivating the sensors on opacity.

	Set the maximum value on flow to 0.5.

	Adjusting the pressure curve to be concave.

[image: ../../../_images/flow_opacity_adapt_flow_preset.gif]

Painting mode

	Build-up
	Will treat opacity as if it were the same as flow.

	Wash
	Will treat opacity as stroke transparency instead of dab-transparency.

[image: ../../../_images/Krita_2_9_brushengine_opacity-flow_03.png]
Where the other images of this page had all three strokes set to painting mode: wash, this one is set to build-up.

Options

Airbrush

[image: ../../../_images/Krita_2_9_brushengine_airbrush.png]
If you hold the brush still, but are still pressing down, this will keep adding color onto the canvas. The lower the rate, the quicker the color gets added.

Mirror

[image: ../../../_images/Krita_Pixel_Brush_Settings_Mirror.png]
This allows you to mirror the Brush tip with Sensors.

	Horizontal
	Mirrors the mask horizontally.

	Vertical
	Mirrors the mask vertically.

[image: ../../../_images/Krita_2_9_brushengine_mirror.jpg]
Some examples of mirroring and using it in combination with Rotation.

Rotation

This allows you to affect Angle of your brush tip with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_rotation.png]
[image: ../../../_images/Krita_Pixel_Brush_Settings_Rotation.png]
In the above example, several applications of the parameter.

	Drawing Angle – A common one, usually used in combination with rake-type brushes. Especially effect because it does not rely on tablet-specific sensors. Sometimes, Tilt-Direction or Rotation is used to achieve a similar-more tablet focused effect, where with Tilt the 0° is at 12 o’clock, Drawing angle uses 3 o’clock as 0°.

	Fuzzy – Also very common, this gives a nice bit of randomness for texture.

	Distance – With careful editing of the Sensor curve, you can create nice patterns.

	Fade – This slowly fades the rotation from one into another.

	Pressure – An interesting one that can create an alternative looking line.

Lightness Strength

New in version 4.4: This allows you to affect the Lightness Strength of your brush tip with Sensors. Only available with brush tips in Lightness Map mode.

[image: ../../../_images/lightness_strength_demo.png]
This changes the contrast of the brush tip, so that at 100%, the full effect of the lightness variation is visible in the brush, while at 0% the brush paints without any lightness variation. This allows a variable impasto effect with lightness brushes, and for variation in texture stamp brushes that use a lightness-enabled brush tip.

Scatter

This parameter allows you to set the random placing of a brush-dab. You can affect them with Sensors.

	X
	The scattering on the angle you are drawing from.

	Y
	The scattering, perpendicular to the drawing angle (has the most effect).

[image: ../../../_images/Krita_2_9_brushengine_scatter.png]

Sharpness

[image: ../../../_images/Krita_Pixel_Brush_Settings_Sharpness.png]
Puts a threshold filter over the brush mask. This can be used for brush like strokes, but it also makes for good pixel art brushes.

	Strength
	Controls the threshold, and can be controlled by the sensors below.

	Soften Edge
	Controls the extra non-fully opaque pixels. This adds a little softness to the stroke.

Changed in version 4.2: The sensors now control the threshold instead of the subpixel precision, softness slider was added.

	Align the brush preview outline to the pixel grid.
	Whether to have the brush outline align to the pixel grid. This is useful with some forms of pixel art.

New in version 5.1.

Size

[image: ../../../_images/Krita_Pixel_Brush_Settings_Size.png]
This parameter is not the diameter itself, but rather the curve for how it’s affected.

So, if you want to lock the diameter of the brush, lock the Brush tip. Locking the size parameter will only lock this curve. Allowing this curve to be affected by the Sensors can be very useful to get the right kind of brush. For example, if you have trouble drawing fine lines, try to use a concave curve set to pressure. That way you’ll have to press hard for thick lines.

[image: ../../../_images/Krita_2_9_brushengine_size_01.png]
Also popular is setting the size to the sensor fuzzy or perspective, with the later in combination with a Perspective.

[image: ../../../_images/Krita_2_9_brushengine_size_02.png]

Softness

This allows you to affect Fade with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_softness.png]
Has a slight brush-decreasing effect, especially noticeable with soft-brush, and is overall more noticeable on large brushes.

Source

Picks the source-color for the brush-dab.

	Plain Color
	Current foreground color.

	Gradient
	Picks active gradient.

	Uniform Random
	Gives a random color to each brush dab.

	Total Random
	Random noise pattern is now painted.

	Pattern
	Uses active pattern, but alignment is different per stroke.

	Locked Pattern
	Locks the pattern to the brushdab.

Mix

Allows you to affect the mix of the Source color with Sensors. It will work with Plain Color and Gradient as source. If Plain Color is selected as source, it will mix between the currently selected foreground and background color. If Gradient is selected, it chooses a point on the gradient to use as painting color according to the sensors selected.

[image: ../../../_images/Krita_2_9_brushengine_mix_01.png]

Uses

[image: ../../../_images/Krita_2_9_brushengine_mix_02.png]

	Flow map
	The above example uses a Krita painted flowmap in the 3D program Blender.
A brush was set to Source ‣ Gradient and Mix ‣ Drawing angle. The gradient in question contained the 360° for normal map colors. Flow maps are used in several Shaders, such as brushed metal, hair and certain river-shaders.

Gradient

Exactly the same as using Source ‣ Gradient with Mix, but only available for the Color Smudge Brush.

[image: ../../../_images/Krita-tutorial5-I.6-1.png]
You can either:

	Leave the default Foreground ‣ Background gradient setting, and just change the foreground and background colors

	Select a more specific gradient

	Or make custom gradients.

Spacing

[image: ../../../_images/Krita_Pixel_Brush_Settings_Spacing.png]
This allows you to affect Brush Tips with Sensors.

[image: ../../../_images/Krita_2_9_brushengine_spacing_02.png]

	Isotropic spacing
	Instead of the spacing being related to the ratio of the brush, it will be on diameter only.

[image: ../../../_images/Krita_2_9_brushengine_spacing_01.png]

Ratio

Allows you to change the ratio of the brush and bind it to parameters. This also works for predefined brushes.

[image: ../../../_images/Krita_3_0_1_Brush_engine_ratio.png]

Sensors

	Pressure
	Uses the pressure in and out values of your stylus.

	PressureIn
	Uses only pressure in values of your stylus. Previous pressure level in same stroke is overwritten only by applying more pressure. Lessening the pressure doesn’t affect PressureIn.

	X-tilt
	How much the brush is affected by stylus angle, if supported.

	Y-tilt
	How much the brush is affected by stylus angle, if supported.

	Tilt-direction
	How much the brush is affected by stylus direction. The pen point pointing towards the user is 0°, and can vary from -180° to +180°.

	Tilt-elevation
	How much the brush is affected by stylus perpendicularity. 0° is the stylus horizontal, 90° is the stylus vertical.

	Speed
	How much the brush is affected by the speed at which you draw.

	Drawing Angle
	How much the brush is affected by which direction you are drawing in. Lock will lock the angle to the one you started the stroke with. Fan corners will try to smoothly round the corners, with the angle being the angles threshold it’ll round. Angle offset will add an extra offset to the current angle.

	Rotation
	How much a brush is affected by how the stylus is rotated, if supported by the tablet.

	Distance
	How much the brush is affected over length in pixels.

	Time
	How much a brush is affected over drawing time in seconds.

	Fuzzy (Dab)
	Basically the random option.

	Fuzzy Stroke
	A randomness value that is per stroke. Useful for getting color and size variation in on speed-paint brushes.

	Fade
	How much the brush is affected over length, proportional to the brush size.

	Perspective
	How much the brush is affected by the perspective assistant.

	Tangential Pressure
	How much the brush is affected by the wheel on airbrush-simulating styli.

Texture

This allows you to have textured strokes. This parameter always shows up as two parameters:

Texture

	Pattern
	Which pattern you’ll be using.

	Scale
	The size of the pattern. 1.0 is 100%.

[image: ../../../_images/Krita_2_9_brushengine_texture_05.png]

	Horizontal Offset & Vertical Offset
	How much a brush is offset, random offset sets a new per stroke.

[image: ../../../_images/Krita_2_9_brushengine_texture_04.png]

	Texturing mode
	All texture modes affect the alpha channel, with the exception of lightness map and gradient map, which
affect the color channels.

[image: ../../../_images/Krita_2_9_brushengine_texture_01.png]
[image: ../../../_images/Krita_4_4_brushengine_texture_lightness_gradient_demo.png]
In the following explanations, the sample strokes go from low strength on the left side to high strength on the
right side. The top stroke uses a hard brush tip and the bottom one a soft brush tip. On the left side of the
strokes there are two non-textured dots, just for comparison sake.

	Multiply
	Uses alpha multiplication to determine the effect of the texture. Has a soft feel.

[image: ../../../_images/multiply.png]

	Subtract
	Uses subtraction to determine the effect of the texture. Has a harsher, more texture feel.

[image: ../../../_images/subtract.png]

	Lightness Map
	
New in version 4.4.

Applies lightness values of the texture to the paint. Can be used to simulate paper/canvas, or for painting a texture, like reptile skin or tree bark.

[image: ../../../_images/lightness_map.png]

	Gradient Map
	
New in version 4.4.

Maps gray/lightness values of the texture to the currently selected gradient. Useful for painting textures with multiple colors, like reptile skin, tree bark, stars, etc.

[image: ../../../_images/gradient_map.png]

	Darken
	
New in version 5.0.

This mode chooses the minimum alpha value between the brush tip and the texture. The effect is as if the texture
made holes in the opaque areas of the brush tip.

[image: ../../../_images/darken.png]

	Overlay
	
New in version 5.0.

The texture is softly applied to the semi-transparent areas of the brush tip.
This mode produces a result similar to multiply but allowing for full coverage when high strength values are used.

[image: ../../../_images/overlay.png]

	Color Dodge
	
New in version 5.0.

This mode produces features with somewhat hard edges on the brush tip by making it more opaque where the texture
values are brighter.

[image: ../../../_images/color_dodge.png]

	Burn
	
New in version 5.0.

This mode produces holes with somewhat hard edges on the brush tip by making it more transparent where the texture
values are darker.

[image: ../../../_images/color_burn.png]

	Linear Dodge
	
New in version 5.0.

Similar to color dodge but the opacity of the brush tip is increased even more.

[image: ../../../_images/linear_dodge.png]

	Linear Burn
	
New in version 5.0.

The result is similar to burn but with the opacity decreased a bit more. It also is similar to the subtract
mode but with the texture inverted.

[image: ../../../_images/linear_burn.png]

	Hard Mix (Photoshop)
	
New in version 5.0.

This mode produces a result similar to burn or linear burn and allows to obtain full coverage when high strength values
are used. The resulting edges are very hard (in fact, aliased).

[image: ../../../_images/hard_mix_ps.png]

	Hard Mix Softer (Photoshop)
	
New in version 5.0.

This mode tries to emulate hard mix (photoshop) while producing softer, antialiased, edges.

[image: ../../../_images/hard_mix_softer_ps.png]

	Height
	
New in version 5.0.

This mode is similar to the subtract mode but with a higher range of possibilities when applying the strength.
Contrary to subtract, it allows to achieve full coverage with one stroke.

[image: ../../../_images/height.png]

	Linear Height
	
New in version 5.0.

Same as height but combined with multiply to achieve softer transitions.

[image: ../../../_images/linear_height.png]

	Height (Photoshop)
	
New in version 5.0.

As the height mode, this mode is similar to the subtract mode but with a higher range of possibilities when applying
the strength. Contrary to subtract, it allows to achieve full coverage with one stroke. This mode tries to
emulate the height mode present in Photoshop and it only differs from Krita’s height mode on how the strength
is mapped in the algorithm. When using a strength value of 0.1 the results are almost identical to the subtract
mode with a strength of 1.

[image: ../../../_images/height_ps.png]

	Linear Height (Photoshop)
	
New in version 5.0.

Same as height (photoshop) but combined with multiply to achieve softer transitions.

[image: ../../../_images/linear_height_ps.png]

	Cutoff policy
	Cutoff policy will determine what range and where the strength will affect the textured outcome.

	Disabled
	Doesn’t cut off. Full range will be used.

	Pattern
	Cuts the pattern off.

	Brush
	Cuts the brush tip off.

[image: ../../../_images/Krita_2_9_brushengine_texture_02.png]

	Cutoff
	Cutoff is… the grayscale range that you can limit the texture to. This also affects the limit takes by the strength. In the below example, we move from the right arrow moved close to the left one, resulting in only the darkest values being drawn. After that, three images with larger range, and underneath that, three ranges with the left arrow moved, result in the darkest values being cut away, leaving only the lightest. The last example is the pattern without cutoff.

[image: ../../../_images/Krita_2_9_brushengine_texture_07.png]

	Invert Pattern
	Invert the pattern.

[image: ../../../_images/Krita_2_9_brushengine_texture_06.png]

Brightness and Contrast

New in version 3.3.1: Adjust the pattern with a simple brightness/contrast filter to make it easier to use. Because Subtract and Multiply work differently, it’s recommended to use different values with each:

[image: ../../../_images/Krita_3_1_brushengine_texture_07.png]

New in version 4.4: Neutral Point adjustment:

	Neutral Point
	Adjust the gray value that is considered neutral in the texture. 0.5 keeps the texture as is; higher values make the texture darker, and lower values make the texture lighter. Works a bit differently from the brightness option, and is mostly useful to adjust existing textures to work well with Lightness Map and Gradient Map modes (though it can have applications with the other two modes).

Strength

This allows you to set the texture to Sensors. It will use the cutoff to continuously draw lighter values of the texture (making the result darker).

New in version 4.4: For Lightness Map and Gradient Map modes, Strength controls how much of the texture is applied compared to how much of the selected paint color comes through.

[image: ../../../_images/Krita_2_9_brushengine_texture_03.png]

See also

David Revoy describing the texture feature (old) [https://www.davidrevoy.com/article107/textured-brush-in-floss-digital-painting].

Clones Array

Allows you to create a set of clone layers quickly. These are ordered in terms of rows and columns. The default options will create a 2 by 2 grid. For setting up tiles of an isometric game, for example, you’d want to set the X offset of the rows to half the value input into the X offset for the columns, so that rows are offset by half. For a hexagonal grid, you’d want to do the same, but also reduce the Y offset of the grids by the amount of space the hexagon can overlap with itself when tiled.

	- Elements
	The amount of elements that should be generated using a negative of the offset.

	+ Elements
	The amount of elements that should be generated using a positive of the offset.

	X offset
	The X offset in pixels. Use this in combination with Y offset to position a clone using Cartesian coordinates.

	Y offset
	The Y offset in pixels. Use this in combination with X offset to position a clone using Cartesian coordinates.

	Distance
	The line-distance of the original origin to the clones origin. Use this in combination with angle to position a clone using a polar coordinate system.

	Angle
	The angle-offset of the column or row. Use this in combination with distance to position a clone using a polar coordinate system.

Create New Document

A new document can be created as follows.

	Click on File from the application menu at the top.

	Then click on New. Or you can do this by pressing the Ctrl + N shortcut.

	Now you will get a New Document dialog box as shown below:

[image: ../_images/Krita_newfile.png]
There are various sections in this dialog box which aid in creation of new document,
either using custom document properties or by using contents from clipboard and templates.
Following are the sections in this dialog box:

Custom Document

From this section you can create a document according to your requirements: you
can specify the dimensions, color model, bit depth, resolution, etc.

In the top-most field of the Dimensions tab, from the Predefined
drop-down you can select predefined pixel sizes and PPI (pixels per inch). You
can also set custom dimensions and the orientation of the document from the
input fields below the Predefined: drop-down. This can also be saved
as a new predefined preset for your future use by giving a name in the
Save Image Size as: input box and clicking on the Save
button. Below we find the Color section of the new document dialog box, where
you can select the color model and the bit-depth. Check Colors
for more detailed information regarding color.

On the Content tab, you can define a name for your new document.
This name will appear in the metadata of the file, and Krita will use it for
the auto-save functionality as well. If you leave it empty, the document will
be referred to as ‘Unnamed’ by default. You can select the background color and
the amount of layers you want in the new document. Krita remembers the amount
of layers you picked last time, so be careful.

Finally, there’s a description box, useful to note down what you are going to do.

Create From Clipboard

This section allows you to create a document from an image that is in your
clipboard, like a screenshot. It will have all the fields set to match the
clipboard image.

Templates:

These are separate categories where we deliver special defaults. Templates are
just .kra files which are saved in a special location, so they can be pulled up
by Krita quickly. You can make your own template file from any .kra file, by
using File ‣ Create Template from Image… in the top menu.
This will add your current document as a new template, including all its
properties along with the layers and layer contents.

Once you have created a new document according to your preference, you should
now have a white canvas in front of you (or whichever background color you
chose in the dialog).

Pre-installed Python plugins

This page describes all plugins that are available in Krita by default (you don’t need to install them).

See also

If you want to see a selection of custom user-made Python plugins that you can additionally download and install, see User-made Python Plugins.

To learn how to manage your plugins, see Managing Python plugins.

If you want to know more about an individual plugin, you can access the plugin’s manual by going to Settings ‣ Configure Krita… menu, and then choosing the Python Plugin Manager tab. Then you can click on a specific plugin and the manual will appear in the bottom text area.

Usability

Mixer Slider Docker

Docker that allows you to choose a color from gradients between the current color and other selected colors.

Palette Docker

Docker that allows you to control palettes more easily. You can add swatches, groups and export the palette settings, or even the palette itself as a GIMP Palette or Inkscape SVG.

Quick Settings Docker

Docker that allows you to quickly set the opacity, flow and size from a predefined list.

Ten Brushes

Plugin that assigns presets to one of ten configurable hotkeys. To use, go to Tools ‣ Scripts ‣ Ten Brushes, and a window will pop up with a preset chooser and ten boxes above it. Underneath the boxes is the hotkey the box is associated with.

Customize your shortcuts by editing the configurations in Settings ‣ Configure Krita ‣ Keyboard Shortcuts, and then change the “Activate Brush Preset” actions under “Ten Brushes”.

Workflow Improvements

Comics Project Management Tools

Plugin that simplifies comics creation.

	Organize and quickly access their pages.

	Export to multiple formats with proper metadata.

	Random suggestions for metadata to avoid spending time on finding the perfect title before starting the project.

Batch Exporter

Plugin for Game Developers and Graphic Designers.

	Batch export of assets to multiple sizes, file types and custom paths.

	Renaming layers quickly with the smart rename tool.

	Export all layers or only selected layers.

By default, the plugin exports the images in an export folder next to the Krita document and follows the structure of your layer stack.

Image/Document Actions

Assign Profile Dialog

Allows you to assign a profile to an image instead of converting it to that profile. The difference is that it allows only interpreting the colors by the new profile, but not change any of the values. It can be found in Tools ‣ Assign Profile to Image…, and will present a list of profiles for the current image’s color model.

Color Space

Allows you to select a document and convert its colors to a new color space, like RGBA, CMYKA or L*a*b.

Channels to Layers

Splits channels from a layer to sub-layers.

Document Tools

Allows you to select a document and scale, crop and rotate in one action.

Filter Manager

Quickly apply a filter on selected documents.

High Pass

Performs a high pass filter on the active document.

File Actions

Export Layers

Allows you to select a document and export its layers in an ordered and sensible manner.

Last Documents Docker

Script that shows the recently opened documents as a thumbnail image.

Python Scripting

Krita Script Starter

A script that helps set up the various files that Krita expects to see when it runs a script, namely:

	.desktop meta data file;

	the main directory for your plugin;

	__init__.py file;

	the main python file for your package;

	Manual.html file for your documentation;

Python Plugin Importer

Imports Python plugins from zip files. See Managing Python plugins.

Scripter

A small Python scripting console, allows to write code in an editor and run it, with feedback related to the output of the execution. You can also debug your code using the “Debug” button.

Ten Scripts

Similar to Ten Brushes, this plugin allows an assignment of Python scripts to ten configurable hotkeys.

Dockers

All of the panels that exist in Krita and what they do.

	Add Shape

	Advanced Color Selector

	Animation Curves Docker

	Animation Docker

	Animation Timeline Docker

	Arrange

	Artistic Color Selector Docker

	Preset Docker

	Brush Preset History Docker

	Channels

	Color Sliders

	Compositions

	Digital Color Mixer

	Gamut Masks Docker

	Grids and Guides Docker

	Histogram Docker

	Layers

	Log Viewer

	LUT Management

	Onion Skin Docker

	Overview

	Palette Docker

	Patterns Docker

	Recorder Docker

	Reference Images Docker

	Shape Properties Docker

	Small Color Selector

	Snapshot Docker

	Specific Color Selector

	Storyboard Docker

	Task Sets Docker

	Touch Docker

	Undo History

	Symbol Libraries

	Wide Gamut Color Selector

Add Shape

[image: ../../_images/Krita_Add_Shape_Docker.png]
A docker for adding KOffice shapes to a Vector Layers.

Deprecated since version 4.0: This got removed in 4.0, the Symbol Libraries replacing it.

Advanced Color Selector

[image: ../../_images/advanced-color-selector.png]
As compared to other color selectors in Krita, Advanced color selector provides more control and options to the user. To open Advanced color selector choose Settings ‣ Dockers ‣ Advanced Color Selector. You can configure this docker by clicking on the little settings icon on the top left corner of the docker. Clicking on the settings icon will open a popup window with following tabs and options:

Color Selector

Here you configure the main selector.

Show Color Selector

New in version 4.2: This allows you to configure whether to show or hide the main color selector.

Type and Shape

[image: ../../_images/Krita_Color_Selector_Types.png]
Here you can pick the hsx model you’ll be using.
There’s a small blurb explaining the characteristic of each model, but let’s go into detail:

	HSV
	Stands for Hue, Saturation, Value. Saturation determines the difference between white, gray, black and the most colorful color. Value in turn measures either the difference between black and white, or the difference between black and the most colorful color.

	HSL
	Stands for Hue, Saturation, Lightness. All saturated colors are equal to 50% lightness. Saturation allows for shifting between gray and color.

	HSI
	This stands for Hue, Saturation and Intensity. Unlike HSL, this one determine the intensity as the sum of total rgb components. Yellow (1,1,0) has higher intensity than blue (0,0,1) but is the same intensity as cyan (0,1,1).

	HSY’
	Stands for Hue, Saturation, Luma, with Luma being an RGB approximation of true luminosity. (Luminosity being the measurement of relative lightness). HSY’ uses the Luma Coefficients, like Rec. 709 [https://en.wikipedia.org/wiki/Rec._709], to calculate the Luma. Due to this, HSY’ can be the most intuitive selector to work with, or the most confusing.

Then, under shape, you can select one of the shapes available within that color model.

Note

Triangle is in all color models because to a certain extent, it is a wildcard shape: All color models look the same in an equilateral triangle selector.

Luma Coefficients

This allows you to edit the Luma coefficients for the HSY model selectors to your leisure. Want to use Rec. 601 [https://en.wikipedia.org/wiki/Rec._601] instead of Rec. 709? These boxes allow you to do that!

By default, the Luma coefficients should add up to 1 at maximum.

	Gamma
	The HSY selector is linearised, this setting allows you to choose how much gamma is applied to the Luminosity for the gui element. 1.0 is fully linear, 2.2 is the default.

Color Space

This allows you to set the overall color space for the Advanced Color Selector.

Warning

You can pick only sRGB colors in advanced color selector regardless of the color space of advanced color selector. This is a bug.

Behavior

When docker resizes

This determines the behavior of the widget as it becomes smaller.

	Change to Horizontal
	This’ll arrange the shade selector horizontal to the main selector. Only works with the MyPaint shade selector.

	Hide Shade Selector.
	This hides the shade selector.

	Do nothing
	Does nothing, just resizes.

Zoom selector UI

If your have set the docker size considerably smaller to save space, this option might be helpful to you. This allows you to set whether or not the selector will give a zoomed view of the selector in a size specified by you, you have these options for the zoom selector:

	when pressing middle mouse button

	on mouse over

	never

The size given here, is also the size of the Main Color Selector and the MyPaint Shade Selector when they are called with the Shift + I and Shift + M shortcuts, respectively.

	Hide Pop-up on click
	This allows you to let the pop-up selectors called with the above hotkeys to disappear upon clicking them instead of having to leave the pop-up boundary. This is useful for faster working.

Shade selector

Shade selector options.
The shade selectors are useful to decide upon new shades of color.

Update Selector

This allows you to determine when the shade selector updates.

MyPaint Shade Selector

Ported from MyPaint, and extended with all color models.
Default hotkey is Shift + M.

Simple Shade Selector

This allows you to configure the simple shade selector in detail.

Color Patches

This sets the options of the color patches.

Both Color History and Colors From the Image have similar options which will be explained below.

	Show
	This is a radio button to show or hide the section. It also determines whether or not the colors are visible with the advanced color selector docker.

	Size
	The size of the color boxes can be set here.

	Patch Count
	The number of patches to display.

	Direction
	The direction of the patches, Horizontal or Vertical.

	Allow Scrolling
	Whether to allow scrolling in the section or not when there are too many patches.

	Number of Columns/Rows
	The number of Columns or Rows to show in the section.

	Update After Every Stroke
	This is only available for Colors From the Image and tells the docker whether to update the section after every stroke or not, as after each stroke the colors will change in the image.

History patches

The history patches remember which colors you’ve drawn on canvas with. They can be quickly called with the H key.

Common Patches

The common patches are generated from the image, and are the most common color in the image. The hotkey for them on canvas is the U key.

Gamut masking

New in version 4.2.

Note

Gamut masking is available only when the selector shape is set to wheel.

You can select and manage your gamut masks in the Gamut Masks Docker.

In the gamut masking toolbar at the top of the selector you can toggle the selected mask off and on (left button). You can also rotate the mask with the rotation slider (right).

External Info

HSI and HSY for Krita’s advanced color selector [https://wolthera.info/?p=726].

Animation Curves Docker

Krita’s Animation Curves Docker allows artists to animate the values of some properties over time.

When animating a complex cut, it’s not unusual to want to animate things that would be difficult or inefficient to do through drawing alone. In traditional pen-and-paper animation dating back to the 1920s, special lighting rigs and purpose-built devices like multiplane cameras were used to pull off special effects that changed animation forever! Likewise, Krita’s Animation Curves docker allows us to animate more than just the lines on your canvas, such as a layer’s opacity or the position, rotation and scale of a Transform Mask.

Because most things can be boiled down to numeric values (for example, opacity as a percentage or the position of a Transform Mask), and because computers are great with maths and automation, we can plot and visualize the change in values over time on a simple 2D graph. What’s more, we can also draw lines and curves that show the computer how we want it to calculate the values in between each of our plotted keyframe values; a technique known as interpolation or tweening.

[image: ../../_images/Animation_Curves_Docker.png]

Overview

As shown in the image above, Krita’s Animation Curves Docker can be thought of as different sections:

	Utilities – The left side of the toolbar gives animators quick access to all of the widgets that are critical to their workflow; transport controls (previous, play/pause, stop and next buttons), a frame counter, preview controls (speed and drop frames), buttons for adding and removing scalar keyframes, buttons for changing the interpolation mode and tangent mode of the selected keyframe, a box for setting the selected keyframe to a specific value, as well as buttons to help zoom and navigate the main graph view.

	Settings – While all of the high-traffic controls are presented directly, the right end of the toolbar also contains buttons for opening submenus for things like onion skins and settings that you can generally set and forget (for example, playback range, frame rate and autokey mode).

	Channels List – This area shows the various channels of the current layer that are currently being animated within the Animation Curves Docker. Each independent channel is associated with a unique color and its visibility within the graph view can be toggled by clicking on the eyeball icon.

	Graph View – Last but not least is the graph view, the big graph of values and times that we use to animate the value of parameters over time. When a keyframe is added to the current channel at the current time it will appear as a colored circle within the graph view. After clicking on the keyframe to select it, you can change the value by dragging the circle vertically or by entering a specific value into the value box on the toolbar. Similarly, you can change the time of the selected frame by dragging it horizontally. Finally, when the select keyframe is using bezier curve interpolation, selecting it will cause one or more curve handles to appear, which can be used to change the shape of the interpolation curve over time.

Animating Opacity

Starting with Krita 5, we can use the Animation Curves Docker to animate a layer’s opacity and, with the help of a Transform Mask, its position, rotation, scale and shear.

Warning

Though the design is pretty similar to the Animation Timeline Docker, the Animation Curves Docker may be a bit confusing or intimidating when you first open it, especially if you haven’t done digital animation before.

Let’s look first at animating a layer’s opacity:

Say you want to animate something like an expanding cloud of dust that gradually becomes more transparent as it dissipates, or maybe a haunting ghost that seems to materialize out of thin air. These types of effects are pretty hard to get right by traditionally animated line drawings alone, and that’s exactly where the Animation Curves Docker can step in.

After selecting the layer that you want to animate the opacity of, you need to select the frame time you want the opacity to start changing at by clicking somewhere on the frame timing header at the top of the graph view. Just like the Animation Timeline Docker, we can click and drag anywhere on the timing header to “scrub” across your animation and preview the results.

Next we create our first scalar keyframe by clicking on the add keyframe button on the docker’s titlebar.

When you do this you’ll notice two things happen. First, a new opacity channel will appear in the channels list on the left-hand side, next to a colored mark that’s associated with the color of the keyframes and curves in the graph view. Second, a single keyframe will appear somewhere inside the graph view at the currently active time.

Of course it takes more than a single point to make a line or curve, so we have a little bit more work to do.

Just like our first keyframe, we need to make a second keyframe. Let’s change the active frame time again (by clicking or scrubbing across the timing header) and add another keyframe at that new time (by clicking on the add keyframe button). As you’d expect, a second keyframe has appeared at the new time and a straight line has appeared between them.

With the active time still over our new keyframe, you’ll find that as you change the opacity slider above the Layers the new keyframe that we’ve created will move up and down. Likewise, moving the keyframe up and down will cause the opacity at that time to change.

And just like that, when you press the play button you’ll see the opacity of the layer animate over time!

Warning

Unlike traditional methods, animating with curves can cause values to change across every frame of your animation. This can be more demanding on your machine and cause the caching process to take a little bit more time, as it calculates and stores each frame.

Before we move on, let’s use interpolation curves instead of a straight line to change the timing and general feel of our opacity animation.

If you select the first keyframe (the one on the left-hand side) of your line segment and click on the bezier curve interpolation button in the utilities section of the titlebar, you’ll notice that the keyframe will appear as a hollow circle on the graph view. That hollow circle is a handle, and by clicking on it and dragging in different directions you can change the arc of the curve between your two keyframes.

Similarly, you can click on the linear interpolation button to change your curve back into a line, or the constant button to turn off interpolation altogether, causing values to jump suddenly between keyframes.

Note

It’s important to be aware of which animation frame is selected and active, as shown by the highlighted vertical line on the graph view. The keyframe that changes as you make adjustments elsewhere in the program will always be dependent on the active frame time!

Ok, it’s a bit tough to put in writing… But it’s not so bad once you get the hang of it!

Animating Transform Masks

Now let’s talk a bit about how we can use a Transform Masks to animate our layer’s position, rotation, scale and shear for “tweening” effects:

Animating a transform mask is a lot like animating opacity, but first we need to add a Transform Mask. (You can do this by [image: mouseright] on the layer that you want to animate, and then Add ‣ Transform Mask.)

Transform Masks allow us to transform (translate, rotate, scale, or shear) the layer that they are attached to, without affecting its original position. And (starting with Krita 5) they also allow us to animate a layer’s transform!

Much like how we animated opacity above, we need to add our first transformation keyframe. To do this, first make sure that you have your layer’s Transform Mask selected, and then click on the add keyframe button at the top of the docker.

Warning

Remember (as of Krita 5.0) we can only directly animate the opacity curve of a layer. In order to animate a layer’s position, rotation, scale and shear, we need to attach a Transform Mask and animate it instead.

As such, when you have a regular paint layer selected the Animation Curves Docker will automatically add opacity keyframes, and when you have a transform mask selected the Animation Curves Docker will automatically add transformation keyframes.

Try to always keep in mind what type of layer you have selected when animating curves in Krita!

You should see a whole bunch of channels appear in the channels list, each with a unique name and color, as well as a number of corresponding keyframes.

If you want to you can edit these key frames directly in the graph view, but it’s probably more intuitive to do it directly on the canvas. So now, when you use the Transform Tool on your Transform Masks, you should see the various keyframes of each channel moving around in the graph view to reflect the changes.

Tip

Animating a Transform Mask spawns a lot of channels but, depending on your goals, you may only want to work with a small number of them at a time. Hiding and soloing channels in the channels list can make it much easier to see and edit curves, especially since you can use the zoom to channel and zoom to curve buttons at the top of the docker to fit the graph view to the currently visible channels.

Navigating by click-dragging on the zoomable scrollbars and values header (on the left-hand side of the graph view) can also really help with editing curves!

Finally, click or scrub to a different frame time, add another keyframe, and use the Transform Tool on the same Transform Mask again.

Press the play button and (after a little bit of caching) there you have it, a layer with an animated Transform Mask!

Controls

	Channels List

	[image: mouseleft] on Eye Icon: Toggle show/hide channel.

	Shift + [image: mouseleft] on Eye Icon: Solo channel.

	[image: mouseright] : Open layer or channel context menu. [Reset Channel(s)]

	Graph View

	[image: mouseleft] : Select keyframe.

	[image: mouseleft] + drag : Move frame(s).

	[image: mouseleft] double-click : Select all keyframes at time.

	Alt + [image: mouseleft] double-click : Select all keyframes of channel.

	Space + [image: mouseleft] : Pan.

	Space + [image: mouseright] : Zoom.

	Frame Timing Header

	[image: mouseleft] : Move to time and select frame of the active layer.

	[image: mouseleft] + drag : Scrub through time and select frame of the active layer.

	Value Header

	[image: mouseleft] + drag : Zoom graph view.

	Space + [image: mouseleft] + drag : Pan graph view.

Deprecated since version 5.0: As of Krita 5.0, the features of the Animation Docker have been moved to the Animation Timeline Docker.

Animation Docker

[image: ../../_images/Animation_docker.png]
To have a playback of the animation, you need to use the animation docker.

The first big box represents the current Frame. The frames are counted with programmer’s counting so they start at 0.

Then there are two boxes for you to change the playback range here. So, if you want to do a 10 frame animation, set the end to 10, and then Krita will cycle through the frames 0 to 10.

The bar in the middle is filled with playback options, and each of these can also be hot-keyed. The difference between a keyframe and a normal frame in this case is that a normal frame is empty, while a keyframe is filled.

Then, there’s buttons for adding, copying and removing frames. More interesting is the next row:

	Onion Skin
	Opens the Onion Skin Docker if it wasn’t open before.

	Auto Frame Mode
	Will make a frame out of any empty frame you are working on. Currently automatically copies the previous frame.

	Drop frames
	This’ll drop frames if your computer isn’t fast enough to show all frames at once. This process is automatic, but the icon will become red if it’s forced to do this.

You can also set the speedup of the playback, which is different from the framerate.

Animation Timeline Docker

The Animation Timeline Docker is at the heart of Krita’s raster animation tools, providing everything you need to create, edit and preview traditional hand-drawn animations.

[image: ../../_images/Animation_Timeline_Docker.png]

Overview

As shown in the image above, Krita’s Animation Timeline Docker can be thought of as different sections:

	Utilities – The left side of the toolbar gives animators quick access to all of the widgets that are critical to their workflow; transport controls (previous, play/pause, stop and next buttons), a frame counter, preview controls (speed and drop frames), and buttons for quickly creating new frames and deleting unwanted ones.

	Settings – While all of the high-traffic controls are presented directly, the right end of the toolbar also contains buttons for opening submenus for things like Onion Skin Docker and settings that you can generally set and forget (for example: playback range, frame rate and autokey mode).

	Layer List – This area contains some subset of the layers of your current document. Similar to the Layers, each layer has various properties that can also be toggled here (visibility, locking, onion skins, etc.). While the currently active layer is always shown here, layers can also be “pinned” to the timeline using the pin button to the left of each layer’s name, the Pin to Timeline menu action, or the Pin Existing Layer submenu so they will be visible even when inactive.

Tip

Depending on your preference, newly created paint layers can start pinned or unpinned by setting the Automatically pin new layers to timeline option in Settings –> Configure Krita… –> General –> Miscellaneous.

	Active Layer:
	The active layer is the layer that you’re currently able to edit or draw on, shown as a highlighted row in the layer list. [image: mouseleft] a layer within the layer list will make it the currently active layer.

	Layer Menu:
	A small menu for manipulating animated layers at the top left of the layer list. You can create new layers, remove existing ones, as well as pin or unpin the active layer. (This menu also shows up when [image: mouseright] on layer headers inside of the Layer List.)

	Audio Menu:
	Another small menu at the top of the layer list for animating along with audio sources. This is also where you can open or close audio sources and control output volume/muting.

	Zoom Handle:
	This special widget allows you to zoom in and out on the frame table, centered around the current frame time. [image: mouseleft] + drag from within the zoom handle controls the zoom level.

	Frame Table – The frame table is a large grid of cells which can either hold a single keyframe or be empty. Each row of the frame table represents an animated layer and each column represents a frame time. Just like the layer list, the active layer is highlighted across the entire frame table. For those who are familiar with pen-and-paper animation, you can think of the frame table as Krita’s dope sheet or time sheet.

Note

It’s important to understand that frame timings are not based on units of time like seconds, but on frames, which can then be played back at any speed, depending on the animation’s frame rate and play speed settings.

Keyframes can be moved around the timeline by [image: mouseleft] + drag shortcut from one slot to another, even across layers. Furthermore, holding the Ctrl key while dragging creates a copy, and holding the Alt key while dragging creates a clone frame. Finally, [image: mouseright] anywhere in the frame table will bring up a context menu for adding, removing, copying, pasting or adjusting timing.

	Active Keyframe
	Right now, it’s only possible to view and draw on one keyframe at a time. This is known as the active keyframe, and is represented on the frame table as a block filled with diagonal stripes. Often, in simple animations, the active keyframe will be the frame on the active layer that is on or just before the current time. However, if the active keyframe has one or more clone frames all drawing, painting and editing will also affect all of its clones.

	Clone frames
	A clone frame of a keyframe is a reference to that keyframe at a different position. Clone frames share the exact same image data under the hood, and will have the same diagonal markings as the active frame when an active frame with clone frames is selected.

	Duplicate keyframe
	Not to be confused with Clone Frames, a duplicate frame is merely the Active Keyframe copied and pasted as a separate Keyframe. Where clone frames will automatically duplicate the changes you make to them to each cloned frame, a duplicated frame is just another keyframe that happens to have the same content as the source.

	Current Selection
	Frames highlighted in orange represent a selection or multiple selections. While multiple frames are selected, [image: mouseright] anywhere in the frame table will bring up a context menu that will allow for adding and removing keyframes or holds within the current selection. It’s also possible to have multiple separate (non-contiguous) selections if needed.

Warning

Painting always happens only on the active keyframe, which is not necessarily part of your current selection on the timeline!

	Keyframe
	In Krita, we call the images that make up your animation keyframes. Each keyframe can also be assigned a Color Label, as a matter of personal organization and workflow.

	Blank Keyframe
	Within the frame table, keyframes that contain drawings are displayed as filled blocks within a cell, while a blank keyframe is shown as a hollow outline. Unlike some other tools, Krita automatically holds each keyframe until the next keyframe on that layer; these holds are shown as a colored line that’s drawn across all held frames.

	Frame Timing Header
	The frame timing header is a ruler at the top of the frame table. This header is divided into small notched sections which are based on the current frame rate (set in the animation settings submenu at the right end of the toolbar). While each frame is marked with a single line, each second is marked by a subtle double-line. Major notches are also marked by a frame number.

	Cached Frames
	The frame timing header also shows important information about which frames are currently cached. When something is said to be “cached”, that means that it is stored in your device’s working memory (RAM) for extra fast access. Cached frames are shown by the header with a small light-gray rectangle in each column. While this information isn’t always critical for us artists, it’s helpful to know that Krita is working behind the curtains to cache our animation frames for the smoothest possible experience when scrubbing through or playing back your animation.

	Current Time Scrubber:
	A highlighted column in the frame table which controls the current frame time and, as such, what is currently displayed in the viewport.

	Zoomable Scrollbar
	Not only can the scrollbars on the Animation Timeline Docker be used to pan the frame table by dragging left and right, it can also be used to quickly zoom in and out by dragging up and down. Pan and zoom in one flick of a wrist!

	Onion Skins Docker – While technically a separate docker, the Onion Skin Docker is used in conjunction with the Animation Timeline docker to help animators see how their animation changes between neighboring keyframes. The onion skins menu button on the Animation Timeline Docker can be used to quickly toggle the visibility of the Onion Skins Docker.

Animating

In order to begin animating with Krita, we first need to turn our paint layer into an animated layer by adding our first keyframe. In our case we will start with a blank keyframe, but if you’ve already drawn something on the paint layer and would like to transfer it to your new keyframe you can create a duplicate keyframe instead.

To make a new, blank keyframe, [image: mouseright] any square on the timeline docker and select Create Blank Frame. A blank frame (one that you haven’t yet drawn anything in) appears as a hollow outline instead of a solid box, making that frame active and drawing on the canvas will make it appear as a solid, colored rectangle. To move a keyframe around, you can drag and drop it into another empty frame slot, even across animation layers.

The currently selected layer will automatically be shown on the timeline. However, while animating you may find that you want to keep another layer “pinned”, making it visible in the Animation Timeline Docker regardless of which layer is selected. There are a few ways to do this in Krita, but it doesn’t get any simpler than [image: mouseleft] on the little pushpin icon next to the layer’s name.

It’s not much of an animation with only one frame, so to add another new frame you can do the same thing we did last time by selecting Create Blank Frame from the [image: mouseright] menu or by double- [image: mouseleft] on a particular frame slot. For the sake of this lesson, however, we will mix it up by creating a duplicate keyframe by scrubbing to a different time and press the Create Duplicate Keyframe button on toolbar at the top of the Animation Timeline Docker.

As you can see, there are quick a few convenient ways to add or remove keyframes from your animation in Krita, depending on your personal preference, input devices and workflow!

Now that we have more than one keyframe, we can do different drawings in each and play back our simple animation by press the Play/Pause button on the toolbar at the top of the docker. Another crucial technique for animating is manually switching between frames at your own pace to inspect the frame-by-frame movement of your animation as you work, also known as “scrubbing”. Like everything else, we’ve made sure that there are a few different ways to scrub through you animation, but one of my favorites is to simply [image: mouseleft] + drag between different times on the Frame Timing Header at the top of the frame table.

I know that’s a lot of info to digest, but all you really need to know to get started is how to create new keyframes and scrub through your animation to check your progress. From there, all that’s left is the hard but rewarding work of drawing lots and lots (and lots) of animation frames!

Tips

	There are a couple subtle features built into the docker’s transport controls that you might find useful. For example, press the Stop button while your animation is playing will jump back to whatever frame you started playing from, and press it again when your animation is not playing will jump back to the first frame of your animation. Similarly, the next keyframe button will jump the selection to the next available keyframe on the active layer, but if there is no next keyframe on that layer it will use the timing of your animation to estimate where you may want to place your next keyframe, and jump to that position. While a bit advanced, nuances like this mean that the Animation Timeline Docker’s buttons (and keybind-able actions) almost always do something useful for animators.

	It’s possible to add multiple keyframes by [image: mouseright] inside the frame table and selecting the Keyframes ‣ Insert Multiple Keyframes pop-up submenu item. With this option you can specify the number of frames to add with the option of built in timing for quickly creating a series of 1s, 2s, 3s, etc. These settings are saved between uses.

	You can also change the color of keyframes within the frame table so that you can easily identify important frames or distinguish between different sections of your animation. The current color selection is remembered for new frames so that you can easily make a set of colored frames and then switch to another color. (By the way, it’s even possible to quickly jump between frames of the same color by assigning a keyboard shortcut to Previous/Next Matching Keyframe.)

	[image: mouseright] within the Frame Timing Header instead of the frame table gives you access to a few more option which allow you to add or remove entire columns of frames or holds at a time, as well as reset your animation cache if needed. For example, selecting the Keyframe Columns ‣ Insert Keyframe Column Left pop-up submenu item will add new frames to each layer that’s currently visible in the Timeline Docker.

[image: ../../_images/Timeline_insertkeys.png]

	To delete frames, [image: mouseright] the frame and press Remove Keyframe. This will delete all selected frames. Similarly, selecting Remove Frame and Pull will delete the selected frames and pull or shift all subsequent frames back/left as much as possible.

Controls

	Layer List

	[image: mouseleft] : Select active layer.

	[image: mouseright] : Layers Menu (add/remove/show layers, etc.).

	Frame Timing Header

	[image: mouseleft] : Move to time and select frame of the active layer.

	[image: mouseleft] + drag : Scrub through time and select frame of the active layer.

	[image: mouseright] : Frame Columns Menu (insert/remove/copy/paste columns and hold columns).

	Frames Table

	[image: mouseleft] : Selects a single frame or slot and switches time, but does not switch active layer.

	Space + [image: mouseleft] : Pan.

	Space + [image: mouseright] : Zoom.

	Frames Table (On Empty Slot).

	[image: mouseright] : Frames menu (insert/copy/paste frames and insert/remove holds).

	[image: mouseleft] + drag : Select multiple frames and switch time to the last selected, but does not switch active layer.

	Shift + [image: mouseleft] : Select all frames between the active and the clicked frame.

	Ctrl + [image: mouseleft] : Select individual frames together. [image: mouseleft] + drag them into place.

	Frames Table (On Existing Frame)

	[image: mouseright] : Frames menu (remove/copy/paste frames and insert/remove holds).

	[image: mouseleft] + drag : Move a frame or multiple frames.

	Ctrl + [image: mouseleft] + drag : Copy a frame or multiple frames.

	Alt + [image: mouseleft] + drag : Clone a frame or multiple frames.

	Shift + [image: mouseleft] + drag : Move selected frame(s) and all the frames to the right of it. (This is useful for when you need to clear up some space in your animation, but don’t want to select all the frames to the right of a particular frame!)

Arrange

A docker for aligning and arranging vector shapes. When you have the Shape Selection Tool active, the following actions will appear on this docker:

	Align
	Align all selected objects.

	Align Left

	Horizontally Center

	Align Right

	Align Top

	Vertically Center

	Align Bottom

	Distribute
	Ensure that objects are distributed evenly.

	Distribute left edges equidistantly.

	Distribute centers equidistantly horizontally.

	Distribute right edges equidistantly.

	Distribute top edges equidistantly.

	Distribute centers equidistantly vertically.

	Distribute bottom edges equidistantly.

	Spacing
	Ensure the gaps between objects are equal.

	Make horizontal gaps between object equal.

	Make vertical gaps between object equal.

	Order
	Change the order of vector objects.

	Bring to front

	Raise

	Lower

	Bring to back

	Grouping
	Buttons to group and ungroup vector objects.

Artistic Color Selector Docker

A color selector inspired by traditional color wheel and workflows.

Usage

[image: ../../_images/Krita_Artistic_Color_Selector_Docker.png]

Artistic color selector with a gamut mask.

Select hue and saturation on the wheel (5) and value on the value scale (4). [image: mouseleft] changes foreground color (6). [image: mouseright] changes background color (7).

The blip shows the position of current foreground color on the wheel (black&white circle) and on the value scale (black&white line). Last selected swatches are outlined.

Parameters of the wheel can be set in Color wheel preferences menu (2). Selector settings are found under Selector settings menu (3).

Gamut Masking

You can select and manage your gamut masks in the Gamut Masks Docker.

In the gamut masking toolbar (1) you can toggle the selected mask off and on (left button). You can also rotate the mask with the rotation slider (right).

Color wheel preferences

[image: ../../_images/Krita_Artistic_Color_Selector_Docker_3.png]

Color wheel preferences.

	Sliders 1, 2, and 3
	Adjust the number of steps of the value scale, number of hue sectors and saturation rings on the wheel, respectively.

	Continuous Mode
	The value scale and hue sectors can also be set to continuous mode (with the infinity icon on the right of the slider). If toggled on, the respective area shows a continuous gradient instead of the discrete swatches.

	Invert saturation (4)
	Changes the order of saturation rings within the hue sectors. By default, the wheel has gray in the center and most saturated colors on the perimeter. Invert saturation puts gray on the perimeter and most saturated colors in the center.

	Reset to default (5)
	Loads default values for the sliders 1, 2, and 3. These default values are configured in selector settings.

Selector settings

[image: ../../_images/Krita_Artistic_Color_Selector_Docker_2.png]

Selector settings menu.

	Selector Appearance (1)
	
	Show background color indicator
	Toggles the bottom-right triangle with current background color.

	Show numbered value scale
	If checked, the value scale includes a comparative gray scale with lightness percentage.

	Color Space (2)
	Set the color model used by the selector. For detailed information on color models, see Color Models.

	Luma Coefficients (3)
	If the selector’s color space is HSY, you can set custom Luma coefficients and the amount of gamma correction applied to the value scale (set to 1.0 for linear scale; see Gamma and Linear).

	Gamut Masking Behavior (4)
	The selector can be set either to Enforce gamut mask, so that colors outside the mask cannot be selected, or to Just show the shapes, where the mask is visible but color selection is not limited.

	Default Selector Steps Settings
	Values the color wheel and value scale will be reset to default when the Reset to default button in Color wheel preferences is pressed.

External Info

	HSI and HSY for Krita’s advanced colour selector by Wolthera van Hövell tot Westerflier [https://wolthera.info/?p=726].

	The Color Wheel, Part 7 by James Gurney [https://gurneyjourney.blogspot.com/2010/02/color-wheel-part-7.html].

Preset Docker

[image: ../../_images/Krita_Brush_Preset_Docker.png]
This docker allows you to switch the current brush you’re using, as well as tagging the brushes.

Just [image: mouseleft] on an icon to switch to that brush!

Tagging

[image: mouseright] a brush to add a tag or remove a tag.

Brush Preset History Docker

The brush preset history docker keeps track of the last used presets.

Options

You can access several features when [image: mouseright] on a preset.

	Forget “Preset Name”
	Remove this preset from the list.

	Clear History
	Clears the list.

	History Behaviour
	Change how the history behaves:

	Static Position
	All presets keep their positions.

	Move to Top on Use
	Move the last used preset to the top.

	Bubble Up on Repeated Use
	Move presets to the top depending on how often you use them.

	Configure Number of Brushes Shown…
	How many of the last used presets you want to keep track of. By default this number is 10.

Channels

[image: ../../_images/Krita_Channels_Docker.png]
The channel docker allows you to turn on and off the channels associated with the color space that you are using. Each channel has an enabled and disabled checkbox. You cannot edit individual layer channels from this docker.

Editing Channels

If you want to edit individual channels by their grayscale component, you will need to manually separate a layer. This can be done with a series of commands with the layer docker.

	Select the layer you want to break apart.

	Go to Image ‣ Separate Image.

	Select the following options and click OK:

	Source: Current Layer.

	Alpha Options: Create separate separation from alpha channel.

	Output to Grayscale, not color: unchecked.

	Hide your original layer.

	Select All of the new channel layers and put them in a group layer (Layer ‣ Quick Group).

	Select the Red layer and change the blending mode to “Copy Red” (these are in the Misc. category).

	Select the Green layer and change the blending mode to “Copy Green”.

	Select the Blue layer and change the blending mode to “Copy Blue” .

	Make sure the Alpha layer is at the bottom of the group.

	Enable Inherit Alpha for the Red, Green, and Blue layers.

Here is a video to see this process [https://www.youtube.com/watch?v=lWuwegJ-mIQ&feature=youtu.be] in Krita 3.0.

When working with editing channels, it can be easier to use the Isolate Layer feature to only see the channel. Right-click on the layer to find Isolate Layer.

Color Sliders

Deprecated since version 4.1: Replaced by the Specific Color Selector in 5.1

A small docker with Hue, Saturation and Lightness bars.

[image: ../../_images/Color-slider-docker.png]
You can configure this docker via Settings ‣ Configure Krita… ‣ Color Selector Settings ‣ Color Sliders.

There, you can select which sliders you would like to see added, allowing you to even choose multiple lightness sliders together.

Compositions

The compositions docker allows you to save the configurations of your layers being visible and invisible, allowing you to save several configurations of your layers.

[image: ../../_images/Composition-docker.png]

	Adding new compositions
	You do this by setting your layers as you wish, then pressing the plus sign.
If you had a word in the text-box to the left, this will be the name of your new composition.

	Activating composition
	Double-click the composition name to switch to that composition.

..versionadded::4.4

	Rearranging compositions
	You can rearrange compositions by using the up/down buttons.

	Removing compositions
	The minus sign. Select a composition, and hit this button to remove it.

	Exporting compositions
	The file sign. Will export all checked compositions.

New in version 4.4: It is also possible to render animations for each selected composition. This will use the settings last used in the render animation dialog, simplifying the export process.

	Updating compositions
	[image: mouseright] a composition to overwrite it with the current configuration.

	Rename composition
	[image: mouseright] a composition to rename it.

Digital Color Mixer

[image: ../../_images/Krita_Digital_Color_Mixer_Docker.png]
This docker allows you to do simple mathematical color mixing.

It works as follows:

You have on the left side the current color.

Next to that there are six columns. Each of these columns consists of three rows:
The lowest row is the color that you are mixing the current color with. Ticking this button allows you to set a different color using a palette and the mini-color wheel. The slider above this mixing color represent the proportions of the mixing color and the current color. The higher the slider, the less of the mixing color will be used in mixing. Finally, the result color. Clicking this will change your current color to the result color.

At the bottom there’s another slider, which will allow you to create a specific gradient to mix between, regardless of the current foreground color.

New in version 5.1: To reset everything to default, press the Reset button that is overlaid on the color swatch.

Gamut Masks Docker

[image: ../../_images/Krita_Gamut_Mask_Docker.png]

New in version 4.2: Docker for gamut masks selection and management.

Usage

[image: mouseleft] an icon (1) to apply a mask to color selectors.

Gamut Masks can be imported and exported in Managing Resources.

Management Toolbar

	Create new mask (2)
	Opens the mask editor with an empty template.

	Edit mask (3)
	Opens the currently selected mask in the editor.

	Duplicate mask (4)
	Creates a copy of the currently selected mask and opens the copy in the editor.

	Delete mask (5)
	Deletes the currently selected mask.

Gamut Masks are a type of resource. As such, they can be saved, tagged, reordered and added to bundles. They are stored inside *.kgm files, which are ZIP files consisting of a mimetype (application/x-krita-gamutmask), a preview.png and an SVG file describing the mask.

Editing

If you choose to create a new mask, edit, or duplicate selected mask, the mask template document will be opened as a new view (1).

There you can create new shapes and modify the mask with standard vector tools (Vector Graphics).

Fill in the fields at (2).

	Title (Mandatory)
	The name of the gamut mask.

	Description
	A description.

Preview the mask in the artistic color selector (4), save the mask (5), or cancel editing (3).

Warning

	The shapes need to be added to the layer named maskShapesLayer (which is selected by default).

	The shapes need have solid background to show correctly in the editor.

	A template with no shapes cannot be saved.

Note

The mask is intended to be composed of basic vector shapes. Although interesting results might arise from using advanced vector drawing techniques, not all features are guaranteed to work properly (e.g. grouping, vector text, etc.).

[image: ../../_images/Krita_Gamut_Mask_Docker_2.png]

External Info

	Color Wheel Masking, Part 1 by James Gurney [https://gurneyjourney.blogspot.com/2008/01/color-wheel-masking-part-1.html].

	The Shapes of Color Schemes by James Gurney [https://gurneyjourney.blogspot.com/2008/02/shapes-of-color-schemes.html].

	Gamut Masking Demonstration by James Gourney (YouTube) [https://youtu.be/qfE4E5goEIc].

Grids and Guides Docker

This docker controls the look and the visibility of both the Grid and the Guides decorations. It also features a checkbox to quickly toggle snapping on or off.

Grids

Grids in Krita can currently only be orthogonal and diagonal. There is a single grid per canvas, and it is saved within the document. Thus it can be saved in a Templates.

	Show Grid
	Shows or hides the grid.

	Snap to Grid
	Toggles grid snapping on or off. This can also be achieved with the Shift + S shortcut.

	Type
	The type of Grid.

	Rectangle
	An orthogonal grid.

	X and Y spacing
	Sets the width and height of the grid in pixels.

	Subdivision
	Groups cells together as larger squares and changes the look of the lines it contains. A subdivision of 2 will make cells appear twice as big, and the inner lines will become subdivisions.

	Isometric
	A diagonal grid. Isometric doesn’t support snapping.

	Left and Right Angle
	The angle of the lines. Set both angles to 30° for true isometric.

	Cell spacing
	Determines how much both sets of lines are spaced.

	Grid Offset
	Offsets the grid’s starting position from the top-left corner of the document, in pixels.

	Main Style
	Controls the look of the grid’s main lines.

	Div Style
	Controls the look of the grid’s “subdivision” lines.

[image: ../../_images/Grid_sudvision.png]
The grid’s base size is 64 pixels. With a subdivision of 2, the main grid lines are 128 px away from one another, and the intermediate lines have a different look.

Guides

Guides are horizontal and vertical reference lines. You can use them to place and align layers accurately on the canvas.

[image: ../../_images/guides.png]

Creating Guides

To create a guide, you need both the rulers and the guides to be visible.

	Rulers. (View ‣ Show Rulers)

	Guides. (View ‣ Show Guides)

To create a guide, move your cursor over a ruler and drag in the direction of the canvas. A line will appear. Dragging from the left ruler creates a vertical guide, and dragging from the top ruler creates a horizontal guide.

Editing Guides

Place your cursor above a guide on the canvas. If the guides are not locked, your cursor will change to a double arrow. In that case, click and drag to move the guide.
To lock and unlock the guides, open the Grid and Guides Docker. Ensure that the Guides tab is selected. From here you can lock the guides, enable snapping, and change the line style.

Note

Currently, it is not possible to create or to move guides to precise positions. The only way to achieve that for now is to zoom in on the canvas, or to use the grid and snapping to place the guide.

Removing Guides

Click on the guide you want to remove and drag it outside of the canvas area. When you release your mouse or stylus, the guide will be removed.

Histogram Docker

A Histogram is a chart that shows how much of a specific channel value is used in an image. Its purpose is to give a really technical representation of the colors in an image, which can be helpful in decision making about filters.

[image: ../../_images/Histogram_docker.png]
The histogram docker was already available via Layers ‣ Histogram, but it’s now a proper docker.

External Links:

	Wikipedia’s entry on image histograms [https://en.wikipedia.org/wiki/Image_histogram].

Layers

[image: ../../_images/Krita_Layers_Docker.png]
The Layers docker is for one of the core concepts of Krita: Layer Management. You can add, delete, rename, duplicate and do many other things to layers here.

At the top there are four controls. Two of them are layer properties, the blending mode and the opacity. But there are also two smaller buttons. One is the filter option. This allows you to filter all existing layers by either color label, or since Krita 5.0 by layer name.

The second button allows you to adjust some extra display options of the layer docker.

The first slider controls the thumbnail size of the layers and how much layers indent when they are grouped. Some people prefer large thumbnails with a lot of indentation, others want the visuals to take up the least amount of space.

New in version 5.2.

Then there’s the blending info options. The dropdown has four options:

	None
	No extra information is shown.

	Simple
	This will only display the opacity or the blending mode when they’re not 100% and ‘Normal’.

	Balanced
	This will display both the opacity and the blending mode for layers where either the opacity is below 100%, or the blending mode is not ‘normal’.

	Detailed
	This will always show the opacity and blending options for all layers.

The opacity slider below the dropdown allows you to control the opacity of the extra blending info label.

Then there’s Checkbox for Selecting Layers, which enables the extra checkboxes between the visibility icon and the label. This is useful for situations where you may not have access to a Ctrl or Shift key to select multiple layers, such as on a tablet.

The Layer Stack

You can select the active layer here. Using the Shift and Ctrl keys you can select multiple layers and drag-and-drop them. You can also change the visibility, edit state, alpha inheritance and rename layers. You can open and close groups, and you can drag and drop layers, either to reorder them, or to put them in groups.

	Name
	The Layer name, just do double- [image: mouseleft] to make it editable, and press the Enter key to finish editing.

	Color Label
	This is a color that you can set on the layer. [image: mouseright] the layer to get a context menu to assign a color to it. You can then later filter on these colors.

	Blending Mode
	This will set the Blending Modes of the layer.

	Opacity
	This will set the opacity of the whole layer.

	Visibility
	An eye-icon. Clicking this can hide a whole layer.

	Edit State (Or layer Locking)
	A lock Icon. Clicking this will prevent the layer from being edited, useful when handling large amounts of layers.

	Alpha Lock
	This will prevent the alpha of the layer being edited. In more plain terms: This will prevent the transparency of a layer being changed. Useful in coloring images.

	Pass-through mode
	Only available on Group Layers, this allows you to have the blending modes of the layers within affect the layers outside the group. Doesn’t work with masks currently, therefore these have a strike-through on group layers set to pass-through.

	Alpha Inheritance
	This will use the alpha of all the peers of this layer as a transparency mask. For a full explanation see Introduction to Layers and Masks.

	Open or Close Layers
	(An Arrow Icon) This will allow you to access sub-layers of a layer. Seen with masks and groups.

	Onion Skin
	This is only available on animated layers, and toggles the onion skin feature.

	Layer Style
	This is only available on layers which have a Layer Styles assigned. The button allows you to switch between on/off quickly.

	Thumbnail Image
	This shows a miniature image with the layer contents. If you Ctrl + [image: mouseleft] on it then you can make a selection from the contents of that layer (see Hot keys and Sticky Keys section below).

To edit these properties on multiple layers at once, press the properties option when you have multiple layers selected or press the F3 key.
There, to change the names of all layers, the checkbox before Name should be ticked after which you can type in a name. Krita will automatically add a number behind the layer names. You can change other layer properties like visibility, opacity, lock states, etc. too.

New in version 5.0: By drag-and-dropping colors from the palette onto the layer stack, you can quickly create a fill layer.

[image: ../../_images/Krita-multi-layer-edit.png]

Lower buttons

These are buttons for doing layer operations.

	Add
	Will by default add a new Paint Layer, but using the little arrow, you can call a sub-menu with the other layer types.

	Duplicate
	Will Duplicate the active layer(s). Can be quickly invoked with the Ctrl + [image: mouseleft] + drag shortcut.

	Move layer up.
	Will move the active layer up. Will switch them out and in groups when coming across them.

	Move layer down.
	Will move the active layer down. Will switch them out and in groups when coming across them.

	Layer properties.
	Will open the layer properties window. The button to the side will open up the [image: mouseright] context menu for the currently selected layer. This is useful when you don’t have access to a [image: mouseright] button.

	Delete
	Will delete the active layer(s). For safety reasons, you can only delete visible layers.

Hot keys and Sticky Keys

	Shift key for selecting multiple contiguous layers.

	Ctrl key for select or deselect layer without affecting other layers selection.

	Ctrl + [image: mouseleft] + drag shortcut makes a duplicate of the selected layers, for you to drag and drop.

	Ctrl + E shortcut for merging a layer down. This also merges selected layers, layer styles and will keep selection masks intact. Using the Ctrl + E shortcut on a single layer with a mask will merge down the mask into the layer.

	Ctrl + Shift + E shortcut merges all layers.

	
	R + [image: mouseleft] shortcut allows you to select the top layer with content below the cursor as the active layer. In addition to this, you can set shortcuts for 4 other modes:
	
	“Select All Layers (Replace Selection)” allows you to select all layers with content below the cursor as the currently selected layers.

	“Select All Layers (Add to Selection)” allows you to select all layers that have content below the cursor and add them to the selected layers.

	“Select from Menu (Replace Selection)” allows you to select a layer from a pop-up menu or all layers in the menu as the active layer or active layers.

	“Select from Menu (Add to Selection)” allows you to select all layers in the menu as the new active layer or active layers. The latter two modes are similar to using Ctrl + [image: mouseright] to select a layer in Photoshop.

	Ins key for adding a new layer.

	Shift + Ins key for adding a new vector layer.

	Ctrl + G shortcut will create a group layer. If multiple layers are selected, they are put into the group layer.

	Ctrl + Shift + G shortcut will quickly set-up a clipping group, with the selected layers added into the group, and a new layer added on top with alpha-inheritance turned on, ready for painting!

	Ctrl + Alt + G shortcut will ungroup layers inside a group.

	Alt + [image: mouseleft] shortcut for isolated view of a layer. This will maintain between layers till the same action is repeated again.

	Page Up and Page Down keys for switching between layers.

	Ctrl + Page Up and Ctrl + Page Down shortcuts will move the selected layers up and down.

	Ctrl + [image: mouseleft] over a layer’s thumbnail to replace the current selection with a new one created from the contents of that layer.

	Ctrl + Shift + [image: mouseleft] over a layer’s thumbnail to add a new selection created from the contents of that layer to the current selection.

	Ctrl + Alt + [image: mouseleft] over a layer’s thumbnail to subtract a new selection created from the contents of that layer from the current selection.

	Ctrl + Shift + Alt + [image: mouseleft] over a layer’s thumbnail to intersect the current selection with a new selection created from the contents of that layer.

Log Viewer

The log viewer docker allows you to see debug output without access to a terminal. This is useful when trying to get a tablet log or to figure out if Krita is spitting out errors while a certain thing is happening.

The log docker is used by pressing the enable logging button at the bottom.

Warning

When enabling logging, this output will not show up in the terminal. If you are missing debug output in the terminal, check that you didn’t have the log docker enabled.

The docker is composed of a log area which shows the debug output, and four buttons at the bottom.

Log Output Area

The log output is formatted as follows:

	White
	This is just a regular debug message.

	Yellow
	This is a info output.

	Orange
	This is a warning output.

	Red
	This is a critical error. When this is bolded, it is a fatal error.

Options

There’s four buttons at the bottom:

	Enable Logging
	Enable the docker to start logging. This caries over between sessions.

	Clear the Log
	This empties the log output area.

	Save the Log
	Save the log to a text file.

	Configure Logging
	Configure which kind of debug is added. By default only warnings and simple debug statements are logged. You can enable the special debug messages for each area here.

	General

	Resource Management

	Image Core

	Registries

	Tools

	Tile Engine

	Filters

	Plugin Management

	User Interface

	File Loading and Saving

	Mathematics and Calculations

	Image Rendering

	Scripting

	Input Handling

	Actions

	Tablet Handing

	GPU Canvas

	Metadata

	Color Management

LUT Management

[image: ../../_images/LUT_Management_Docker.png]
The Look Up Table (LUT) Management docker controls the high dynamic range (HDR) painting functionality.

	Use OpenColorIO
	Use Open Color IO instead of Krita’s internal color management. Open Color IO is a color management library. It is sometimes referred to as OCIO. This is required as Krita uses OCIO for its HDR functionality.

	Color Engine
	Choose the engine.

	Configuration
	Use an OCIO configuration file from your computer.

Note

Some system locals don’t allow you to read the configuration files. This is due to a bug in OCIO. If you are using Linux you can fix this. If you start Krita from the terminal with the LC_ALL=C krita flag set, you should be able to read the configuration files.

	Input Color Space
	What the color space of the image is. Usually sRGB or Linear.

	Display Device
	The type of device you are using to view the colors. Typically sRGB for computer screens.

	View
	–

	Components
	Allows you to study a single channel of your image with LUT.

	Exposure
	Set the general exposure. On 0.0 at default.
There’s the Y key to change this on the fly on canvas.

	Gamma
	Allows you to set the gamma. This is 1.0 by default. You can set this to change on the fly in canvas shortcuts.

	Lock color
	Locks the color to make sure it doesn’t shift when changing exposure. May not be desired.

	Set white and black points
	This allows you to set the maximum and minimum brightness of the image, which’ll adjust the exposure and gamma automatically to this.

Onion Skin Docker

[image: ../../_images/Onion_skin_docker.png]
To make animation easier, it helps to see both the next frame as well as the previous frame sort of layered on top of the current. This is called onion-skinning.

[image: ../../_images/Onion_skin_01.png]
Basically, they are images that represent the frames before and after the current frame, usually colored or tinted.

You can toggle them by clicking the lightbulb icon on a layer that is animated (so, has frames), and isn’t fully opaque. (Krita will consider white to be white, not transparent, so don’t animated on an opaque layer if you want onion skins.)

Changed in version 4.2: Since 4.2 onion skins are disabled on layers whose default pixel is fully opaque. These layers can currently only be created by using background as raster layer in the content section of the new image dialog. Just don’t try to animate on a layer like this if you rely on onion skins, instead make a new one.

The term onionskin comes from the fact that onions are semi-transparent. In traditional animation animators would make their initial animations on semitransparent paper on top of an light-table (of the special animators variety), and they’d start with so called keyframes, and then draw frames in between. For that, they would place said keyframes below the frame they were working on, and the light table would make the lines of the keyframes shine through, so they could reference them.

Onion-skinning is a digital implementation of such a workflow, and it’s very useful when trying to animate.

[image: ../../_images/Onion_skin_02.png]
The slider and the button with zero offset control the master opacity and visibility of all the onion skins. The boxes at the top allow you to toggle them on and off quickly, the main slider in the middle is a sort of ‘master transparency’ while the sliders to the side allow you to control the transparency per keyframe offset.

Tint controls how strongly the frames are tinted, the first screen has 100%, which creates a silhouette, while below you can still see a bit of the original colors at 50%.

The Previous Frame and Next Frame color labels allows you set the colors.

Overview

[image: ../../_images/Krita_Overview_Docker.png]
This docker allows you to see a full overview of your image. You can also use it to navigate and zoom in and out quickly. Dragging the view-rectangle allows you quickly move the view.

There are furthermore basic navigation functions: Dragging the zoom-slider allows you quickly change the zoom.

New in version 4.2: Toggling the mirror button will allow you to mirror the view of the canvas (but not the full image itself) and dragging the rotate slider allows you to adjust the rotation of the viewport. To reset the rotation, [image: mouseright] the slider to edit the number, and type ‘0’.

New in version 4.4.3: Starting with version 4.4.3 the rotation can be set by manipulating the angle selector, either through the circular gauge or the spin box, and can be reset by double-clicking the circular gauge.

New in version 5.0: If you check the “pin navigation controls” button, the controls (zoom, rotation, etc.) will always be visible. On the other hand, if the button is unchecked, the controls will automatically hide when the mouse goes outside the docker, and automatically shown when it goes over the docker.

Palette Docker

The palette docker displays various color swatches for quick use. It also supports editing palettes and organizing colors into groups, as well as arbitrary positioning of swatches.

New in version 4.2: The palette docker was overhauled in 4.2, allowing for grid ordering, storing palette in the document and more.

[image: ../../_images/Palette-docker.png]
You can choose from various default palettes or you can add your own colors to the palette.

To choose from the default palettes click on the icon in the bottom left corner of the docker, it will show a list of pre-loaded color palettes.
You can click on one and to load it into the docker, or click on import resources to load your own color palette from a file. Creating a new palette can be done by pressing the +. Fill out the name input, pressing Save and Krita will select your new palette for you.

Since 4.2 Krita’s color palettes are not just a list of colors to store, but also a grid to organize them on. That’s why you will get a grid with ‘transparency checkers’, indicating that there is no entry. To add an entry, just click a swatch and a new entry will be added with a default name and the current foreground color.

	Selecting colors is done by [image: mouseleft] on a swatch.

	Pressing the delete icon will remove the selected swatch or group. When removing a group, Krita will always ask whether you’d like to keep the swatches. If so, the group will be merged with the default group.

	Double [image: mouseleft] a swatch will call up the edit window where you can change the color, the name, the id and whether it’s a spot color. On a group this will allow you to set the group name.

	[image: mouseleft] drag will allow you to drag and drop swatches and groups to order them.

	[image: mouseright] on a swatch will give you a context menu with modify and delete options.

	Pressing the + icon will allow you to add a new swatch.

	The drop down contains all the entries, id numbers and names. When a color is a spot color the thumbnail is circular. You can use the dropdown to search on color name or id.

	By drag-and-dropping colors from the palette onto the layer stack, you can quickly create a fill layer.

	By drag-and-dropping colors from the palette onto the canvas you can fill the current layer with that color. The filling options used are taken from the fill tool but if Alt is pressed when the color is dropped then all the layer (or the portion inside the current selection) will be filled.

Pressing the Folder icon will allow you to modify the palette. Here you can add more columns, modify the default group’s rows, or add more groups and modify their rows.

	Palette Name
	Modify the palette name. This is the proper name for the palette as shown in the palette chooser dropdown.

	File name
	This is the file name of the palette, which should be file system friendly. (Avoid quotation marks, for example).

	Column Count
	The amount of columns in this palette. This counts for all entries. If you accidentally make it smaller than the amount of entries that take up columns, you can still make it bigger until the next restart of Krita.

	Where is the palette stored:
	Whether to store said palette in the document or resource folder.

	Resource Folder
	The default, the palette will be stored in the resource folder.

	Document
	The palette will be removed from the resource folder and stored in the document upon save. It will be loaded into the resources upon loading the document.

Deprecated since version 5.0: This has been disabled for now.

	Add group
	Add a new group. On clicking you will be asked for a name and a set of rows.

	Group Settings
	Here you can configure the groups. The dropdown has a selection of groups. The default group is at top.

	Row Count
	The amount of rows in the group. If you want to add more colors to a group and there’s no empty areas to click on anymore, increase the row count.

	Rename Group
	Rename the group.

	Delete Group
	Delete the group. It will ask whether you want to keep the colors. If so, it will merge the group’s contents with the default group.

The edit and new color dialogs ask for the following:

	Color
	The color of the swatch.

	Name
	The Name of the color in a human readable format.

	ID
	The ID is a number that can be used to index colors. Where Name can be something like “Pastel Peach”, ID will probably be something like “RY75”. Both names and ids can be used to search the color in the color entry dropdown at the bottom of the palette.

	Spot color
	Currently not used for anything within Krita itself, but spot colors are a toggle to keep track of colors that represent a real world paint that a printer can match. Keeping track of such colors is useful in a printing workflow, and it can also be used with python to recognize spot colors.

Krita’s native palette format is since 4.0 *.kpl. It also supports importing…

	Gimp Palettes (.gpl)

	Microsoft RIFF palette (.riff)

	Photoshop Binary Palettes (.act)

	PaintShop Pro palettes (.psp)

	Photoshop Swatches (.aco)

	Scribus XML (.xml)

	Swatchbooker (.sbz)

	Adobe Swatch Exchange (.ase)

	Adobe Color Books (.acb)

Patterns Docker

[image: ../../_images/Krita_Patterns_Docker.png]
This docker allows you to select the global pattern. Using the open-file button you can import patterns. Some common shortcuts are the following:

	[image: mouseright] a swatch will allow you to set tags.

	[image: mouseleft] a swatch will allow you to set it as global pattern.

	Ctrl + scroll you can resize the swatch sizes.

Recorder Docker

You may have seen artists show little progress movies of their work. This is called a time lapse! Normally a time lapse is recorded using outside software, like OBS, and then sped up around 16 times, and they are used to convey the whole amount of effort that went into an image. The recorder docker simplifies making a time lapse, by taking a snapshot every stroke and then letting you render it to a video file with ffmpeg. Because this docker relies on FFMpeg, it cannot be used on Android.

The recorder docker makes a snapshot of the canvas every few seconds, or at the end of every stroke. You can tell it’s turned on because there will be a recording symbol in the status bar, which is red when it’s making snapshots and white when it’s on standby.

Because it stores the snapshots, that means you can take breaks, close the image, turn off the computer, come back a month later. However, snapshots can take up quite a bit of space, so if you are running out of space, don’t forget to check the temporary folder!

At the end, you can turn the snapshots into a video file, ready for your favorite video sharing site.

Note

Some people also call time lapses ‘speed paints’, but these are not the same thing. A speed paint is when you try to draw an image in a far shorter time than is usual for you. For example, drawing a whole landscape in 15 to 30 minutes. People like to record their speed paints, and because both speed paints and time lapses are videos, people often confuse them.

Similarly, this tool should also not be confused with Macro Recording, which is when you tell the program to record all your actions into a file, and have it play those back at a later date. Krita currently does not have this functionality.

Docker Options

[image: ../../_images/recorder_docker.png]

	Recordings Directory:
	The directory where the snapshots are kept. Note the Manage Recordings button, which will assist you in selecting old recordings to remove.

	Capture Interval:
	The minimum capture interval. The recorder docker takes a picture when the image changes, but will wait for this capture interval to pass before making a new snap shot. This means quick strokes will not each require a new snapshot. Increase this if you want less snapshots to be recorded during a painting session, or if you are experiencing slowdowns.

	Format:
	The file format to use for the snap shots. *.jpg is faster, but *.png is better for very sharp images.

	Quality:
	Control the quality of the JPEG snapshots. The lower the quality, the lower the file size, but too low and you will get a messy looking recording.

	Compression:
	Control the compression of the PNG snapshots. Greater value will produce smaller files, but will take more processing power. This is recommended to be set to be between 1 and 3 for a good balance between speed and file size.

	Resolution:
	Lower the resolution of the snapshot. This can drastically reduce size without losing too much quality.

	Record in Isolate Mode.
	Record when layer isolate mode is on. As isolate mode hides all the other layers, it can result in a lot of flickering during the resulting time lapse. Only turn this on when you are not in the habit of switching layers often when in isolate mode.

	Record automatically
	Start recording the instant an image is created or loaded. This option is useful for those who want to record each of their drawings.

Finally, there’s Record and Export. The former starts and stops recording. The latter lets you render the current drawing’s timelapse.

[image: ../../_images/recorder_docker_snapshot_manager.png]

The recordings manager window. This is a list of recordings you have, and how much space they take. You can select recordings to delete them.

Export Options

Compare these options with the one on the Render Animation page, as they do largely the same things.

	Recording info:
	Shows what kind of frames and how many frames are taken into account when creating the final video file. Pressing Open Record Directory will allow you to open the folder where the recordings are located in your file browser.

	Input FPS:
	How many frames per second should go in. For example, to make your time lapse twice faster, this value should be double that of the Video fps.

	Video FPS:
	The actual FPS of the video.

	Extend End Result
	Whether to hold the last frame and how long to hold the last frame of the recording. This allows a viewer to take a good long at the end result.

New in version 5.1.

	Enable Result Preview
	Whether to add a copy of the last frame to the start and how long to hold this frame. This will show viewers what kind of image is being drawn here.

New in version 5.0.

	Resize:
	Scale the final video.

	FFMpeg:
	The location of the ffmpeg executable.

	Render As:
	Select the render setting to use. MP4 x264 is sufficient for most drawings and will be accepted on most video sharing sites.

	Video Location:
	Where to put the resulting video.

	Video Duration:
	The final video length in seconds. This will change as you change the FPS settings.

After Export

	Watch it:
	This will open the resulting file in the default video player on your system.

	Show in folder:
	This will open the folder where the file is located in your file browser.

	Remove recordings:
	Remove the snapshots from your computer.

Reference Images Docker

Deprecated since version 4.0: This docker was removed in Krita 4.0 due to crashes on Windows. The reference images tool in 4.1 replaces it..

[image: ../../_images/400px-Krita_Reference_Images_Browse_Docker.png]
[image: ../../_images/400px-Krita_Reference_Images_Image_Docker.png]
This docker allows you to pick an image from outside of Krita and use it as a reference. Even better, you can pick colors from it directly.

The docker consists of two tabs: Browsing and Image.

Browsing

Browsing gives you a small file browser, so you can navigate to the map where the image you want to use as reference is located.

There’s an image strip beneath the browser, allowing you to select the image which you want to use. Double click to load it in the Image tab.

Image

This tab allows you to see the images you selected, and change the zoom level. Clicking anywhere on the image will allow you to pick the merged color from it. Using the cross symbol, you can remove the icon.

Shape Properties Docker

[image: ../../_images/Krita_Shape_Properties_Docker.png]

Deprecated since version 4.0: This docker is deprecated, and its functionality is folded into the Shape Edit Tool.

This docker is only functional when selecting a rectangle or circle on a vector layer. It allows you to change minor details, such as the rounding of the corners of a rectangle, or the angle of the formula for the circle-shape.

Small Color Selector

[image: ../../_images/Krita_Small_Color_Selector_Docker.png]
This is Krita’s most simple color selector. On the left there’s a bar with the hue, and on the right a square where you can pick the value and saturation.

New in version 4.2: The small color selector is the only selector which can show HDR values. When your build of Krita is HDR enabled and you are on Windows, you can drag the slider at the bottom to increase the ‘nits’ of the colors in the small selector. This is the direct value of the brightness of the colors, and you need a value above 100 (100 being the maximum value used for the brightest value of sRGB colors), to have an HDR color. The small color selector will also select wide gamut values.

Snapshot Docker

A docker that allows you to create snapshots (copies) of the current document, and to return to these states afterwards.

[image: ../../_images/snapshot-docker.png]
The main part of the docker is a list of all saved snapshots. At the bottom of the docker, there are three buttons: from left to right, they are Create snapshot, Switch to selected snapshot, and Remove selected snapshot. You can create a snapshot from the current state of the document by clicking Create snapshot. Click Switch to selected snapshot to switch to the selected snapshot. The undo stack will be discarded after switching. If you would like to save the current state, make another snapshot before switching. Click Remove selected snapshot to delete the selected snapshot. You can edit the names of snapshots by double-clicking them.

Please be aware that all snapshots will be gone if you close the document. If you want to keep them, you need to explicitly save or export them.

Specific Color Selector

[image: ../../_images/Krita_Specific_Color_Selector_Docker.png]
[image: ../../_images/Krita_Specific_Color_Selector_Docker_2.png]
The specific color selector allows you to choose specific colors within a color space.

Color Space Chooser Dropdown

Fairly straightforward. This color space chooser dropdown allows you to pick the color space, the bit depth and the ICC profile in which you are going to pick your color.

Sliders

These change per color space.
If you chose 16bit float or 32 bit float, these will go from 0 to 1.0, with the decimals deciding the difference between colors. When you choose 8 bit integer or 16 bit integer, a button with percentage sign (%) will appear besides the dropdown, which will allow you to input values in percentages.

Hex Color Selector

This is only available for the color spaces with a depth of 8 bit.
This allows you to input hex color codes, and receive the RGB, CMYK, LAB, XYZ or YCrCb equivalent, and the other way around!

HSV Color Selector

New in version 5.1.

In RGB color spaces, the toggle button allows you to switch into HSV mode and choose using the Hue, Saturation and Value sliders.

[image: ../../_images/Krita_Specific_Color_Selector_Docker_3.png]

Storyboard Docker

[image: ../../_images/Storyboard_thumbnailonly_view.png]
A storyboard is a series of drawings and directions that outlines a film as a set of
scenes. These scenes may be accompanied with text that can provide additional context
such as dialog, action descriptions, or pertinent details needed for production.
Storyboarding is used extensively during the planning phase of a film to achieve a
better understanding of the overall production and its needs. Storyboards are
also useful for teams to discuss the scene-by-scene flow of a film or make any
necessary changes before entering the production phase.

Krita’s Storyboard Docker allows the user to develop a story by creating and managing scenes. This includes the
addition, removal, or adjustment of a scene. Users can also insert additional scenes between other scenes
when necessary, or reorder scenes via drag-and-drop. The storyboard’s visual content exists within Krita’s
internal animation system, which gives users the ability to preview the sequence using the Animation Timeline’s
transport controls. The storyboard docker also supports exporting the contents of a storyboard
to a document. The current supported formats for export are SVG and PDF.

Toolbar Buttons

[image: ../../_images/Storyboard_uper_buttons.png]

	Export
	A drop down menu with export options available for the current storyboard.
This can be used to export the storyboard to a desired format. You can specify
the layout of the exported file using the export dialog options. This might be useful
when discussing ideas and planning the animation with teammates or if you want to show
your animation ideas to a potential client. Krita currently supports exporting
storyboards to .pdf or .svg formats. For additional details see Exporting Storyboard

	Comment
	A drop down menu which consists of a list of comments for storyboard items which includes a
Delete Comment button and an Add Comment button. You can add comment sections to all entries,
remove comment sections, or change their visibility from the drop down menu. The order
of comments can be changed using drag-and-drop. Actions within this menu will apply to
every entry within the storyboard docker.

[image: ../../_images/Storyboard_comment.png]

	Lock
	This option is used to freeze the docker in its current state. When this option is enabled thumbnails, comments,
duration and frame number do not change. Reordering of scenes using drag and drop is also be disabled. This can be used
to preserve the state of the storyboard docker even when modifying the contents of the image.

	Arrange
	A drop-down menu which provides options for changing View and Mode settings. These settings change the
arrangement of scenes withhin the docker. For additional details, see Storyboard View and Modes

[image: ../../_images/Storyboard_arrange.png]

Storyboard Scene

A storyboard scene represents an individual scene in a larger production. There can be multiple keyframes within
the duration of a single scene, with the thumbnail representing the first keyframe of a given scene. Each
scene has a header with editable fields – such as scene names and durations. Storyboard scenes can be inserted before or
after any other scene. The order of scenes can be changed at any time using drag-and-drop. Changing the order of
scenes will be reflected appropriately in the timeline, where keyframes will be reordered to accommodate the new
desired scene order.

	Frame Number
	This shows the starting frame number of the scene. This field cannot be edited.

	Name
	The scene name. Double- [image: mouseleft] to make it editable, and press the Enter key to finish editing.

	Duration in Seconds
	A spin-box. This will set the duration of the scene in seconds.

	Duration in Frames
	A spin-box. This will set the duration of the scene in frames. Frames represent the division of seconds, which is dependent on the users’ desired Frame Rate setting.

	Thumbnail
	A thumbnail representing the contents of a scene. Unlike the comments, it cannot be edited inside the docker directly. Instead, changes must be made within the canvas after selection.

	Add Item
	A button on the lower left corner of the thumbnail that adds a new scene after the duration of the current scene. The new scene will start with a duration of 1 frame, which is the smallest possible length of a scene.

	Delete Item
	A button on the lower right corner of the thumbnail that deletes the current scene. The keyframe contents of the deleted scene will be transferred to the scene just before. This is used to prevent accidental data loss.

	Comment Name
	Name of the comment field. This field is uneditable directly but can be edited from the Comment menu.

	Comment Field
	The comment content. Double- [image: mouseleft] to make it editable, and press the Enter key to finish editing.

Storyboard View and Modes

The View and Mode options for the Storyboard Docker are available via the Arrange menu.
These options allow the user to change the visual arrangement or elements of the scenes.

	View
	Options that filter which parts of the scene to show within the Storyboard Docker.

	Thumbnail Only : Show only the thumbnail portion of a scene.

[image: ../../_images/Storyboard_thumbnailonly_view.png]

	Comments Only : Show only the comments section of a scene.

[image: ../../_images/Storyboard_commentonly_view.png]

	All : Show all elements of a scene.

[image: ../../_images/Storyboard_grid_mode.png]

	Mode
	Allows the user to change the visual arrangement of scenes within the Storyboard Docker.

	Row : Scenes are arranged in a row-wise fashion. The scene’s comments are on the right side of the thumbnail.

[image: ../../_images/Storyboard_row_mode.png]

	Column : Scenes are arranged in column-wise fashion. The scene’s comments are below the thumbnail.

[image: ../../_images/Storyboard_column_mode.png]

	Grid : Scenes are arranged in a grid. In this mode, if you change the size of the docker, the grid is rearranged to accommodate more scenes in the docker.

[image: ../../_images/Storyboard_grid_mode.png]

Using Storyboard docker

	Adding Scenes
	There are two ways to add scenes :

	[image: mouseright] and choose either Add Scene After or Add Scene Before

	Press the Add Button at the lower left corner of thumbnail of the scene, this is the same as Add Scene After.

	Deleting Scenes
	There are two ways to delete scenes :

	[image: mouseright] and Remove Scene.

	Delete button at the lower right corner of thumbnail of scene, this is the same as Remove Scene.

Note

Deleting scene in storyboard does not delete the keyframes at the scene’s frame. Instead the duration of the deleted scene gets added to the previous scene. This is prevent accidental data loss upon removing a scene.

	Reordering Scenes
	Scenes can be reordered using drag and drop. All the keyframes within the duration of that scene will move upon reordering.

	Managing Comment Fields
	The storyboard docker allows for the management of multiple optional comment fields. While some projects might require only one comment field for dialog per scene, some might require additional fields that describe character actions or camera directions. The Comment menu allows the user to configure these comment fields.

	To make a new comment field, go to Comment menu and click on the plus button at the bottom-left. A new comment field will be added to the menu. Change its name and press Enter. Every scene will now have the new comment field available to edit.

	To delete a comment field, select it and press the Delete button at the bottom-right corner of the Comment menu.

	To toggle visibility of a comment field click on the eye icon.

	To rearrange the order of comment fields use drag and drop in the Comment menu.

	Adding Comments
	To add a comment to a comment field in a scene, double click on the comment’s area to make it editable. When finished, click outside of the area to save it.

	Changing duration
	Use the spin-box’s up and down button to change duration by one. Double click to make the field editable by typing.

	Working with multiple layers
	When working with multiple layers, if you want to change only one of the scene thumbnails when drawing on canvas, you should insert keyframes at that scene’s time in the current layer.
An easy way to do this is to turn the Auto Frame mode on in the animation docker. That way any changes that you make with the scene selected will insert a keyframe at the scene’s time in the current layer and thus would change the thumbnail for that scene.

Exporting Storyboard

Storyboards that you’ve created in Krita can be easily exported as either PDF or SVG files.

Clicking on the Export button at the upper-left corner of the Storyboard Docker will bring you to the storyboard export menu for the chosen format.
Within this menu you have various options covering essentials like page size, board layout and font size.
When using our procedural board layout modes (rows, columns, and grid), other appropriate parameters will appear and Krita will also try to estimate a maximum comfortable font size based on your other settings.

	Specifying layout using custom options
	The following options are provided to specify layout :

	Rows per page

	Columns per page

	Page Size

	Page Orientation

[image: ../../_images/storyboard_custom_options.png]

	Specifying Layout using SVG template file
	Better yet, Krita has the ability to make use of special SVG template files for even more control of how your storyboard elements will be placed on the page.
By using an SVG template file, you can design custom storyboard paper to suit the needs of almost any project or existing storyboard paper format.

We’ve made a default SVG storyboard template that will come bundled with Krita for everyone to use, modify, or learn from when creating their own custom templates.
Finally, if you’d like to create your own custom SVG storyboard template file, you can learn how to do that here.

[image: ../../_images/storyboard_SVG_layout.png]

	File name for Export document
	
	PDF : Choose the filename of the export document.

	SVG : Choose the directory where you want to save the exported files and a base name. The exported files will be named baseName followed by a numerical suffix. e.g. base0, base1 etc.

[image: ../../_images/storyboard_export_file.png]

Task Sets Docker

Task sets are for sharing a set of steps, like a tutorial. You make them with the task-set docker.

[image: ../../_images/Task-set.png]
Task sets can record any kind of command also available via the shortcut manager. It is not a macro recorder, right now, Krita does not have that kind of functionality.

The tasksets docker has a record button, and you can use this to record a certain workflow. All Actions can be recorded. These include every action available in the Main Menu, but also all actions available via Ctrl + Enter. Then use this to let items appear in the taskset list. Afterwards, turn off record. You can then click any action in the list to make them happen. Press the Save icon to name and save the taskset.

Task sets are a resource. As such, they can be saved, tagged, reordered. They are stored as *.kts files, which are XML files:

<Taskset name="example" version="1">
 <action>add_new_paint_layer</action>
 <action>add_new_clone_layer</action>
 <action>add_new_file_layer</action>
</Taskset>

Touch Docker

The Touch Docker is a QML docker with several convenient actions on it. Its purpose is to aid those who use Krita on a touch-enabled screen by providing bigger gui elements.

Its actions are…

	Open File

	Save File

	Save As…

	Undo

	Redo

	Increase opacity

	Make brush color lighter

	Decrease opacity

	Make brush color darker

	Rotate Canvas Left
by 15°

	Reset Canvas Rotation
and Reset Zoom

	Rotate Canvas Right
by 15°

	Increase Brush Size

	Zoom in

	Decrease Brush Size

	Zoom out

	Switch to Previous Preset

	Delete Layer Contents

Undo History

Undo History Docker

[image: ../../_images/Krita_Undo_History_Docker.png]
This docker allows you to quickly shift between undo states, and even go back in time far more quickly than rapidly reusing the Ctrl + Z shortcut.

Cumulative Undo

Cumulative Undo is a feature of Krita that allows merging similar undo states basing on their time separation. It makes the undo history cleaner.

 Symbol Libraries

Symbol Libraries

The Symbol Libraries Docker loads the symbol libraries in SVG files, when those SVG files are put into the symbols folder in the resource folder Settings ‣ Manage Resources… ‣ Open Resource Folder. They are a type of resource.

The vector symbols can then be dragged and dropped onto the canvas, allowing you to quickly use complicated images.

Currently, you cannot make symbol libraries with Krita yet, but you can make them by hand, as well as use Inkscape to make them. Thankfully, there’s quite a few svg symbol libraries out there already!

See also

SVG symbol element explain at Mozilla Developer Network [https://developer.mozilla.org/en-US/docs/Web/SVG/Element/symbol]

 Wide Gamut Color Selector

Wide Gamut Color Selector

New in version 5.2.

[image: ../../_images/wide_gamut_selector.png]
The wide gamut color selector provides a customizable color selector that is also able to select colors outside of the basic sRGB color gamut.

To open the Wide Gamut Color Selector choose Settings ‣ Dockers ‣ Wide Gamut Color Selector.

The top right of the selector has a foreground and background selector, while the middle is the main selector.

You can configure this docker by clicking the settings icons in the top level of the selector. Here you can access quick settings, like the color model and preferred selector shapes, and more configuration can be accessed with Configure….

Note

The Wide Gamut Color Selector is intended to eventually replace the Advanced Color Selector, so many of its options will be familiar to you.

Configuration

Color Selection

Here you can select the color model and the main shape.

	Hue Ring Appearance
	This allows you to choose how the hue ring (if applicable) will appear.

	Static
	The hue right will always be at the most colorful color in that hue.

	Dynamic
	The hue ring will adjust based on the lightness and saturation of the current color.

	Dynamic + Static Edge
	The hue ring will be split in two parts: the inner edge will be dynamic, while the outer-edge will be static.

The color selector options are similar to the ‘Type and Shape’ entries in Advanced Color Selector.

General

This sections covers the selector layout.

	Show Quick Settings Menu
	This will allow you to turn off the quick settings.

	Favourite selection
	This will allow you to select preferred shapes that show up in the quick settings menu.

	Selection Color space
	Select which color space will be used for the selector. You can use between current layer/mask, image, or a custom profile. This is useful for when you need to ensure your colors work inside a specific CMYK color space, while having the main image in RGB.

	Proof Colors to Painting Color Space
	This ensures that the selector will display colors in the current painting color space, which happens with the options Custom and Image if the selected layer or mask does not have the same color space as the image. It has no effect when using Layer/Mask

Pop-ups

These settings configure the pop-ups that can be created with the wide gamut selector actions for Show Color History, Show MyPaint Selector, Show Wide Gamut Selector and Show Wide Gamut Shade Selector. Configuring the keyboard shortcuts for these colors is done in Configure Krita -> Keyboard Shortcuts -> WG Color Selector Actions.

	Size
	The size of the pop-up in pixels.

Color patches

	Layout
	
	Orientation
	Whether these are oriented horizontally or vertically.

	Scrolling
	This controls both the scroll direction as well as which direction the patches are laid out in, the latter perpendicular to the former.

	None
	No scrolling.

	Along orientation
	Scrolls vertically or horizontally depending on orientation. Patches are laid out in the perpendicular direction.

	Laterally
	Shows perpendicular to the orientation, so vertically when the orientation is horizontal, and vice versa. Patches are laid out following the orientation.

	Rows
	The amount of rows the patches will take up.

	Patches
	
	Width/Height:
	The size of the patches.

	Max Patches:
	The maximum number of patches allowed.

Shade Selector

This configures the shade selector.

	Update Base Color
	
	Color Changes Externally
	When the shade selector is not responsible for the active color changes.

	Right-clicking on shade selector
	The color changes by right clicking on the shade selector.

	Interaction ends
	When the interaction with the selector ends. So a click+drag will not update the base color until the action is finished, but each single click will always update the color.

	Line count
	How many shade selectors are available.

For each number there will be a button added to the right side.

	Line Height
	How big the selectors are in pixels.

On the righthand side there will be a preview of each possible shade selector. Clicking these will allow you to edit the adjustment of the selector. The shade selectors follow the color model selected in the Color Selection options.

	Range
	How strong the color change is. The further the value from zero, the bigger the change to the color. Negative values will flip the adjustment.

	Offset
	How much the center of the selector is offset from the base color. Setting Hue to 0.5 for example will always show the complementary color to the current base color as the center of the slider.

	Display
	Whether to show as a continuous gradient, or split up into patches, and if so, how many patches.

Color Patches

This allows you to configure the color patches for the color history and the colors from the image.

	Layout
	
	Orientation
	Whether these are oriented horizontally or vertically.

	Scrolling
	
	None
	No scrolling.

	Along orientation
	Scrolls vertically or horizontally depending on orientation.

	Laterally
	Shows perpendicular to the orientation, so vertically when the orientation is horizontal, and vice versa.

	Rows
	The amount of rows the patches will take up.

	Patches
	
	Width/Height:
	The size of the patches.

	Max Patches:
	The maximum number of patches allowed.

	Options
	
	Clear Button
	Whether the clear button is present. Only for the color history.

	Autoupdate
	Whether the ‘colors from image’ auto updates, this will mean you will not have to press the refresh button in the docker to see them.

 Dr. MinGW Debugger

Dr. MinGW Debugger

Note

The information on this page applies only to the Windows release of Krita. Usually, the %LOCALAPPDATA%kritacrash.log log file will contain enough information for the developers to get an idea of why Krita crashed. Using the debug package is
only needed when more precise information is needed.

Using the Debug Package

If you have your Krita version installed and you want to get a backtrace, it’s best to download a portable version
(either the latest release, or the one that someone told you to try, for example Krita Next or Krita Plus package).
Alongside downloading the portable version, download the debug symbols package, too. It should be located in the same place
you download Krita. You can see which is which by checking the end of the name of the ZIP file - debug symbols package always ends with -dbg.zip.

	Links to the debug packages should be available on the release announcement news item on https://krita.org/, along with the release packages. You can find debug packages for any release either in https://download.kde.org/stable/krita for stable releases or in https://download.kde.org/unstable/krita for unstable releases (for example beta versions). Portable ZIP and debug ZIP are found next to each other.

	Make sure you’ve downloaded the same version of debug package for the portable package you intend to debug / get a better backtrace.

	Extract the portable Krita.

	Extract the files from the debug symbols package inside the portable Krita main directory, where the sub-directories bin, lib and share is located, like in the figures below:

[image: ../_images/Mingw-dbg7zip.png]
[image: ../_images/Mingw-dbg7zip-dir.png]

	After extracting the files, check the bin dir and make sure you see the .debug dir inside. If you don’t see it, you probably extracted to the wrong place.

Getting a Backtrace

	When there is a crash, Krita might appear to be unresponsive for a short time, ranging from a few seconds to a few minutes, before the crash dialog appears.

[image: ../_images/Mingw-crash-screen.png]

An example of the crash dialog.

	If Krita keeps on being unresponsive for more than a few minutes, it might actually be locked up, which may not give a backtrace. In that situation, you have to close Krita manually. Continue to follow the following instructions to check whether it was a crash or not.

	Open Windows Explorer and type %LocalAppData% (without quotes) on the address bar and press the Enter key.

[image: ../_images/Mingw-explorer-path.png]

	Find the file kritacrash.log (it might appear as simply kritacrash depending on your settings.)

	Open the file with Notepad and scroll to the bottom, then scroll up to the first occurrence of “Error occurred on <time>” or the dashes.

[image: ../_images/Mingw-crash-log-start.png]

Start of backtrace.

Check the time and make sure it matches the time of the crash.

[image: ../_images/Mingw-crash-log-end.png]

End of backtrace.

The text starting from this line to the end of the file is the most recent backtrace.

	If kritacrash.log does not exist, or a backtrace with a matching time does not exist, then you don’t have a backtrace. This means Krita was very likely locked up, and a crash didn’t actually happen. In this case, make a bug report too.

	If the backtrace looks truncated, or there is nothing after the time, it means there was a crash and the crash handler was creating the stack trace before being closed manually. In this case, try to re-trigger the crash and wait longer until the crash dialog appears.

 Filters

Filters

Filters are little scripts or operations you can run on your drawing. You can visualize them as real-world camera filters that can make a photo darker or blurrier. Or perhaps like a coffee filter, where only water and coffee gets through, and the ground coffee stays behind.

Filters are unique to digital painting in terms of complexity, and their part of the painting pipeline. Some artists only use filters to adjust their colors a little. Others, using Filter Layers and Filter Masks use them to dynamically update a part of an image to be filtered. This way, they can keep the original underneath without changing the original image. This is a part of a technique called ‘non-destructive’ editing.

Filters can be accessed via the Filters menu. Krita has two types of filters: Internal and G’MIC filters.

Internal filters are often multithreaded, and can thus be used with the Filter Brush Engine or the Filter Layer and Filter Masks.

	Adjust

	Artistic

	Blur

	Color

	Edge Detection

	Emboss

	Enhance

	Map

	Other

	Wavelet Decompose

 Adjust

Adjust

The Adjustment filters are image-wide and are for manipulating colors and contrast.

Dodge

An image-wide dodge-filter. Dodge is named after a trick in traditional dark-room photography that gave the same results.

[image: ../../_images/Dodge-filter.png]

	Shadows
	The effect will mostly apply to dark tones.

	Midtones
	The effect will apply to mostly midtones.

	Highlights
	This will apply the effect on the highlights only.

	Exposure
	The strength at which this filter is applied.

Burn

An image-wide burn-filter. Burn is named after a trick in traditional dark-room photography that gave similar results.

[image: ../../_images/Burn-filter.png]

	Shadows
	The effect will mostly apply to dark tones.

	Midtones
	The effect will apply to mostly midtones.

	Highlights
	This will apply the effect on the highlights only.

	Exposure
	The strength at which this filter is applied.

Levels

This filter allows you to directly modify the levels of the tone-values of an image, by manipulating sliders for highlights, midtones and shadows. You can even set an output and input range of tones for the image. A histogram is displayed to show you the tonal distribution.
The default shortcut for levels filter is Ctrl + L.

[image: ../../_images/Levels-filter.png]

	With these two buttons you can switch between “lightness only” and “per channel” levels adjustment. If you use the second mode you can modify the levels for each channel independently and you can change the active channel by selecting it in the list that appears at the right side of the buttons.

	This area shows the histogram for the active channel.

	This is a slider that you can use to quickly change the input black and white points and gamma.

	These input boxes do the same as the input levels slider, but allow you to finetune the values.

	This is a slider that you can use to quickly change the output black and white points.

	These input boxes do the same as the output levels slider, but allow you to finetune the values.

	These buttons allow you to control the visualization of the histogram. The first button makes it use a linear scale (the default). The second one makes it use a logarithmic scale. The third one changes its vertical size to fit the whole histogram in the area. The fourth one changes the vertical size to fit in the area most of the histogram but cutting long peaks produced by outliers. You can also change the size of the histogram by clicking and dragging vertically on the area or by double-clicking to change between “fit all” and “fit cutting long peaks”.

	This button brings up the auto levels dialog for the current channel.

	These buttons allow you to reset (from top to bottom) the levels of the current channel, the input levels of the current channel, the output levels of the current channel, and the levels of all the channels.

	This button brings up the multi-channel auto levels dialog (only available in the RGBA color model).

This filter is very useful to do an initial cleanup of scanned lineart or grayscale images. If the scanned lineart is light you can slide the black handle in the input levels to the right to make it darker or if you want to remove the gray areas you can slide the white handle to the left.

Auto levels is a quick way to adjust tone of an image. You can update the levels of the filter automatically by using the auto levels dialog that appears when clicking one of the buttons explained earlier:

New in version 5.1.

[image: ../../_images/Levels-filter-autolevels.png]

	Shadows and Highlights: In this group of widgets you can select how the shadows and highlights are enhanced.

	Method: this is available only in the RGBA color model when using the multi-channel autolevels and allows you to select if you want to apply the same input levels to all the channels or different input levels to each.

	Shadows clipping and Highlights clipping: these parameters tell the percentage of dark/light colors that are going to be clipped. This is useful when the histogram has long, low valued, tails at the shadows/highlights extremes.

	Maximum offset: this allows to set how much the input black and white points can be moved from their relative extremes.

	Shadows color and Highlights color: allows you to choose which colors should be used for the output shadows/highlights.

	Midtones: In this group of widgets you can select how the midtones are enhanced.

	Method: here you can choose not to enhance the midtones or a method to find the midtone point of the image using the median or the mean of the histogram.

	Amount: with this parameter you can choose how much the final midtone point used to adjust the image differs from the center of the histogram. If you choose 0% then the center of the histogram is used as midtone point (which means no correction except for the output color). If you choose 100% then the median or mean is used (depending on the method selected). And if you choose a value inbetween then a midtone point between those is used by linearly interpolating them.

	Color: allows you to choose which color should be used for the output midtones.

If you want to change the settings later you can click on the Create Filter Mask button to add the levels as a filter mask.

Color Adjustment Curves

This filter allows you to adjust each channel by manipulating the curves. You can even adjust the alpha channel and the lightness channel through this filter.
This is used very often by artists as a post processing filter to slightly heighten the mood of the painting by adjust the overall color. For example a scene with fire breathing dragon may be made more red and yellow by adjusting the curves to give it more warmer look, similarly a snowy mountain scene can be made to look cooler by adjusting the blues and greens. The default shortcut for this filter is Ctrl + M.

Changed in version 4.1: Since 4.1 this filter can also handle Hue and Saturation curves.

[image: ../../_images/Color-adjustment-curve.png]

Cross-channel color adjustment

New in version 4.1.

Sometimes, when you are adjusting the colors for an image, you want bright colors to be more saturated, or have a little bit of brightness in the purples.

The Cross-channel color adjustment filter allows you to do this.

At the top, there are two drop-downs. The first one is to choose which Channel you wish to modify. The Driver Channel drop down is what channel you use to control which parts are modified.

[image: ../../_images/cross_channel_filter.png]
The curve, on the horizontal axis, represents the driver channel, while the vertical axis represent the channel you wish to modify.

So if you wish to increase the saturation in the lighter parts, you pick Saturation in the first drop-down, and Lightness as the driver channel. Then, pull up the right end to the top.

If you wish to desaturate everything but the teal/blues, you select Saturation for the channel and Hue for the driver. Then put a dot in the middle and pull down the dots on either sides.

Brightness/Contrast curves

This filter allows you to adjust the brightness and contrast of the image by adjusting the curves.

Deprecated since version 4.0: These have been removed in Krita 4.0, because the Color Adjustment filter can do the same. Old files with brightness/contrast curves will be loaded as Color Adjustment curves.

Color Balance

This filter allows you to control the color balance of the image by adjusting the sliders for Shadows, Midtones and Highlights.
The default shortcut for this filter is Ctrl + B.

[image: ../../_images/Color-balance.png]

Desaturate

Image-wide desaturation filter. Will make any image Grayscale.
Has several choices by which logic the colors are turned to gray. The default shortcut for this filter is Ctrl + Shift + U.

[image: ../../_images/Desaturate-filter.png]

	Lightness
	This will turn colors to gray using the HSL model.

	Luminosity (ITU-R BT.709)
	Will turn the color to gray by using the appropriate amount of weighting per channel according to ITU-R BT.709.

	Luminosity (ITU-R BT.601)
	Will turn the color to gray by using the appropriate amount of weighting per channel according to ITU-R BT.601.

	Average
	Will make an average of all channels.

	Min
	Subtracts all from one another to find the gray value.

	Max
	Adds all channels together to get a gray value.

Invert

This filter like the name suggests inverts the color values in the image. So white (1,1,1) becomes black (0,0,0), yellow (1,1,0) becomes blue (0,1,1), etc.
The default shortcut for this filter is Ctrl + I.

Auto Contrast

Tries to adjust the contrast to universally acceptable levels.

HSV/HSL Adjustment

With this filter, you can adjust the Hue, Saturation, Value or Lightness, through sliders. The default shortcut for this filter is Ctrl + U.

[image: ../../_images/Hue-saturation-filter.png]

	Colorize
	This is an option to have all the pixels have the same hue. It uses a HSL formula by default.

	Legacy Mode
	In the development of Krita 4.3, the HSV algorithm was adjusted to maintain the variation in brightness better. This is important because brightness contrast is the most important contrast, so you want to avoid losing variation in it. This option toggles the old behaviour for files made in previous versions.

Threshold

A simple black and white threshold filter that uses sRGB luminosity. It’ll convert any image to a image with only black and white, with the input number indicating the threshold value at which black becomes white.

Slope, Offset, Power

A different kind of color balance filter, with three color selectors, which will have the same shape as the one used in settings.

This filter is particular useful because it has been defined by the American Society for Cinema as “ASC_CDL”, meaning that it is a standard way of describing a color balance method.

[image: ../../_images/Krita_filters_asc_cdl.png]

	Slope
	This represents a multiplication and determine the adjustment of the brighter colors in an image.

	Offset
	This determines how much the bottom is offset from the top, and so determines the color of the darkest colors.

	Power
	This represents a power function, and determines the adjustment of the mid-tone to dark colors of an image.

 Artistic

Artistic

The artistic filter are characterised by taking an input, and doing a deformation on them.

Halftone

[image: ../../_images/Krita_halftone_filter.jpg]
The halftone [https://en.wikipedia.org/wiki/Halftone] filter tries to replicate the continuous-tone of the original image through the use of simple shapes that vary in size.

	Mode
	
	Intensity
	In this mode the image is first converted to grayscale and then the halftoning is applied. The resulting effect is like the one used in black and white newspaper images.

	Independent Channels
	This allows applying the halftoning to each channel of the image independently, potentially with different parameters, giving an effect similar to the one in colored magazine images.

	Alpha
	With this option the halftoning is applied only to the alpha channel (you may see no change when all the pixels of the image are fully opaque). This is useful to add texture to the smooth semi-transparent borders of a layer.

	Halftoning Options
	When the selected mode is Independent Channels, multiple tabs for the different channels appear to let the user choose different options for each one; otherwise no tabs for the channels appear and there is only one set of options.
The halftoning process works by making a pattern image (commonly named screen) that is combined with the original image in a specific way.

	Screen Generator
	The filter uses the fill layer generators to create the screen (pattern) image instead of using a predefined set of patterns and options. This way the range of possible results can grow as new generators are added to Krita. Also the user can make his own patterns by using the pattern generator and custom pattern images. For more information see this page on fill layer generators and their options.

	Postprocessing
	These options apply to the result of combining the screen image with the original image.

	Hardness
	Controls how hard or soft are the borders of the halftone shapes.

	Invert
	Invert the resulting image/channel.

	Foreground & Background
	Change what color and opacity are used for the foreground (part of the image formed by the pattern shapes) and the background.

Index Color

The index color filter maps specific user selected colors to the grayscale value of the artwork. You can see the example below, the strip below the black and white gradient has index color applied to it so that the black and white gradient gets the color selected to different values.

[image: ../../_images/Gradient-pixelart.png]
You can choose the required colors and ramps in the index color filter dialog as shown below .

[image: ../../_images/Index-color-filter.png]
You can create index painting such as one shown below with the help of this filter.

[image: ../../_images/Kiki-pixel-art.png]

Pixelize

Makes the input-image pixely by creating small cells and inputting an average color.

[image: ../../_images/Pixelize-filter.png]

Raindrops

Adds random raindrop-deformations to the input-image.

Oilpaint

Does semi-posterisation to the input-image, with the ‘brush-size’ determining the size of the fields.

[image: ../../_images/Oilpaint-filter.png]

	Brush-size
	Determines how large the individual patches are. The lower, the more detailed.

	Smoothness
	Determines how much each patch’s outline is smoothed out.

Posterize

This filter decreases the amount of colors in an image. It does this per component (channel).

[image: ../../_images/Posterize-filter.png]
The Steps parameter determines how many colors are allowed per component.

 Blur

Blur

The blur filters are used to smoothen out the hard edges and details in the images. The resulting image is blurry.
below is an example of a blurred image. The image of Kiki on right is the result of blur filter applied to the image on left.

[image: ../../_images/Blur.png]
There are many different filters for blurring:

Gaussian Blur

You can input the horizontal and vertical radius for the amount of blurring here.

[image: ../../_images/Gaussian-blur.png]

Motion Blur

Doesn’t only blur, but also subtly smudge an image into a direction of the specified angle thus giving a feel of motion to the image. This filter is often used to create effects of fast moving objects.

[image: ../../_images/Motion-blur.png]

Blur

This filter creates a regular blur.

[image: ../../_images/Blur-filter.png]

Lens Blur

Lens Blur Algorithm.

[image: ../../_images/Lens-blur-filter.png]

 Color

Color

Similar to the Adjust filters, the color filters are image wide color operations.

Color to Alpha

This filter allows you to make one single color transparent (alpha). By default when you run this filter white is selected, you can choose a color that you want to make transparent from the color selector.

[image: ../../_images/Color-to-alpha.png]
The Threshold indicates how much other colors will be considered mixture of the removed color and non-removed colors.
For example, with threshold set to 255, and the removed color set to white, a 50% gray will be considered a mixture of black+white, and thus transformed in a 50% transparent black.

[image: ../../_images/Krita-color-to-alpha.png]
This filter is really useful in separating line art from the white background.

Color Transfer

This filter converts the colors of the image to colors from the reference image.
This is a quick way to change a color combination of an artwork to an already saved image or a reference image.

[image: ../../_images/Color-transfer.png]

Maximize Channel

This filter checks for all the channels of a each single color and set all but the highest value to 0.

Minimize Channel

This is reverse to Maximize channel, it checks all the channels of a each single color and sets all but the lowest to 0.

 Edge Detection

Edge Detection

Edge detection filters focus on finding sharp contrast or border between colors in an image to create edges or lines.

Since 4.0 there are only two edge detection filters.

Edge Detection

New in version 4.0.

A general edge detection filter that encapsulates all other filters. Edge detection filters that were separate before 4.0 have been folded into this one. It is also available for filter layers and filter brushes.

[image: ../../_images/Krita_4_0_edge_detection.png]

From left to right: Original, with Prewitt edge detection applied, with Prewitt edge detection applied and result applied to alpha channel, and finally the original with an edge detection filter layer with the same settings as 3, and the filter layer blending mode set to multiply.

	Formula
	The convolution kernel formula for the edge detection. The difference between these is subtle, but still worth experimenting with.

	Simple
	A Kernel that is not square unlike the other two, and while this makes it fast, it doesn’t take diagonal pixels into account.

	Prewitt
	A square kernel that includes the diagonal pixels just as strongly as the orthogonal pixels. Gives a very strong effect.

	Sobel
	A square kernel that includes the diagonal pixels slightly less strong than the orthogonal pixels. Gives a more subtle effect than Prewitt.

	Output
	The output.

	All sides
	Convolves the edge detection into all directions and combines the result with the Pythagorean theorem. This will be good for most uses.

	Top Edge
	This only detects changes going from top to bottom and thus only has top lines.

	Bottom Edge
	This only detects changes going from bottom to top and thus only has bottom lines.

	Right Edge
	This only detects changes going from right to left and thus only has right lines.

	Left Edge
	This only detects changes going from left to right and thus only has left lines.

	Direction in Radians
	This convolves into all directions and then tries to output the direction of the line in radians.

	Horizontal/Vertical radius
	The radius of the edge detection. Default is 1 and going higher will increase the thickness of the lines.

	Apply result to Alpha Channel.
	The edge detection will be used on a grayscale copy of the image, and the output will be onto the alpha channel of the image, meaning it will output lines only.

Gaussian High Pass

A High Pass filter is a type of edge detection filter. It is usually used to enhance contrasts, much like a sharpen filter, but within a texture editing workflow it is also used to remove local gradients.

	Radius
	The radius within the Gaussian High Pass filter is similar to the radius in the Edge Detection filter.

To use this as a sharpen filter, create a filter layer with this filter, and then set the blending mode to modes like ‘soft light’, ‘overlay’, ‘hard light’, ‘linear light’. Different blending modes give different results.

[image: ../../_images/highpass_filter_sharpen.png]

Top left: Original, top right: Gaussian Highpass Result with radius 3, bottom left: Gaussian High Pass Result with radius 3 blended over the original with to Linear Light, bottom right: Gaussian High Pass result with radius 3 blended over the original with Soft Light.

To remove local gradients from a texture, create a clone layer, and apply this filter as a filter mask. Then, put a filter layer with gaussian blur set to the full amount in between the clone layer and the original. Finally, set the clone layer to luminosity or multiply (in this case an extra filter mask needs to be added to reduce the levels so that the multiplication result will not be as strong).

[image: ../../_images/highpass_filter_local_gradient_removal.png]

Left: Original, top right: Gaussian High Pass Result blended with luminosity to remove the local gradients but keep the sharp details. In this specific example the lack of local gradients removes some character, but the gaussian high pass result could also be used to create a heightmap.

Height to Normal Map

New in version 4.0.

[image: ../../_images/Krita_4_0_height_to_normal_map.png]
A filter that converts Height maps to Normal maps through the power of edge detection. It is also available for the filter layer or filter brush.

	Formula
	The convolution kernel formula for the edge detection. The difference between these is subtle, but still worth experimenting with.

	Simple
	A Kernel that is not square unlike the other two, and while this makes it fast, it doesn’t take diagonal pixels into account.

	Prewitt
	A square kernel that includes the diagonal pixels just as strongly as the orthogonal pixels. Gives a very strong effect.

	Sobel
	A square kernel that includes the diagonal pixels slightly less strong than the orthogonal pixels. Gives a more subtle effect than Prewitt.

	Channel
	Which channel of the layer should be interpreted as the grayscale heightmap.

	Horizontal/Vertical radius
	The radius of the edge detection. Default is 1 and going higher will increase the strength of the normal map. Adjust this if the effect of the resulting normal map is too weak.

	XYZ
	An XYZ swizzle, that allows you to map Red, Green and Blue to different 3d normal vector coordinates. This is necessary mostly for the difference between MikkT-space normal maps (+X, +Y, +Z) and the OpenGL standard normal map (+X, -Y, +Z).

 Emboss

Emboss

Filters that are named by the traditional embossing technique. This filter generates highlight and shadows to create an effect which makes the image look like embossed. Emboss filters are usually used in the creation of interesting GUI elements, and mostly used in combination with filter-layers and masks.

Emboss Horizontal Only

Only embosses horizontal lines.

Emboss in all Directions

Embosses in all possible directions.

Emboss (Laplacian)

Uses the laplacian algorithm to perform embossing.

Emboss Vertical Only

Only embosses vertical lines.

Emboss with Variable depth

Embosses with a depth that can be set through the dialog box shown below.

[image: ../../_images/Emboss-variable-depth.png]

Emboss Horizontal and Vertical

Only embosses horizontal and vertical lines.

 Enhance

Enhance

These filters all focus on reducing the blur in the image by sharpening and enhancing details and the edges. Following are various sharpen and enhance filters in provided in Krita.

	Sharpen

	Mean Removal

	Unsharp Mask

	Gaussian Noise reduction

	Wavelet Noise Reducer

 Map

Map

Filters that are signified by them mapping the input image.

Small Tiles

Tiles the input image, using its own layer as output.

Phong Bumpmap

[image: ../../_images/Krita-normals-tutoria_4.png]
Uses the input image as a height-map to output a 3d something, using the phong-lambert shading model. Useful for checking one’s height maps during game texturing. Checking the Normal Map box will make it use all channels and interpret them as a normal map.

Round Corners

Adds little corners to the input image.

Normalize

This filter takes the input pixels, puts them into a 3d vector, and then normalizes (makes the vector size exactly 1) the values. This is helpful for normal maps and some minor image-editing functions.

Gradient Map

[image: ../../_images/Krita_filter_gradient_map.png]
Maps the lightness of the input to the selected gradient. Useful for fancy artistic effects.

In 3.x you could only select predefined gradients. In 4.0, you can select gradients and change them on the fly, as well as use the gradient map filter as a filter layer or filter brush.

Color Modes

	Blend: smoothly blend colors between stops

	Nearest: selects color from nearest stops

	Dither: dithers between stop colors as per Dithering Threshold Modes.

Palettize

Maps the color of the input to the nearest color in the selected palette. Useful for limiting color in pixel art and for artistic effects.

Optional dithering may be applied with the covered value range controlled by the spread value.

Colorspace Modes

	Lab: finds nearest colors in Lab colorspace

	RGB: finds nearest colors in RGB colorspace

Dithering Threshold Modes

	Pattern: uses the lightness or alpha value of the selected pattern to threshold the input color between palette colors

	Noise: uses a randomly generated value per pixel to threshold the input color between palette colors

Dithering Color Modes

	Per-Component Offset: independently offsets each color channel by the threshold amount, scaled by the offset scale value

	Nearest Colors: finds the two nearest colors then applies the threshold amount to the relative distances of the two color to find the resulting color

Dithering Alpha Modes

	Clip: thresholds alpha at the clip position

	Index: uses the selected palette index as the transparent color

	Dither: applies dither to the alpha value as per Dithering Threshold Modes

 Other

Other

Filters signified by them not fitting anywhere else.

Wave

Adds a cute little wave-distortion effect to the input image.

Random Noise

Gives Random Noise to input image.

Random Pick

Adds a little pixely-fringe to the input image.

 Wavelet Decompose

Wavelet Decompose

Wavelet decompose uses wavelet scales to turn the current layer into a set of layers with each holding a different type of pattern that is visible within the image. This is used in texture and pattern making to remove unwanted noise quickly from a texture.

You can find it under Image.

When you select it, it will ask for the amount of wavelet scales. More scales, more different layers. Press OK, and it will generate a group layer containing the layers with their proper blending modes:

[image: ../../_images/Wavelet_decompose.png]
Adjust a given layer with middle gray to neutralize it, and merge everything with the Grain Merge blending mode to merge it into the end image properly.

 HDR Display

HDR Display

New in version 4.2.

Note

Currently only available on Windows.

Since 4.2 Krita can not just edit high bitdepths images, but also render them on screen in a way that an HDR capable setup can show them as HDR images. HDR images, to put it simply, are images with really bright colors. They do this by having a very large range of colors available, 16 bit and higher, and to understand the upper range of the available colors as brighter than the brightest white most screens can show. HDR screens, in turn, are screens which can show brighter colors than most screens can show, and can thus show the super-bright colors in these HDR images. This allows for images where bright things, like fire, sunsets, magic, look really spectacular! It also shows more subtle shadows and has a better contrast in lower color values, but this requires a sharper eye.

Configuring HDR

Krita cannot show HDR with any given monitor, you will need an HDR capable setup. HDR capable setups are screens which can show more than 100 nits, preferably a value like 1000 and can show the rec 2020 PQ space. You will need to have the appropriate display cable(otherwise the values are just turned into regular SDR) and a graphics card which supports HDR, as well as suitable drivers. You then also need to configure the system settings for HDR.

If you can confirm that the system understands your setup as an HDR setup, you can continue your configuration in Krita, in Settings ‣ Configure Krita… ‣ Display. There, you need to select the preferred surface, which should be as close to the display format as possible. Then restart Krita.

Painting in HDR

To create a proper HDR image, you will need to make a canvas using a profile with rec 2020 gamut and a linear TRC. Rec2020-elle-V4-g10.icc is the one we ship by default.

HDR images are standardized to use the Rec2020 gamut, and the PQ TRC. However, a linear TRC is easier to edit images in, so we don’t convert to PQ until we’re satisfied with our image.

For painting in this new exciting color space, check the Scene Linear Painting page, which covers things like selecting colors, gotchas, which filters work and cool workflows.

Exporting HDR

Now for saving and loading.

The KRA file format can save the floating point image just fine, and is thus a good working file format.

For sharing with other image editors, *.exr is recommended. For sharing with the web we currently only have HDR PNG export, but there’s currently very little support for this standard. In the future we hope to see heif and avif support.

For exporting HDR animations, we support saving HDR to the new codec for mp4 and mkv: H.265. To use these options…

	Get a version of FFmpeg that supports H.265.

	Have an animation open.

	File ‣ Render Animation.

	Select Video.

	Select for Render as, ‘MPEG-4 video’ or ‘Matroska’.

	Press the configure button next to the file format dropdown.

	Select at the top ‘H.265, MPEG-H Part 2 (HEVC)’.

	Select for the Profile, ‘main10 (HDR)’.

	HDR Mode should now enable. Toggle it.

	click HDR Metadata to configure the HDR metadata (options described below).

	finally, when done, click ‘OK’.

HDR Metadata

This is in the render animation screen. It configures the SMPTE ST.2086 or Master Display Color Volumes metadata and is required for the HDR video to be transferred properly to the screen by video players and the cable.

	Master Display
	The colorspace characteristics of the display on for which your image was made, typically also the display that you used to paint the image with. There are two default values for common display color spaces, and a custom value, which will enable the Display options.

	Display
	The precise colorspace characteristics for the display for which your image was made. If you do not have custom selected for Master Display, these are disabled as we can use predetermined values.

	Red/Green/Blue Primary
	The xyY x and xyY y value of the three chromacities of your screen. These define the gamut.

	White Point
	The xyY x and xyY y value of the white point of your screen, this defines what is considered ‘neutral grey’.

	Min Luminance
	The darkest value your screen can show in nits.

	Max Luminance
	The brightest value your screen can show in nits.

	MaxCLL
	The value of the brightest pixel of your animation in nits.

	MaxFALL
	The average ‘brightest value’ of the whole animation.

 Image Split

Image Split

Found under Image ‣ Image Split, the Image Split function allows you to evenly split a document up into several sections. This is useful for splitting up spritesheets for example.

[image: ../_images/krita_4_3_image_split_dialog.png]

	Horizontal Lines
	The amount of horizontal lines to split at. 4 lines will mean that the image is split into 5 horizontal stripes.

	Vertical Lines
	The amount of vertical lines to split at. 4 lines will mean that the image is split into 5 vertical stripes.

New in version 4.3:

	Use Guides
	Instead of splitting the image up into even parts, you can choose to use the image guides to function as horizontal or vertical lines. This provides a little bit more control on how the image is split.

Sort Direction

New in version 4.2.

Whether to number the files using the following directions:

	Horizontal
	Left to right, top to bottom.

	Vertical
	Top to bottom, left to right.

	Prefix
	The prefix at which the files should be saved at. By default this is the current document name.

	File Type
	Which file format to save to.

	Autosave on split
	This will result in all slices being saved automatically using the above prefix. Otherwise Krita will ask the name for each slice.

 Import Animation

Import Animation

Krita has several options for allowing you to import an animation.

Import Frames

Frame import will import a list of images into an animation layer. This is a format that most other animation software can export, and thus very useful for interchange.

First let us take a sprite sheet from Open Game Art. (This is the Libre Pixel Cup male walkcycle [1]).

We’ll use Image Split to split up the sprite sheet.

[image: ../_images/Animation_split_spritesheet.png]
The slices are even, so for a sprite sheet of 9 sprites, use 8 vertical slices and 0 horizontal slices. Give it a proper name and save it as png.

Then, make a new canvas, and select File ‣ Import Animation Frames. This will give you a little window. Select Add images. This should get you a file browser where you can select your images.

[image: ../_images/Animation_import_sprites.png]
You can select multiple images at once.

[image: ../_images/Animation_set_everything.png]
The frames are currently automatically
ordered. You can set the ordering with the top-left two drop-down boxes.

Press OK, and your animation should be imported as a new layer.

[image: ../_images/Animation_import_done.png]

	Add images.
	Add frames. You can select multiple frames in the file chooser.

	Remove.
	Remove the selected frame

	Add hold frames automatically.
	If a frame sequence has gaps, such as a sequence that has frames 1, 2 and 5, ticking this option will input empty frames at 3 and 4.

Order

	Ascending vs Descending
	Whether it will import the frames in order from lowest to highest (ascending), or from highest to lowest (descending).

	Numerical vs Alphabetical
	Whether it will use numbers or Alphabetical ordering for the frames.

Timing

	Start at
	The frame number to import at. Importing at 3 will have the resulting animation start at frame 3 within Krita.

	Step
	The amount of frames to input for each imported frame. For importing a 6 fps animation into a 24 fps animation, you will need to set this to 24 / 6 = 4. This will ensure the playback speed stays the same.

	Source FPS
	This displays what Krita thinks the fps of the input is with the current timing settings. You can use this to make sure that the input you made is correct with the FPS of your document.

Import video file

Video import allows you to import a sample of a video file as an animated paint layer.

[image: ../_images/import_video.png]

	Choose a video file
	This will bring up a file chooser for you to select the file in question.

	Preview
	Gives a preview of the file to import.

	Slider
	Allows you to scrub through the file in question.

	Frame Counter
	Allows you to select the frame in question

	Frame Switcher
	Two buttons to switch per frame.

Video file info

	Width
	The width of the current file.

	Height
	The height of the current file.

	Duration
	The duration in seconds.

	Frames
	The total amount of frames

	FPS
	The frames per second.

	Color Primaries
	The name of the color space primaries Krita has detected. These will be used for the color profile with which the file imports. Only shows up on files where this data is detected.

	Color Transfer
	The name of the color space trc that Krita has found. This too will be used for the color profile. Only shows up on files where this data is detected.

Import Options

	FPS
	The FPS to import at. Importing 2 seconds of footage at 24 fps will import 48 frames, and at 60 fps, 120 frames will be imported.

	Skip Interval
	Same as Step in the Import Frames section.

	Start at
	Time code to start at.

	Duration
	Length of the imported animation.

	Import into
	Document to import the file into. Options are current document and new document. With new document, extra options become available on the second tab.

Warning

Videos, because you usually only play them in a media player, are compressed in special ways. Because Krita is designed to allow you to draw each individual frame, this data gets uncompressed. What this means is that even though you can watch a video file on your computer, you likely cannot import all the frames into Krita. A warning will be displayed and inform you how many frames you can import with your current setup.

Options

Document Options

Only enabled when the import is into a new document.

	Width
	Width of the new document.

	Height
	Height of the new document.

Import Video Scale

	Width
	The desired width in pixels

	Height
	The desired height in pixels

	Filter
	The filter to use for the resizing.

FFMpeg

	FFMpeg Path
	Path to the ffmpeg executable, necessary for importing the video data.

	FFProbe path
	Path to the ffmpeg probe executable, which is included with ffmpeg. This allows Krita to learn the video information from the file.

See also

[1]
The source for the libre pixel cup male walk cycle [https://opengameart.org/content/liberated-pixel-cup-lpc-base-assets-sprites-map-tiles]

 Instant Preview

Instant Preview

Instant Preview (previously known under the code name Level Of Detail/LOD strokes) is Krita’s special speed-up mechanism that was funded by the 2015 Kickstarter. Krita slows down with really large images due to the large amount of data it’s crunching in painting these images. Instant Preview works by taking a smaller version of the canvas, and drawing the feedback on there while Krita calculates the real stroke in the background. This means that if you have a 4k screen and are working on a 4k image at 100% zoom, you won’t feel any speed up.

Activating Instant Preview

Warning

Instant Preview requires OpenGL 3.0 support at minimum. So if you don’t have high-quality scaling available in Settings ‣ Configure Krita… ‣ Display ‣ Display scaling filter, then you won’t be able to use Instant Preview either.

[image: ../_images/Lod_position.png]

The Global Instant Preview toggle is under the view menu.

Instant Preview is activated in two places: The view menu (Shift + L shortcut), and the settings of the given paintop by default. This is because Instant Preview has different limitations with different paint operations.

For example, the overlay mode in the color smudge brush will disable the ability to have Instant Preview on the brush, so does using ‘fade’ sensor for size.

Similarly, the auto-spacing, fuzzy sensor in size, use of density in brush-tip and the use of texture paintops will make it more difficult to determine a stroke, and thus will give a feeling of ‘popping’ when the stroke is finished.

When you check the brush settings, the Instant Preview checkbox will have a * behind it. Hovering over it will give you a list of options that are affecting the Instant Preview mode.

New in version 4.0: [image: mouseleft] this pop-up will give a slider, which can be used to determine the threshold size at which instant preview activates. By default this 100px. This is useful for brushes that are optimised to work on small sizes.

[image: ../_images/Lod_position2.png]

The Instant Preview checkbox at the bottom of the brush settings editor will give you feedback when there’s settings active that can’t be previewed right. Hover over it to get more detail. In this case, the issue is that auto-spacing is on.

Tools that benefit from Instant Preview

The following tools benefit from Instant Preview:

	The Freehand brush tool.

	The geometric tools.

	The Move Tool.

	The Filters.

	Animation.

 Krita 4 Preset Bundle Overview

Krita 4 Preset Bundle Overview

[image: ../_images/Krita4_0_brushes.jpg]
Krita comes with a large collection of brush presets. This collection was designed with many considerations:

	Help the beginner and the advanced user with brushes that are ready-to-use.

	Propose tools for the various ways Krita is used: Comic inking and coloring, Digital Painting, Mate Painting, Pixel Art, 3D texturing.

	Show a sample of what the brush engines can do.

This page illustrates and describes the included default brush presets in Krita 4.

Erasers

	The large one is for removing large portions of a layer (eg. a full character).

	The small one is designed to use when drawing thin lines or inking. It has a very specific shape so you will notice with the square shape of your cursor you are in eraser-mode.

	The soft one is used to erase or fade out the part of a drawing with various levels of opacity.

[image: ../_images/Krita4_a-brush-family.png]

Basics

The basic brush family all use a basic circle for the brush tip with a variation on opacity, flow or size. They are named Basic because brushes of this type are the fundamental stones of every digital painting program. These brushes will work fast since they use simple properties.

[image: ../_images/Krita4_b-brush-family.jpg]

Pencils

These presets tends to emulate the effect of pencil on paper. They all have a thin brush that uses a paper-texture. Some focus on being realistic to help with correcting a pencil scan. Some focus more on showing the effects on your computer monitor. The two last (Tilted/Quick Shade) assist the artist to obtain specific effects; like quickly shading a large area of the drawing without having to manually crosshatch a lot of lines.

[image: ../_images/Krita4_c-brush-family.jpg]

Inking

For the black & white illustrator or the comic artist. The Inking brushes help you produce line art and high contrast illustrations.

	Ink Precision: A thin line designed to take notes or draw tiny lines or details.

	Ink Fineliner: A preset with a regular width to trace panels, technical details, or buildings.

	Ink GPen: A preset with a dynamic on size to ink smoothly.

	Ink Pen Rough: A preset for inking with a focus on having a realistic ink line with irregularities (texture of the paper, fiber of paper absorption).

	Ink Brush Rough: A brush for inking with also a focus on getting the delicate paper texture appearing at low pressure, as if the brush slightly touch paper.

	Ink Sumi-e: A brush with abilities at revealing the thin texture of each bristle, making the line highly expressive.

[image: ../_images/Krita4_d-brush-family.jpg]

Markers

A small category with presets simulating a marker with a slight digital feeling to them.

[image: ../_images/Krita4_e-brush-family.jpg]

Dry Painting

The Dry Painting category is full set of brushes that appear like bristles. They do not interact with the color already on the canvas; that’s why they are called “dry”. They work as if you were painting on a dry artwork: the color replace, or overlay/glaze over the previous painting stroke. This brush emulates techniques that dry quickly as tempera or acrylics.

[image: ../_images/Krita4_f-brush-family.jpg]

Dry Painting Textured

Almost the same family as the previous one, except these brush presets lay down a textured effect. They simulate the painting effect you can obtain with very thick painting on a brush caressing a canvas with fabric texture. This helps to build painterly background or add life in the last bright touch of colors.

[image: ../_images/Krita4_g-brush-family.jpg]

Chalk, Pastel and Charcoal

Still part of the dry family. These brushes focus on adding texture to the result. The type of texture you would obtain by using a dry tool such as chalk, charcoal or pastel and rubbing a textured paper.

[image: ../_images/Krita4_h-brush-family.jpg]

Wet painting

This family of brushes is wet in a sense they all interact with the color on the canvas. It triggers the feeling of having a wet artwork and mixing color at the same time. The category has variations with bristle effects or simple rounded brushes.

[image: ../_images/Krita4_i-brush-family.jpg]

Watercolors

Simulating real watercolors is highly complex. These brushes only partially simulate the watercolor texture. Don’t expect crazy pigment diffusion because these brushes are not able to do that. These brushes are good at simulating a fringe caused by the pigments and various effects.

[image: ../_images/Krita4_j-brush-family.jpg]

Blender

These brushes don’t paint any colors. They interact with the color you already have on the canvas. Don’t expect them to have any effect on a white page. All these presets give a different result with how they smudge or smear. It helps to blend colors, blur details, or add style on a painting. Smearing pixels can help with creating smoke and many other effects.

[image: ../_images/Krita4_k-brush-family.jpg]

Adjustments

This family of airbrushes has variations on the blending modes. Different blending modes will give different results depending on the effect you are trying to achieve.

	Color - Can help to re-color or desaturate a part of your artwork. It changes only the hue and saturation, not the value, of the pixels.

	Dodge - Will assist you in creating effects such as neon or fire.

	Lighten - Brightens only the area with the selected color: a good brush to paint depth of field (sfumato) and fog.

	Multiply - Darkens all the time. A good brush to create a quick vignette effect around an artwork, or to manage big part in shadow.

	Overlay - Burn helps to boost the contrast and overlay color on some areas.

[image: ../_images/Krita4_l-brush-family.jpg]

Shapes

Painting with ready-made shapes can help concept artists create happy-accidents and stimulate the imagination. The Shape Fill tool is a bit specific: you can draw a silhouette of shape and Krita fills it in real time. Painting shapes over an area helps fill it with random details. This is useful before painting over with more specific objects.

[image: ../_images/Krita4_t-brush-family.jpg]

Pixel

You might believe this section is specific to pixel-artist, but in many situations dealing with specific pixels are needed to make corrections and adjustments even on normal paintings. A thin 1px brush can be used to trace guidelines. A brush with aliasing is also perfect to fix the color island created by the Coloring-mask feature.

[image: ../_images/Krita4_u-brush-family.jpg]

Experimental

When categorizing brushes, there is always a special or miscellaneous category. In this family of brushes you’ll find the clone brush along with brushes to move, grow, or shrink specific areas.

[image: ../_images/Krita4_v-brush-family.jpg]

Normal Map

Useful for 3D programs and texture artists. If your tablet supports tilting and rotation this brush will allow you to paint on your normal map using your brush rotation and orientation. You can “sculpt” your details in the texture with the different colors. Each color will map to an angle that is used for 3D lighting. It works well on pen-tablet display (tablet with a screen) as you can better sync the rotation and tilting of your stylus with the part of the normal map you want to paint.

[image: ../_images/Krita4_w-brush-family.jpg]

Filters

Krita can apply many of its filters on a brush thanks to the filter brush engine. The result is usually not efficient and slow, but a good demo of the ability of Krita.

[image: ../_images/Krita4_x-brush-family.jpg]

Textures

Adding textures is not only useful for the 3D artist or video-game artist: in many artworks you’ll save a lot of time by using brushes with random patterns.

[image: ../_images/Krita4_y-brush-family.jpg]

Stamps

The stamps are a bit similar to the texture category. Stamps often paint a pattern that is easier to recognize than if you tried to paint it manually. The results appear more as decorations than for normal painting methods.

[image: ../_images/Krita4_z-brush-family.jpg]

 Layers and Masks

Layers and Masks

Layers are a central concept in digital painting.

With layers you can get better control over your artwork, for example you can color an entire artwork just by working on the separate color layer and thereby not destroying the line art which will reside above this color layer.

Furthermore, layers allow you to change the composition easier, and mass transform certain elements at once.

Masks on the other hand allow you to selectively apply certain effects on a layer, like transparency, transformation and filters.

Check the Introduction to Layers and Masks for more information.

	Clone Layers

	File Layers

	Fill Layers

	Filter Layer

	Filter Masks

	Group Layers

	Layer Styles

	Paint Layers

	Selection Masks

	Split Alpha

	Transform Masks

	Transparency Masks

	Vector Layers

 Clone Layers

Clone Layers

A clone layer is a layer that keeps an up-to-date copy of another layer. You cannot draw or paint on it directly, but it can be used to create effects by applying different types of layers and masks (e.g. filter layers or masks).

Example uses of Clone Layers

For example, if you were painting a picture of some magic person and wanted to create a glow around them that was updated as you updated your character, you could:

	Have a Paint Layer where you draw your character

	Use the Clone Layer feature to create a clone of the layer that you drew your character on

	Apply an HSV filter mask to the clone layer to make the shapes on it white (or blue, or green etc.)

	Apply a blur filter mask to the clone layer so it looks like a “glow”.

As you keep painting and adding details, erasing on the first layer, Krita will automatically update the clone layer, making your “glow” apply to every change you make.

Changing the source of Clone Layers

You can change the source of one or more Clone Layers in the Layers Docker. To do so, select one or more Clone Layers in the docker (hold Ctrl or Shift and left-click the layers). Then, right-click on any selected layer. In the context menu, there is an action named Set Copy From. Click it. A dialog will pop up and there is a drop-down menu with all possible layers to be set as the source of all selected Clone Layers. If the current source of them consists of multiple layers, the default activated selection in the drop-down menu will be blank. Otherwise, it would be the common source of selected Clone Layers.

Possible target layers are determined through the following criteria:

	Any Clone Layer that is selected is invalid.

	A parent or clone of any invalid layer is invalid.

	All other layers are valid.

If you select one layer in the drop-down menu, a preview of the canvas will be shown. Click OK to apply the changes. Click Cancel to discard the changes. If you make changes to the image outside the dialog, the changes will be applied and the dialog will be automatically closed.

 File Layers

File Layers

File Layers are references to files outside of the document: If the referenced document updates, the file layer will update. Do not remove the original file on your computer once you add it to Krita. Deleting your original image will break the file layer. If Krita cannot find the original file, it’ll ask you where to find it. File layers cannot display animations. Krita uses a relative path to store the location of the file in the .kra. If you move the .kra but not the file, the file layer may be broken.

File Layers have the following scaling options:

	No Scaling
	This’ll import the file layer with the full pixel-size.

	Scale to Image Size
	Scales the file layer to fit exactly within the canvas boundaries of the image.

	Adapt to image resolution
	If the imported layer and the image have a different resolution, it’ll scale the filelayer by scaling its resolution. In other words, import a 600dpi A4 image onto a 300dpi A4 image, and the filelayer will be scaled to fit precisely on the 300dpi image. Useful for comics, where the ink-layer is preferred to be at a higher resolution than the colors.

	Scaling Filter
	Here you can set the scaling filter. Most of the time, you will want to use Bicubic. However when working with pixel art, it is more useful to use Nearest Neighbour which doesn’t try to mix colors.

New in version 5.2.

File Layers can currently not be painted on. If you want to transform a file layer, you need to apply a transformation mask to it and use that.

In the layerdocker, next to the file layer only, there’s a little folder icon. Pressing that will open the file pointed at in Krita if it hadn’t yet. Using the properties you can make the file layer point to a different file.

You can turn any set of layers into a file layer by right-clicking them and doing Convert ‣ to File Layer. It will then open a save prompt for the file location and when done will save the file and replace the layer with a file layer pointing at that file.

 Fill Layers

Fill Layers

A Fill Layer is a special layer that Krita generates on-the-fly that can contain either a pattern or a solid color.

[image: ../../_images/Fill_Layer.png]
By default, the dialog selects the flat color fill. This fills the layer with a singular color. Newly created colored fill layers will be assigned to the currently active foreground color, unless they were made by drag-and-dropping a palette swatch onto the layer stack.

However, there are many more options, with more complex features:

	Gradient Fill

	Multigrid

	Pattern Fill

	Screentone

	SeExpr

	Simplex Noise

Painting on a fill layer

A fill-layer is a single-channel layer, meaning it only has transparency. Therefore, you can erase and paint on fill-layers to make them semi-opaque, or for when you want to have a particular color only. Being single channel, fill-layers are also a little bit less memory-consuming than regular 4-channel paint layers.

 Gradient Fill

Gradient Fill

New in version 4.4.2.

Fills the layer with a gradient in the same way as the gradient tool does.

General Options

	Shape:
	
	Linear
	This will draw a straight gradient. The distance and angle between the start and
end points will define the size and rotation of the gradient, respectively.

[image: Linear Gradient.]

Left: None. Middle: Forwards. Right: Alternating.

	Bilinear
	
This will draw a straight gradient, mirrored along the axis.
The distance and angle between the start and
end points will define the size and rotation of the gradient, respectively.

[image: ../../../_images/bilinear.png]

Left: None. Middle: Forwards. Right: Alternating.

	Radial
	
This will draw the gradient from a center, defined by the start point, with a radius equal to the distance
between the start and end points.

[image: ../../../_images/radial.png]

Left: None. Middle: Forwards. Right: Alternating.

	Square
	This will draw the gradient from a center in a square shape, defined by the start point. The distance and angle between
the start and end points will define the distance from that center to a side of the square and its rotation, respectively.

[image: ../../../_images/square.png]

Left: None. Middle: Forwards. Right: Alternating.

	Conical
	This will wrap the gradient around a center, defined by the start point. The angle between the start and end points
will define where the gradient starts.

[image: ../../../_images/conical.png]

Left: None. Middle: Forwards. Right: Alternating.

	Conical-symmetric
	This will wrap the gradient around a center, defined by the start point, but will mirror the wrap once.
The angle between the start and end points will define where the gradient starts.

[image: ../../../_images/conical_symmetric.png]

Left: None. Middle: Forwards. Right: Alternating.

	Spiral
	This will draw the gradient spiral from a center, defined by the start point. The distance and angle between
the start and end points will define the distance between loops and the rotation of the spiral, respectively.

[image: ../../../_images/spiral.png]

Left: None. Middle: Forwards. Right: Alternating.

	Reverse Spiral
	This will draw the gradient spiral from a center, defined by the start point, but direction is
flipped perpendicular to the line that passes through the star and end points. The distance and angle between
the start and end points will define the distance between loops and the rotation of the spiral, respectively.

[image: ../../../_images/reverse_spiral.png]

Left: None. Middle: Forwards. Right: Alternating.

	Shaped
	This will shape the gradient depending on the image bounds.

[image: ../../../_images/shaped_image_bounds.png]

	Repeat:
	
	None
	This will extend the gradient into infinity.

	Forward
	This will repeat the gradient into one direction.

	Alternating
	This will repeat the gradient, alternating the normal direction and the reversed.

	Reverse
	Reverses the direction of the gradient.

	Antialias threshold
	Controls how smooth is the border between repetitions.

	A value equal to 0 means there is no smoothing. The border is aliased.

	A value greater than 0 tells Krita how many pixels to each side of the border should be smoothed.

[image: ../../../_images/antialias_threshold.png]

Left: 0. Middle: 0.5. Right: 1.

Positioning Options

	Start
	Allows you to set the start point for the gradient (in the gradient tool this is the point where you first click).

	End
	Allows you to set the endpoint for the gradient (in the gradient tool this is the point where you release the mouse button after dragging).

	Units
	You can make the values set for the start and end points mean different things by changing the units associated with them:

	Pixels
	The value indicates a distance in pixels.

	Percent of the width
	The value indicates a distance as a percentage of the width of the image.
So for example, if the image is 1000 pixels wide and 500 pixels high, and the value is 25, then this would be translated to
pixels as 250 (25% of the width).

	Percent of the height
	The value indicates a distance as a percentage of the height of the image.
So for example, if the image is 1000 pixels wide and 500 pixels high, and the value is 25, then this would be translated to
pixels as 125 (25% of the height).

	Percent of the shortest side
	The value indicates a distance as a percentage of the shortest side of the image.
So for example, if the image is 1000 pixels wide and 500 pixels high, and the value is 25, then this would
be translated to pixels as 125 (25% of the shortest side).

	Percent of the longest side
	The value indicates a distance as a percentage of the longest side of the image.
So for example, if the image is 1000 pixels wide and 500 pixels high, and the value is 25, then this would
be translated to pixels as 250 (25% of the longest side).

Values that have percentage units are useful when changing the image size. For example, if you want to have a
linear gradient that always goes from the left to the right of the image, you can set the start point to
(x = 0 pixels, y = 0 pixels) and the end point to (x = 100% of the width, y = 0 pixels).

On the other hand, if you want a gradient to have the same size regardless of the image size, you should use pixel units.

[image: ../../../_images/fill_layer_gradient_units.png]

To make a gradient like the one in the image above, you can set the start position’s
X coordinate to 80 pixels, 25% of the width, or 25% of the longest side, and its
Y coordinate to 60 pixels, 25% of the height, or 25% of the shortest side.
Likewise, you could set the end position’s
X coordinate to 240 pixels, 75% of the width, or 75% of the longest side, and its
Y coordinate to 180 pixels, 75% of the height, or 75% of the shortest side.

Keep in mind that if you use percentages the gradient’s start and end positions will adapt
to the size of the image, while using pixel units will make the gradient’s positions be static.

	Positioning
	You can choose if the end point’s coordinates are relative to the start point.

	Absolute
	The end coordinate indicates a distance from the top-left corner of the image.

	Relative
	The end coordinate indicates a distance from the start point.

	Coordinate System
	You can set the end point in cartesian or polar coordinates.

	Cartesian
	The coordinates of the end point are set by establishing horizontal and vertical distances
relative to the top-left corner of the image or to the start point.

	Polar
	The coordinates of the end point are set by establishing an angle and a distance
relative to the start point.

[image: ../../../_images/fill_layer_gradient_coordinate_system.png]

To set the end point’s position in the gradient on the image above, you could use cartesian coordinates and
set the X and Y coordinates relative to the top-left corner of the image (absolute positioning)
or relative to the start point (relative positioning).

However, in some cases it is more convenient using polar coordinates and setting the end point’s
position by establishing an angle and a distance relative to the start point (polar coordinates are always
relative to the start point’s position).

Gradient Colors

Here you can select the actual colors used by the gradient.

 Multigrid

Multigrid

A fill layer based on de Bruijn’s 1981 multigrid method to generate Penrose Tilings [https://en.wikipedia.org/wiki/Penrose_tiling] . This generator projects a hyperdimensional grid lattice onto a 2d plane, giving some pretty cool patterns. Besides looking cool, there’s a few interesting and potentially useful features the resulting patterns have:

	It always produces rhombs, that is diamond or rectangle shapes. This is particularly useful for 3d artists.

	For all dimensions but 3, 4 and 6 the results are aperiodic, this means that it will never repeat itself in the width or height of the image.

	The results do repeat symmetrically around the center. The amount of symmetric repetitions is the same as the amount of dimensions projected.

The resulting patterns are also known to show up in nature as quasicrystals.

Shapes

The meat of the algorithm. The default values for this produce the Star Penrose tiling.

	Dimensions
	The amount of dimensions the hyperlattice has. 3 is a lattice of cubes, 4 is a lattice of tesseracts, 5 is a lattice of penteracts, and so forth.

[image: ../../../_images/multigrid-dimension-example.png]

Multigrid with different dimensions, starting at 3 and ending at 12. 3d, 4d and 6d are colored with the intersect color factor while the rest uses ratio exclusively. In 3d, 4d and 6d, all the rhombs have the same ratio.

	Divisions
	Effectively a zoom-out. This is the subdivisions of the length of the width between the center and the corner of the image. This is then used to determine how many lines are projected for each dimension.

	Offset
	This controls how much each set of lines is offset from the center of the image. Changing this value changes the pattern within the same dimension significantly.

[image: ../../../_images/multigrid-offset-examples.png]

Multigrid with 5 dimensions and 20 divisions. The offsets from left to right are: 0.3, 0.1, 0.2 (Star Penrose tiling), 0.3, 0.4 (Sun Penrose Tiling), 0.48.

Lines

	Line Width
	The width of the outlines of the rhombs in image pixels. Due to the way the rhombs are drawn, there is still a hairfine line visible at 0 px.

	Connector Lines
	This optionally draws lines between the different sides of the shape. This is typically used to show that a specific tiling has certain matching rules, but it also gives cool looking results.

	Acute Angle
	Draws an arc between the sides that connect to an acute angle.

	Obtuse Angle
	Draws an arc between the sides that connect to an obtuse angle.

	Cross
	Draws two lines crossed between the sides of each rhomb. Particularly interesting with 0 line width.

Colors

[image: ../../../_images/multigrid-color-examples.png]

Image showing the Star Penrose Tiling with 29 divisions and connector lines at the acute angles. The complex gradient and the combination of ratio and index to color the image results in some of the more impressive results that can be gotten from this fill layer.

This section controls all the colors, all grouped together because Krita’s color buttons allow drag and dropping colors to one another. You can change the color for the outlines and the connector lines, and there is a gradient for coloring the individual rhombs.

The color factors determine which properties of each rhomb is used to determine its coloring. This value is used as a multiplier, to finally result in a value that can be used to get the value from the gradient.

	Ratio
	This colors the rhombs based on their ratio. Thin rhombs have a low ratio, thick rhombs have a high ratio, and perfect squares have the largest ratio.

	Intersect
	This colors the rhombs based on which intersecting lines resulted in this rhomb. In effect, this colors the rhomb depending on which side of the hyperlattice the rhomb is on, as is especially clear when setting the dimension to 3.

	Index
	This colors the rhombs based on the index of the intersecting lines from the center. In effect, rhombs closer to the center will have a lower value, while rhombs further from the center will have a higher value.

 Pattern Fill

Pattern Fill

This fills the layer with a predefined pattern or texture that has been loaded into Krita through the Resource Management interface. Patterns can be a simple and interesting way to add texture to your drawing or painting, helping to recreate the look of watercolor paper, linen, canvas, hardboard, stone or an infinite other number of options. For example if you want to take a digital painting and finish it off with the appearance of it being on canvas you can add a Fill Layer with the Canvas texture from the texture pack below and set the opacity very low so the “threads” of the pattern are just barley visible. The effect is quite convincing.

You can create your own and use those as well. For a great set of well designed and useful patterns check out one of our favorite artists and a great friend of Krita, David Revoy’s free texture pack (https://www.davidrevoy.com/article156/texture-pack-1).

	Transform
	
New in version 4.4.

This allows setting a number of transformation options on the pattern, such as scaling or rotating it.

[image: ../../../_images/pattern_fill_transform.png]

Image showing several transforms applied to a single texture.

 Screentone

Screentone

New in version 4.4.

Fills the layer with simple regular patterns like dots and lines like the ones used in traditional screentone [https://en.wikipedia.org/wiki/Screentone] or halftone [https://en.wikipedia.org/wiki/Halftone] techniques.

Contents

	General Concepts

	Description of the Parameters

	Screentone Type

	Transformation

	Postprocessing

	Usage Tips

	What Interpolation to Use?

	What Equalization Mode to Use?

	What Size Mode to Use?

	Using the Align to Pixel Grid Options

	Using the Brightness and Contrast Options

General Concepts

The screentone generator is based on traditional and digital halftoning principles. Following are some explanations of basic concepts used through this page.

	Pixel Grid
	The pixel grid is the grid formed by the regular positioning of each pixel in the image. Each cell in this grid is formed by a single pixel.

	Screen
	The term screen comes from the days when analog halftoning was invented. It is also used for example when talking about screen printing. Traditionally it was some kind of sheet with very small holes (a fabric for example) through which the light passed. Here we use the term to refer to the unbounded regular pattern formed by repeating some shape.

	Screen Cell
	A screen cell is the minimum rectangular area in the screen that contains a repeatable shape or image (commonly a dot, but can be a part of a line or other shape). In principle every cell contains the same shape, and the arrangement of the cells, in a regular and orthogonal grid, forms the screen.

	Screen Grid
	The screen grid is the grid formed by the regular positioning of screen cells.

	Macrocell
	Because this filter needs to align the screen image to the pixel grid (the rasterization process) it may happen that not all the cells contain exactly the same shape (in terms of pixel values). This can produce artifacts such as moire patterns. To solve this, the screen grid can be aligned to the pixel grid in such a way that some screen cell corners fall at integer pixel coordinates. You can select every how many screen cells horizontally and vertically this should happen. The effect is that the shapes of the set of cells between such aligned corners will repeat. For example, if you align the screen grid every 2 cells horizontally and every 1 cell vertically, every 2 by 1 block of cells will be identical (although the cells inside the block can be slightly different with respect to each other). This set of contiguous cells that repeat along the screen is sometimes called a macrocell or supercell. Similarly the single cell is sometimes called microcell.

	Spot Function
	A spot function is a kind of function that generates the shapes analytically inside every screen cell (a circle, a line, etc.).

[image: ../../../_images/fill_layer_screentone_grids.png]

In this figure we can see a magnified screentone with an overlay marking the pixel grid in blue and the screen grid in green. As shown they may not align. The red outline is a macrocell border. The four cells that compose it are repeated in contiguous macrocells but may differ slightly in shape between them. Note how the corners of the macrocell align with the pixel grid.

Description of the Parameters

Screentone Type

	Pattern
	Select the global appearance (dots, lines).

	Shape
	Select the specific appearance of the pattern (for example: round dots, diamond dots, straight lines, sine wave lines).

	Interpolation
	Select how the pattern transitions from the foreground to the background.

In most cases but the dot pattern with round shape combination, the effect of the interpolation mode is not very noticeable.

	Equalization
	
New in version 5.1.

The spot functions are simple periodic 2D functions that output a value between black and white. Every one cycle in the width and height forms a screentone cell and all the cells combined form the screentone grid. The spot functions are designed to be simple and fast to compute, but for some functions this means that they don’t have a uniform distribution of values. Suppose we threshold the function (contrast value equal to 100%, the usual in traditional halftoning). This lack of uniform distribution has the downside of not producing shapes that have a direct relationship between the brightness of the input and the coverage of the black areas. The effect is a mismatch between the input brightness and the perceived brightness. If the function has a uniform distribution of values, for example choosing a brightness of 40% will produce a shape that has 40% of the pixels white and 60% black. To solve this the user can select between three equalization modes:

	None: by selecting this mode the generator will use the functions as is, it will not enforce a uniform distribution of values if the function is not already equalized. This is the same behavior as in versions prior to 5.1.

	Function based equalization: this mode will perform something similar to histogram equalization to the function.

	Template based equalization: this mode is a bit more involved. It tries to replicate the traditional screen generation methods on digital halftoning. This achieves equalization in a very different way. First the original spot function is used along with the transformation parameters to create a template (a small image) that contains a set of one or more contiguous cells (macrocell) and is used as a reference later to paint the screentone grid. To equalize the template, all the pixels in the macrocell are then sorted from darker to lighter over all the macrocells and from top-left to bottom-right over each cell. This step will produce an equalized macrocell that grows 1 pixel at a time (or a bit more if the number of pixels in it is greater than 256), avoiding the sudden jumps in brightness.

[image: ../../../_images/fill_layer_screentone_type.png]

From left to right, top to bottom:
dot pattern with round shape, dot pattern with ellipse shape,
dot pattern with a diamond shape, dot pattern with a square shape,
line pattern with straight shape, line pattern with sine wave shape, line pattern with triangular wave shape,
line pattern with sawtooth wave shape and line pattern with a curtain shape.

Transformation

Select how the pattern is arranged geometrically in the image (position, size, rotation, shear).
Some patterns benefit from the capability of choosing horizontal and vertical sizes separately. For example, the sin wave lines pattern has a small period by default and by choosing a large horizontal size the period will look also larger.

	Size Mode
	
New in version 5.1.

You can choose between a resolution based mode and a pixel based mode to adjust the geometric transformations of the screen. In the resolution mode you set a resolution and change the frequency of the patterns in lines per inch/cm. The pixel mode is the old one in which you set the size of the cells manually. Those two modes are synched so changing the frequency will change the cell size and vice versa.

	Align to Pixel Grid
	
New in version 5.1.

If the alignment is set on, all the cells (or macrocells if the alignment is every more than 1 cell) will have the same shapes in terms of pixels, producing a more pleasant and regular tiled structure. The downside is that the range of possible transformations is reduced.

[image: ../../../_images/fill_layer_screentone_transformation.png]

From left to right:
dot pattern with round shape without rotation, dot pattern with round shape and rotated 45 degrees,
line pattern with sine wave shape and a size of 20px horizontally and vertically,
line pattern with sine wave shape and a size of 50px horizontally and 20px vertically.

Postprocessing

	Background & Foreground
	Allows you to choose the color and opacity of the foreground (dots, lines) and the background.

	Invert
	This flips what is treated as foreground and background.

	Brightness & Contrast
	The brightness controls how close to the foreground or background color the pattern appears (how dark or light in the case of black foreground and white background).
So if you want to simulate small dots, for example, set the brightness to a high value and to obtain big dots set it to a low value.

The contrast controls how smooth or sharp is the transition between the foreground and background colors. By default, the contrast is set to 50% (smooth).
To achieve the typical sharp borders the contrast must be set to a higher value.

[image: ../../../_images/fill_layer_screentone_postprocessing.png]

First row: different combinations of foreground and background colors.
Second row, from left to right: 25%, 50% and 75% brightness with 90% contrast.
Third row, from left to right: 25%, 50% and 75% contrast with 50% brightness.

Usage Tips

What Interpolation to Use?

The interpolation sets how the shape of the pattern should vary from dark to light.

You will only have to worry about the interpolation in the case of the round and elliptical dots and the line patterns, although if you use some equalization mode the interpolation will look the same in the case of the line patterns.

So, in summary, change the interpolation if you use round or elliptical dots to vary how they change shape when changing the brightness. If you use linear interpolation the dots will look as black circles/ellipses that grow radially until they cover the cells. If you use the sinusoidal interpolation, the round/elliptical dot pattern will change symmetrically. This means that at low brightness values the pattern will look as small white circles/ellipses and at high brightness values it will look as small black circles/ellipses. At mid-brightness values the pattern will look as a checkerboard.

What Equalization Mode to Use?

Most of the time you will be fine using the default template based equalization. It is the mode that gives better tone representation when using small cell sizes. Here is a comparison of the modes:

	No Equalization:

	Pros:

	It is the fastest mode.

	Nice smoothing of the edges.

	Cons:

	There is a mismatch between the brightness parameter and the perceived brightness.

	Since it is an analytical approach it may not produce a wide range of brightness variations when the cells are small. For example, the round dot shape grows radially. This means that if the radius grows 1 pixel, then a bunch of pixels are added all around the dot. This produces a big jump on the perceived brightness.

	When to use: use this mode when you need the most speed and don’t care about the perceived brightness or the shapes at small cell sizes.

	Function based equalization:

	Pros:

	It produces better-perceived tones.

	Nice smoothing of the edges.

	Cons: Since it is still an analytical approach it may not produce a wide range of brightness variations when the cells are small.

	When to use: use this mode if you need accurate tone representation and you use big cell sizes, or if you need nice smoothing. For example, if you use the screentone on graphic design works.

	Template based equalization:

	Pros:

	It produces better perceived tones.

	No sudden jumps in perceived brightness.

	Cons:

	The shape may not be as correct as in the other cases, although it is difficult to perceive.

	The smoothing of the edges is worst.

	When to use:

	Use this mode whenever possible, especially if you want small cell sizes or if you want smooth transitions between perceived brightness values.

	Use this mode if you use 100% contrast.

	Use this mode if you use the screentone generator with the halftone filter.

What Size Mode to Use?

At the end of the day choosing what size mode to use is a matter of how many size-related calculations you want to avoid, and this usually has to be with the final medium you intend the image to be displayed on.

If you intend to print the image you are making, then you will find it easier to set the cells size in terms of resolution and cell frequency. If you choose the same resolution as the resolution of the image then you can easily map the frequency values to real-life measures.

On the other hand, if you just want to produce digital images, then you may find it easier to work with pixel sizes directly, as they are easier to compare to the image size. In the case you don’t really care about the exact size of the pattern, this mode allows you to easily try different sizes while looking at the image to see the changes.

Using the Align to Pixel Grid Options

This option is key to achieve the maximum cell regularity and to avoid moire patterns. Usually you won’t have to change the default values.

The downside of aligning to the pixel grid is that the available range of transformations is reduced. So, if you want to use a specific rotation, cell size or shear, but you can’t achieve it with the selected alignment options, you can try to upper every how many cells to align using the sliders. Always prefer first changing those values than to disabling the alignment. In fact, disabling the alignment has the same effect as aligning the grid at infinity.

Keep in mind that the greater the distance between alignment points (with respect to the screen grid), the more likely the appearance of moire patterns will be.

Using the Brightness and Contrast Options

Most of the time, to achieve the classical screentone/halftone look, you will have to set the contrast slider to a high value and then change how dark/light the pattern looks with the brightness slider.

At 100% contrast the shapes will look aliased, binary. This is the classic approach to digital halftoning, since printers can only output black or white (ink or absence of ink).

If you want sharp edges but also want antialiased edges, you can try choosing a contrast value around 80% to 95%.

Sometimes you will need to have extra soft shapes. For example, if you use the screentone generator with the halftone filter, you better use a 50% contrast and 50% brightness. The reason is that the halftone filter performs its own contrast adjustment. You can take advantage of these soft shapes to then apply your own contrast adjustment filter and achieve even more unique looks as shown in the following image.

[image: ../../../_images/fill_layer_screentone_brightness_contrast_example.png]

On the left: a simple screentone layer with 50 pixels wide elliptical dots, sinusoidal interpolation and 50% brightness and contrast. In the middle: The layer with a curves filter mask applied to it. On the right: the curve used on the filter.

 SeExpr

SeExpr

New in version 4.4.

[image: ../../../_images/SeExpr-David-Revoy.jpg]
Fills the layer with a pattern specified through Disney Animation’s
SeExpr expression language [https://wdas.github.io/SeExpr].

See also

	Introduction to SeExpr

	SeExpr Quick Reference

	SeExpr Scripts

	“Procedural texture generator (example and wishes)” on Krita Artists [https://krita-artists.org/t/procedural-texture-generator-example-and-wishes/7638]

	Inigo Quilez’s articles [https://iquilezles.org/www/index.htm]

	The Book of Shaders [https://thebookofshaders.com/]

SeExpr is an embeddable, arithmetic expression language that enables you to
write shader-like scripts. Through this language, Krita can add dynamically
generated textures like lava (example above), force fields, wood, marble,
etc. to your layers.

As with Patterns, you can create your own and use those as well.
For some examples, please check out the thread “Procedural texture generator (example and wishes)” on Krita Artists [https://krita-artists.org/t/procedural-texture-generator-example-and-wishes/7638].
You can download them as a bundle through Amyspark’s blog [https://www.amyspark.me/blog/posts/2020/07/03/third-alpha-release.html].

	Script
	Select the desired preset out of any existing bundled presets.
This tab is identical to the Pattern preset selector.

[image: ../../../_images/SeExpr_script.png]

	Options
	This tab allows you to edit the selected preset, and apply its script
to the layer.

[image: ../../../_images/SeExpr_editor.png]
There are three sections. The first bar allows you to edit and save the selected preset:

[image: ../../../_images/SeExpr_editor_preset_mgmt.png]
If your script is syntactically correct, the middle box lets you
adjust its variables through widgets.

[image: ../../../_images/SeExpr_editor_widgets.png]
The lower box contains the script text, and shows the detected syntax
errors, if any.

[image: ../../../_images/SeExpr_editor_script_error.png]
You can adjust how much space the latter two boxes have through their
splitter.

 Simplex Noise

Simplex Noise

New in version 4.2.

[image: ../../../_images/fill_layer_simplex_noise.png]
This fills the layer with generated OpenSimplex noise. OpenSimplex is different from the more common Perlin noise (often named ‘clouds’ in other software) and also different from Improved Perlin noise. OpenSimplex has less dimensional artifacts (the subtle “checker” texture often found high frequency Perlin noise) and is a ubiquitous open standard. Since OpenSimplex noise is important to texture generation, this fill layer has the option
to loop around the canvas edge. You can read more about OpenSimplex here [https://en.wikipedia.org/wiki/OpenSimplex_noise].

There are a few different use cases for simplex noise. One of these is to create interesting looping patterns, achieved by stacking multiple simplex noise fills with different blending modes. It becomes even more expressive when combined with the levels adjustment layers. For texture artists, this can be a useful utility when combined with a gradient map filter layer to provide color diversity to a looping texture.
For traditional artists, simplex noise layers can be converted to selection masks to create brush transparency dynamics and masking effects. Experimenting with different combinations can be fun and produce interesting results!

	Looping
	Whether or not to force the pattern to loop.

	Frequency
	The frequency of the waves used to generate the pattern. Higher frequency results in a finer noise pattern.

	Ratio
	The ratio of the waves in the x and y dimensions. This makes the noise have a rectangular appearance.

	Use Custom Seed
	The seed for the random component. You can input any value or text here, and it will always try to use this value to generate the random values with (which then are always the same for a given seed). Leaving the value empty will use the randomly-assigned seed value on layer creation.

 Filter Layer

Filter Layer

Filter layers show whatever layers are underneath them, but with a filter such as Layer Styles, Blur, Levels, Brightness / Contrast. For example, if you add a Filter Layer, and choose the Blur filter, you will see every layer under your filter layer blurred.

Unlike applying a filter directly on to a section of a Paint Layer, Filter Layers do not actually alter the original image in the Paint Layers below them. Once again, non-destructive editing! You can tweak the filter at any time, and the changes can always be altered or removed.

Unlike Filter Masks though, Filter Layers apply to the entire canvas for the layers beneath. If you wish to apply a filter layer to only some layers, then you can utilize the Group Layer feature and add those layers into a group with the filter layer on top of the stack.

You can edit the settings for a filter layer, by double clicking on it in the Layers docker.

Note

Only Krita native filters (the ones in the Filters menu) can be used with Filter Layers. Filter Layers are not supported using the externally integrated G’Mic filters.

 Filter Masks

Filter Masks

Filter masks show an area of their layer with a filter (such as blur, levels, brightness / contrast etc.). For example, if you select an area of a paint layer and add a Filter Mask, you will be asked to choose a filter. If you choose the blur filter, you will see the area you selected blurred.

[image: ../../_images/Krita_ghostlady_2.png]
With filter masks, we can for example make this ghost-lady more ethereal by putting a clone layer underneath, and setting a lens-blur filter on it.

[image: ../../_images/Krita_ghostlady_3.png]
Set the blending mode of the clone layer to Color Dodge and she becomes really spooky!

Unlike applying a filter to a section of a paint layer directly, filter masks do not permanently alter the original image. This means you can tweak the filter (or the area it applies to) at any time. Changes can always be altered or removed.

Unlike filter layers, filter masks apply only to the area you have selected (the mask).

You can edit the settings for a filter mask at any time by double clicking on it in the Layers docker. You can also change the selection that the filter mask affects by selecting the filter mask in the Layers docker and then using the paint tools in the main window. Painting white includes the area, painting black excludes it, and all other colors are turned into a shade of gray which applies proportionally.

 Group Layers

Group Layers

While working on complex artwork you’ll often find the need to group some layers or portions and elements of the artwork as one unit. Group layers come in handy for this: They allow you to segregate some layers so you can hide these quickly, or so you can recursively transform the content of the group, or so you can apply a mask to all the layers inside this group as if they are one (e.g. by dragging an existing mask to a group layer), etc.. You can quickly create a group layer by selecting the layers that should be grouped together and then pressing the Ctrl + G shortcut.

A thing to note is that the layers inside a group layer are considered separately from the outside when the group layer gets composited: All layers inside are combined first, and then this intermediate result is used on the outside for compositing the rest of the image. In Photoshop on the contrary, groups have something called pass-through mode which makes the layers behave as if they are not in a group and get composited along with other layers of the stack. Recent versions of Krita offer a pass-through mode as well, which can be enabled in order to get similar behavior.

 Layer Styles

Layer Styles

Layer styles are effects that are added on top of your layer. They are editable and can easily be toggled on and off. To add a layer style to a layer go to Layer ‣ Layer Style. You can also right-click a layer to access the layer styles.

When you have the layer styles window up, make sure that the Enable Effects item is checked.

There are a variety of effects and styles you can apply to a layer. When you add a style, your layer docker will show an extra “Fx” icon. This allows you to toggle the layer style effects on and off.

Note

This feature was added to increase support for Adobe Photoshop. The features that are included mirror what that application supports.

Layer Style Presets

New in version 5.0.

Layer Styles are considered a type of resource, and Krita can open Adobe Style Library (ASL) files.

 Paint Layers

Paint Layers

Paint layers are the most commonly used type of layers used in digital paint or image manipulation software like Krita. If you’ve ever used layers in Photoshop or the Gimp, you’ll be used to how they work. In short, a paint layer, also called a pixel, bitmap or raster layer, is a bitmap image (an image made up of many points of color).

Paint layers let you apply many advanced effects such as smearing, smudging and distorting. This makes them the most flexible type of layer. However, paint layers don’t scale well when enlarged (they pixelate), and any effects that have been applied can’t be edited.

To deal with these two drawbacks, digital artists will typically work at higher Pixel Per Inch (PPI) counts. It is not unusual to see PPI settings of 400 to 600 PPI for a canvas with a good amount of detail. To combat the issue of applied effects that cannot be edited it is best to take advantage of the non-destructive layer capabilities of filter, transparency and transform masks.

As long as you have enough resolution / size on your canvas though, and as long as you aren’t going to need to go back and tweak an effect you created previously, then a paint layer is usually the type of layer you will want. If you click on the New layer icon in the layers docker you’ll get a paint layer. Of course you can always choose the New layer drop-down to get another type.

The hotkey for adding a new paint layer is the Ins key.

 Selection Masks

Selection Masks

Local Selection masks let you remember and recall edit a selection on a layer. They work in a similar way to extra channels in other image editing programs. One difference is Krita's ability to assign them to specific layers and activate a selection with a single click on the layer. Just click the round icon with the dotted outline on the local selection layer in the Layers docker.

To create a Local Selection Mask, you must first create a selection, then [image: mouseright] on the desired layer and select Local Selection.

When isolating a selection mask with the Alt + [image: mouseleft] shortcut, you can perform transformation, deformation and paint operations on the selection layer, modifying the selection.

A single layer can contain multiple Local Selection Masks. Repeating. A single layer can contain multiple Local Selection Masks (LSM). This is important because it means that you can, for instance, have several different outline parts of an image and save each as its own LSM and then recall it with a single click. Without using LSM you would have to create layer upon layer for each mask. Not only would this be inefficient for you but also for Krita and the program would slow down trying to keep up with it all. LSM’s are one of the most important features in Krita!

The example below shows three LSM items all attached (under) Layer1. Any of these can be activated and used at any time.

[image: ../../_images/local-selection-mask.png]

Global Selection

You can modify the global selection the same way you can with a local-selection.
To do so, you first need to activate the global selection as a layer node. To do so, go into Select ‣ Show Global Selection Mask. The global selection, if you have anything selected, will now appear on the top of the layer stack as a selection mask.

 Split Alpha

Split Alpha

Sometimes especially in the field of game development, artists need to work with the alpha channel of the texture separately. To assist such workflow, Krita has a special functionality called Split Alpha. It allows splitting alpha channel of a paint layer into a separate Transparency Masks. The artist can work on the transparency mask in an isolated environment and merge it back when he has finished working.

How to work with alpha channel of the layer

	[image: mouseright] the paint layer in the layers docker.

	Choose Split Alpha ‣ Alpha into Mask.

	Use your preferred paint tool to paint on the Transparency Mask. Black paints transparency (see-through), white paints opacity (visible). Gray values paint semi-transparency.

	If you would like to isolate alpha channel, enter Isolated Mode by [image: mouseright] + Isolate Layer (or the Alt + [image: mouseleft] shortcut).

	When finished editing the Transparency Mask, [image: mouseright] on it and select Split Alpha ‣ Write as Alpha.

How to save a PNG texture and keep color values in fully transparent areas

Normally, when saving an image to a file, all fully transparent areas of the image are filled with black color. It happens because when composing the layers of the image, Krita drop color data of fully transparent pixels for efficiency reason. To avoid this of color data loss you can either avoid compositing of the image i.e. limit image to only one layer without any masks or effects, or use the following method:

	[image: mouseright] the layer in the layers docker.

	Choose Split Alpha ‣ Alpha into Mask.

	[image: mouseright] on the created mask and select Split Alpha ‣ Save Merged….

 Transform Masks

Transform Masks

Rather than working with a brush to affect the mask, transform masks allow you to transform (move, rotate, shear, scale and perspective) a layer without applying the transform directly to the paint layer and making it permanent.

In the same way that Filter and Transparency Masks can be attached to a Paint layer and are non-destructive, so too can the Transform Mask.

New in version 5.0: Transform masks can also be used in conjunction with the Animation Curves Docker to Tween an animation.

Adding a Transform Mask

	First add a transform mask to an existing layer.

	Select the Transform Tool.

	Select any of the transform modes in the Tools Options dock and, with the transform mask selected, apply them on the layer.

	Hit apply.

	Toggle the transform visibility to see the difference between the original and the transform applied.

Note

Affine transforms, like Move, Rotate, Shear, Scale and Perspective get updated instantly once the original is updated. Other transforms like Warp, Cage and Liquify take up much more processing power, and to not to waste that, Krita only updates those every three seconds.

To edit a transform, select the transform mask, and try to use the transform tool on the layer. The transform mode will be the same as the stored transform, regardless of what transform you had selected. If you switch transform modes, the transformation will be undone.

 Transparency Masks

Transparency Masks

The Transparency mask allows you to selectively show or hide parts of a layer. By using a mask, you are able to avoid deleting parts of an image that you just might want in the future. This allows you to work non-destructively.

In addition, it allows you to do things like remove a portion of a layer in the layer stack so you can see what’s behind it. One example would be if you wanted to replace a sky, but were unsure of how much you wanted to replace.

How to add a transparency mask

	Click on a paint layer in the layers docker.

	Click on “+” drop-down in the bottom left corner of the layers docker and choose Transparency Mask.

	Use your preferred paint tool to paint on the canvas. Black paints transparency (see-through), white paints opacity (visible). Gray values paint semi-transparency.

You can always fine-tune and edit what you want visible and any layer. If you discover you’ve hidden part of your paint layer accidentally, you can always show it again just by painting white on your transparency mask.

This makes for a workflow that is extremely flexible and tolerant of mistakes.

 Vector Layers

Vector Layers

Warning

This page is outdated. Check Vector Graphics for a better overview.

What is a Vector Layer?

A Vector Layers, also known as a shape layer, is a type of layers that contains only vector elements.

This is how vector layers will appear in the Krita Layers docker.

[image: ../../_images/Vectorlayer.png]
It shows the vector contents of the layer on the left side. The icon showing the page with the red bookmark denotes that it is a vector layer. To the right of that is the layer name. Next are the layer visibility and accessibility icons. Clicking the “eye” will toggle visibility. Clicking the lock into a closed position will lock the content and editing will no longer be allowed until it is clicked again and the lock on the layer is released.

Creating a vector layer

You can create a vector layer in two ways. Using the extra options from the “Add Layer” button you can click the “Vector Layer” item and it will create a new vector layer. You can also drag a rectangle or ellipse from the Add shape dock onto an active Paint Layer. If the active layer is a Vector Layer then the shape will be added directly to it.

Editing Shapes on a Vector Layer

Warning

There’s currently a bug with the vector layers that they will always consider themselves to be at 72dpi, regardless of the actual pixel-size. This can make manipulating shapes a little difficult, as the precise input will not allow cm or inch, even though the vector layer coordinate system uses those as a basis.

Basic Shape Manipulation

To edit the shape and colors of your vector element, you will need to use the basic shape manipulation tool.

Once you have selected this tool, click on the element you want to manipulate and you will see guides appear around your shape.

[image: ../../_images/Vectorguides.png]
There are four ways to manipulate your image using this tool and the guides on your shape.

Transform/Move

[image: ../../_images/Transform.png]
This feature of the tool allows you to move your object by clicking and dragging your shape around the canvas. Holding the Ctrl key will lock your moves to one axis.

Size/Stretch

[image: ../../_images/Resize.png]
This feature of the tool allows you to stretch your shape. Selecting a midpoint will allow stretching along one axis. Selecting a corner point will allow stretching across both axis. Holding the Shift key will allow you to scale your object. Holding the Ctrl key will cause your manipulation to be mirrored across your object.

Rotate

[image: ../../_images/Rotatevector.png]
This feature of the tool will allow you to rotate your object around its center. Holding the Ctrl key will cause your rotation to lock to 45 degree angles.

Skew

[image: ../../_images/Skew.png]
This feature of the tool will allow you to skew your object.

Note

At the moment there is no way to scale only one side of your vector object. The developers are aware that this could be useful and will work on it as manpower allows.

Point and Curve Shape Manipulation

Double-click on a vector object to edit the specific points or curves which make up the shape. Click and drag a point to move it around the canvas. Click and drag along a line to curve it between two points. Holding the Ctrl key will lock your moves to one axis.

[image: ../../_images/Pointcurvemanip.png]

Stroke and Fill

In addition to being defined by points and curves, a shape also has two defining properties: Fill and Stroke. Fill defines the color, gradient, or pattern that fills the space inside of the shape object. ‘Stroke’ defines the color, gradient, pattern, and thickness of the border along the edge of the shape. These two can be edited using the Stroke and Fill dock. The dock has two modes. One for stroke and one for fill. You can change modes by clicking in the dock on the filled square or the black line. The active mode will be shown by which is on top of the other.

Here is the dock with the fill element active. Notice the red line across the solid white square. This tells us that there is no fill assigned therefore the inside of the shape will be transparent.

[image: ../../_images/Strokeandfill.png]
Here is the dock with the stroke element active.

[image: ../../_images/Strokeandfillstroke.png]

Editing Stroke Properties

The stroke properties dock will allow you to edit a different aspect of how the outline of your vector shape looks.

[image: ../../_images/Strokeprops.png]
The style selector allows you to choose different patterns and line styles. The width option changes the thickness of the outline on your vector shape. The cap option changes how line endings appear. The join option changes how corners appear.

The Miter limit controls how harsh the corners of your object will display. The higher the number the more the corners will be allowed to stretch out past the points. Lower numbers will restrict the stroke to shorter and less sharp corners.

Editing Fill Properties

All of the fill properties are contained in the Stroke and Fill dock.

[image: ../../_images/Strokeandfill.png]
The large red X button will set the fill to none causing the area inside of the vector shape to be transparent.

To the right of that is the solid square. This sets the fill to be a solid color which is displayed in the long button and can be selected by pressing the arrow just to the right of the long button. To the right of the solid square is the gradient button. This will set the fill to display as a gradient. A gradient can be selected by pressing the down arrow next to the long button.

Under the X is a button that shows a pattern. This inside area will be filled with a pattern. A pattern can be chosen by pressing the arrows next to the long button. The two other buttons are for fill rules: the way a self-overlapping path is filled.

	The button with the inner square blank toggles even-odd mode, where every filled region of the path is next to an unfilled one, like this:

[image: ../../_images/Fill_rule_even-odd.svg]

	The button with the inner square filled toggles non zero mode, where most of the time a self overlapping path is entirely filled except when it overlaps with a sub-path of a different direction that ‘decrease the level of overlapping’ so that the region between the two is considered outside the path and remain unfilled, like this:

[image: ../../_images/Fill_rule_non-zero.svg]
For more (and better) information about fill rules check the Inkscape manual [http://tavmjong.free.fr/INKSCAPE/MANUAL/html/Attributes-Fill-Stroke.html#Attributes-Fill-Rule].

 Linux Command Line

Linux Command Line

As a native Linux program, Krita allows you to do operations on images without opening the program when using the Terminal. This option was disabled on Windows and macOS, but with 3.3 it is enabled for them!

This is primarily used in bash or shell scripts, for example, to mass convert KRA files into PNGs.

Export

This allows you to quickly convert files via the terminal:

krita importfilename --export --export-filename exportfilename

	importfilename
	Replace this with the filename of the file you want to manipulate.

	
--export

	Export a file selects the export option.

	
--export-filename <filename>

	Export filename says that the following word is the filename it should be exported to.

	exportfilename
	Replace this with the name of the output file. Use a different extension to change the file format.

Example:

krita file.png --export --export-filename final.jpg

This line takes the file file.png and saves it as file.jpg.

	
--export-sequence

	
New in version 4.2.

Export animation to the given filename and exit.

If a KRA file has no animation, then this command prints “This file has no animation.” error and does nothing.

krita --export-sequence --export-filename file.png test.kra

This line takes the animation in test.kra, and uses the value of –export-filename (file.png), to determine the sequence fileformat(‘png’) and the frame prefix (‘file’).

PDF export

PDF export looks a bit different, using the --export-pdf option.

krita file.png --export-pdf --export-filename final.pdf

This option exports the file file.png as a PDF file.

Warning

This has been removed from 3.1 because the results were incorrect.

Open with Custom Screen DPI

	
--dpi <dpiX,dpiY>

	

This legacy option does not do anything anymore.

Open template

Open krita and automatically open the given template(s). This allows you to, for example, create a shortcut to Krita that opens a given template, so you can get to work immediately!

krita --template templatename.desktop

	
--template templatename.desktop

	Selects the template option.

All templates are saved with the .desktop extension. You can find templates in the .local/share/krita/template or in the install folder of Krita.

krita --template BD-EuroTemplate.desktop

This opens the European BD comic template with Krita.

krita --template BD-EuroTemplate.desktop BD-EuroTemplate.desktop

This opens the European BD template twice, in separate documents.

Start up

New in version 3.3:

	
--nosplash

	Starts krita without showing the splash screen.

	
--canvasonly

	Starts krita in canvasonly mode.

	
--fullscreen

	Starts krita in fullscreen mode.

	
--workspace Workspace

	Starts krita with the given workspace. So for example…

krita --workspace Animation

Starts Krita in the Animation workspace.

	
--file-layer <filename>

	Starts krita with filename added as a file-layer. Note that you must either open an existing file or create a new file using the new-image argument.

Example:

krita file.kra --file-layer image.png

krita --new-image RGBA,U8,1000,1000 --file-layer image.jpg

If an instance of Krita is already running and Multiple instances are disabled, then this option can be used alone to add a file-layer to the running krita document.

Example: krita --file-layer image.png

 The List of Supported Tablets

The List of Supported Tablets

This is specifically about support on Windows, not Linux or macOS.

	Brand

	Model

	Supported

	Adesso

	CyberTablet T12

	❓ Unknown

	Adesso

	CyberTablet Z12

	❓ Unknown

	Adesso

	CyberTablet T10

	❓ Unknown

	Adesso

	CyberTablet T22HD

	❓ Unknown

	Adesso

	CyberTablet M14

	❓ Unknown

	Adesso

	CyberTablet W10

	❓ Unknown

	Adesso

	CyberTablet Z8

	✔️ Supposed to work

	Aiptek

	HyperPen Mini

	❓ Unknown

	Aiptek

	MediaTablet 10000u

	❓ Unknown

	Aiptek

	MediaTablet 14000u

	❓ Unknown

	Aiptek

	MediaTablet Ultimate II

	❓ Unknown

	Aiptek

	MyNote Bluetooth

	❓ Unknown

	Aiptek

	MyNote Pen

	❓ Unknown

	Aiptek

	SlimTablet 600u Premium II

	❓ Unknown

	Artisul

	(by UC-Logic)D13

	❌ Reported to not work

	Artisul

	(by UC-Logic)D10

	❌ Reported to not work

	Artisul

	(by UC-Logic)Pencil (S/M)

	❌ Reported to not work

	Bosto

	22HDX

	❌ Reported to be broken

	Bosto

	22UX

	❌ Reported to be broken

	Bosto

	22HD Mini

	❌ Reported to be broken

	Bosto

	22U Mini

	❓ Unknown

	Bosto

	14WX

	❓ Unknown

	Bosto

	13HD

	❓ Unknown

	CalComp

	DrawingBoard VI

	❓ Unknown

	CalComp

	Creation Station

	❓ Unknown

	CalComp

	SummaSketch

	❓ Unknown

	Dynalink

	FreeDraw 4x5

	❓ Unknown

	Elmo

	CRA-1 wireless tablet

	❓ Unknown

	Gaomon

	S56K

	❓ Unknown

	Gaomon

	GM185

	❓ Unknown

	Gaomon

	M10K

	❓ Unknown

	Gaomon

	P1560

	✔️ Supposed to work

	Gaomon

	PD2200

	✔️ Supposed to work

	Genius

	EasyPen

	❓ Unknown

	Genius

	EasyPen 340

	❓ Unknown

	Genius

	EasyPen F610E

	❓ Unknown

	Genius

	EasyPen i405

	❓ Unknown

	Genius

	EasyPen i405X

	❓ Reported to be working on Linux only for 2.9.x versions

	Genius

	EasyPen i405XE

	❓ Unknown

	Genius

	EasyPen M406

	❓ Unknown

	Genius

	EasyPen M406W

	❓ Unknown

	Genius

	EasyPen M406WE

	❓ Unknown

	Genius

	EasyPen M406XE

	❓ Unknown

	Genius

	EasyPen M506

	❓ Unknown

	Genius

	EasyPen M506A

	❓ Unknown

	Genius

	EasyPen M508W

	❓ Unknown

	Genius

	EasyPen M610

	❌ Reported to be broken

	Genius

	EasyPen M610X

	❓ Unknown

	Genius

	EasyPen M610XA

	❓ Unknown

	Gaoman

	M6

	✔️ Supported

	Genius

	G-Pen 340

	❓ Unknown

	Genius

	G-Pen 450

	❓ Unknown

	Genius

	G-Pen 560

	❓ Unknown

	Genius

	G-Pen F350

	❓ Unknown

	Genius

	G-Pen F509

	❓ Unknown

	Genius

	G-Pen F610

	❓ Unknown

	Genius

	G-Pen M609

	❓ Unknown

	Genius

	G-Pen M609X

	❓ Unknown

	Genius

	G-Pen M712

	❓ Unknown

	Genius

	G-Pen M712X

	❓ Unknown

	Genius

	MousePen 8x6

	❓ Unknown

	Genius

	MousePen i608

	❓ Unknown

	Genius

	MousePen i608X

	❓ Unknown

	Genius

	MousePen i608XE

	❓ Unknown

	Genius

	MousePen M508

	❓ Unknown

	Genius

	MousePen M508W

	❓ Unknown

	Genius

	MousePen M508X

	❓ Unknown

	Genius

	MousePen M508XA

	❓ Unknown

	Genius

	PenSketch 9x12

	❓ Unknown

	Genius

	PenSketch M912

	❌ Reported to be broken

	Genius

	PenSketch T609A

	❓ Unknown

	Genius

	WizardPen 5x4

	❓ Unknown

	Hanvon

	ESP2210

	❓ Unknown

	Hanvon

	HW-S05

	❓ Unknown

	Hanvon

	Sell T&Mouse

	❓ Unknown

	Hanvon

	Sell Writing Tablet (SuperPen 0403)

	❓ Unknown

	Hanvon

	Sell Writing Tablet (SuperPen 0503)

	❓ Unknown

	Hanvon

	Sell Painting Master (0504)

	❓ Unknown

	Hanvon

	Sell Painting Master (0605)

	❓ Unknown

	Hanvon

	Sell Painting Master (0806)

	❌ Reported to be broken

	Huion / Turcom

	H420

	✔️ Supposed to work

	Huion / Turcom

	W58

	✔️ Supposed to work

	Huion / Turcom

	680TF

	✔️ Supposed to work

	Huion / Turcom

	G10T

	✔️ Supposed to work

	Huion / Turcom

	H610

	✔️ Supported

	Huion / Turcom

	H610PRO

	✔️ Supported

	Huion / Turcom

	H690

	✔️ Supposed to work

	Huion / Turcom

	WH1409

	✔️ Supported

	Huion / Turcom

	1060Plus

	✔️ Supposed to work

	Huion / Turcom

	New 1060Plus

	✔️ Supposed to work

	Huion / Turcom

	K26

	✔️ Supposed to work

	Huion / Turcom

	K58

	✔️ Supposed to work

	Huion / Turcom

	W58

	✔️ Supposed to work

	Huion / Turcom

	680S

	✔️ Supposed to work

	Huion / Turcom

	P608N

	✔️ Supposed to work

	Huion / Turcom

	H58L

	✔️ Supposed to work

	Huion / Turcom

	DWH96

	✔️ Supposed to work

	Huion / Turcom

	G-T156HD (KAMVAS)

	✔️ Supposed to work

	Huion / Turcom

	GT-185

	✔️ Supposed to work

	Huion / Turcom

	GT-190

	✔️ Supposed to work

	Huion / Turcom

	GT-191 (KAMVAS)

	❓ Reported to work with experimental user space driver [https://github.com/benthor/HuionKamvasGT191LinuxDriver]

	Huion / Turcom

	GT-220

	✔️ Supposed to work

	Huion / Turcom

	PC185HD

	✔️ Supported

	Huion / Turcom

	PC2150

	✔️ Supposed to work

	Huion / Turcom

	Inspiroy Q11K

	✔️ Supported

	Huion

	Inspiroy H430P

	✔️ Supported

	Huion / Turcom

	HS611

	✔️ Supported

	KB Gear

	JamStudio

	❓ Unknown

	KB Gear

	Pablo Internet Edition

	❓ Unknown

	KB Gear

	Sketchboard Studio

	❓ Unknown

	Microsoft

	Surface Pro Surface Pro 2

	✔️ Supported

	Microsoft

	Surface Pro 3 Surface Pro 4 Surface Studio Surface Pro (2017) Surface Laptop

	✔️ Supported

	Monoprice

	8x6”

	❓ Unknown

	Monoprice

	MP1060-HA60 (10x6.25”)

	❓ Unknown

	Monoprice

	10x6.25” (110594)

	❓ Unknown

	Monoprice

	8x6” MP Select Professional

	❓ Unknown

	Monoprice

	“8x6”” MP Select Professional with Quick Select Wheel”

	❓ Unknown

	Monoprice

	12x9” (106815)

	❓ Reported to work with some issues

	Monoprice

	MP 22-inch (114481)

	❓ Unknown

	Parblo

	A610

	❌ Reported to be broken

	Parblo

	Bay B960

	❓ Unknown

	Parblo

	GT19

	❓ Unknown

	Parblo

	GT22HD

	❓ Unknown

	Parblo

	Coast22

	❓ Unknown

	Parblo

	Coast10

	❓ Unknown

	Parblo

	Island A609

	❓ Reported to work, but tablet is low-quality and not recommended.

	PenPower

	TOOYA Master

	❓ Unknown

	PenPower

	TOOYA X

	❓ Unknown

	PenPower

	Monet

	❓ Unknown

	PenPower

	Picasso

	❓ Unknown

	Perixx

	Peritab-502EVO

	❓ Unknown

	Perixx

	Peritab 502

	❓ Unknown

	Perixx

	Peritab 302

	❓ Unknown

	Samsung

	Galaxy Book

	✔️ Supported

	Trust

	Flex Design

	❓ Unknown

	Trust

	Slimline Widescreen

	❌ Reported to be broken

	Trust

	Slimline Sketch

	❓ Unknown

	Trust

	Slimline Mini

	❓ Unknown

	Trust

	TB2100

	❓ Unknown

	Trust

	TB3100

	❓ Unknown

	Turcom / Huion

	Interactive Pen Display

	✔️ Supposed to work

	Turcom / Huion

	TS-6608

	✔️ Supposed to work

	Turcom / Huion

	TS-6580B Pro

	✔️ Supposed to work

	Turcom / Huion

	TS-6580W Pro

	✔️ Supposed to work

	Turcom / Huion

	TS-6610H Professional Wide

	✔️ Supposed to work

	Turcom / Huion

	TS-690

	✔️ Supposed to work

	Turcom / Huion

	TS-680

	✔️ Supposed to work

	Turcom / Huion

	TS-6540

	✔️ Supposed to work

	UC-Logic / Digipro

	DigiPro WP4030

	❓ Unknown

	UC-Logic / Digipro

	WP806U

	❓ Unknown

	Ugee

	HK1060pro

	❓ Unknown

	Ugee

	HK1560

	❓ Unknown

	Ugee

	UG-1910B

	❓ Unknown

	Ugee

	UG-2150

	❓ Reported to work with the new drivers released January 2018

	Ugee

	EX05

	❓ Unknown

	Ugee

	EX07

	❓ Unknown

	Ugee

	G3

	❓ Reported to work on windows 7

	Ugee

	G5

	❓ Working with Windows with official drivers installed. No drivers are currently available under Linux.

	Ugee

	M504

	❓ Unknown

	Ugee

	M708

	❌ Reported to be broken, connected strokes

	Ugee

	M6370

	❓ Unknown

	Ugee

	M1000L

	❌ Reported to be broken

	Ugee

	Chocolate

	❓ Unknown

	Ugee

	CV720

	❓ Unknown

	Ugee

	Rainbow 3

	❓ Unknown

	VisTablet

	Mini

	❓ Unknown

	VisTablet

	Mini Plus

	❓ Unknown

	VisTablet

	VT Original

	❓ Unknown

	VisTablet

	Realm Pro

	❓ Unknown

	VisTablet

	Realm Graphic

	❓ Unknown

	VisTablet

	VT 12” Touch

	❓ Unknown

	Wacom

	Intuos Draw

	✔️ Supposed to work

	Wacom

	Intuos Art

	✔️ Supposed to work

	Wacom

	Intuos Photo

	✔️ Supposed to work

	Wacom

	Intuos Comic

	✔️ Supposed to work

	Wacom

	Intuos 3D

	✔️ Supposed to work

	Wacom

	Intuos Pro (S/M/L)

	✔️ Supposed to work

	Wacom

	Intuos Pro Paper

	✔️ Supposed to work

	Wacom

	Cintiq Pro 13

	✔️ Supposed to work

	Wacom

	Cintiq Pro 16

	✔️ Supposed to work

	Wacom

	Cintiq 13HD

	✔️ Supposed to work

	Wacom

	Cintiq 22HD

	✔️ Supposed to work

	Wacom

	Cintiq 22HD Touch

	✔️ Supposed to work

	Wacom

	Cintiq 27 QHD

	✔️ Supposed to work

	Wacom

	Cintiq 27 QHD Touch

	✔️ Supposed to work

	Wacom

	Cintiq Companion

	✔️ Supposed to work

	Wacom

	Cintiq Companion 2

	✔️ Supposed to work

	Wacom

	Cintiq Companion Hybrid

	✔️ Supported

	Wacom

	MobileStudio Pro 13

	✔️ Supported

	Wacom

	MobileStudio Pro 16

	✔️ Supported

	Wacom

	Intuos 5

	✔️ Supported

	Wacom

	Intuos 4

	✔️ Supported

	Wacom

	Intuos 3

	✔️ Supported

	Wacom

	Intuos 2 (XD)

	✔️ Supposed to work

	Wacom

	Cintiq 12WX

	✔️ Supposed to work

	Wacom

	Cintiq 24HD

	✔️ Supposed to work

	Wacom

	Bamboo Create

	✔️ Supposed to work

	Wacom

	Bamboo Capture

	✔️ Supposed to work

	Wacom

	Bamboo Connect

	✔️ Supposed to work

	Wacom

	Bamboo Splash

	✔️ Supposed to work

	Wacom

	Bamboo CTL

	✔️ Supposed to work

	Wacom

	Bamboo CTH

	✔️ Supposed to work

	Wacom

	Bamboo CTE

	✔️ Supposed to work

	Wacom

	Bamboo One

	✔️ Supposed to work

	Wacom

	Cintiq20 (DTZ)

	✔️ Supposed to work

	Wacom

	Cintiq21

	✔️ Reported to work

	Wacom

	Intuos (GD)

	✔️ Supposed to work

	Wacom

	Graphire2

	✔️ Supposed to work

	Wacom

	Graphire (ET)

	✔️ Supposed to work

	Waltop

	Venus M

	❓ Unknown

	Waltop

	Media

	❓ Unknown

	Waltop

	Q-Pad

	❓ Unknown

	XP Pen

	Artist 16

	✔️ Supposed to work

	XP Pen

	Artist 22

	✔️ Supposed to work

	XP Pen

	Artist 22E

	✔️ Supposed to work

	XP Pen

	Artist Display 10S

	✔️ Supposed to work

	XP Pen

	Star 05 Wireless

	✔️ Works with the Star 04 driver

	XP Pen

	Star G540 Game Play

	❓ Unknown

	XP Pen

	Star G430 Game Play

	✔️ Supposed to work

	XP Pen

	Star 04 Flash Memory

	❓ Unknown

	XP Pen

	Star 03 Express Keys

	✔️ Works

	XP Pen

	Star 02 Touch Hot Keys

	❓ Unknown

	XP Pen

	Star 01 Pen Tablet

	❓ Unknown

	Yiynova

	SP 1001 (UC-Logic)

	❓ Unknown

	Yiynova

	MVP10U

	✔️ Supported

	Yiynova

	MVP10U HD

	✔️ Supposed to work

	Yiynova

	MVP10U HD+IPS

	✔️ Supposed to work

	Yiynova

	DP10U+

	✔️ Supposed to work

	Yiynova

	DP10U

	✔️ Supposed to work

	Yiynova

	DP10

	✔️ Supposed to work

	Yiynova

	DP10S

	✔️ Supposed to work

	Yiynova

	DP10HD

	✔️ Supposed to work

	Yiynova

	MSP15

	✔️ Supposed to work

	Yiynova

	MSP19

	✔️ Supposed to work

	Yiynova

	MSP19U

	✔️ Supposed to work

	Yiynova

	MSP19U+

	✔️ Supposed to work

	Yiynova

	MSP19U+ (V5)

	✔️ Supposed to work

	Yiynova

	MVP22U+IPS (V3)

	✔️ Supposed to work

	Yiynova

	MVP20U+RH

	✔️ Supposed to work

	Yiynova

	MVP22U+DT

	✔️ Supposed to work

	Yiynova

	MVP22U+RH

	✔️ Supposed to work

	Yiynova

	MJP19

	✔️ Supposed to work

	Yiynova

	MKP19

	✔️ Supposed to work

	Yiynova

	YA20HD

	✔️ Supposed to work

See also

Pages you might want to check :

Huion’s krita support topic on deviant art [https://huion.deviantart.com/journal/Problem-with-Krita-Come-On-In-439442607].

List of tablets models and branding [https://digimend.github.io/tablets/].

 Main Menu

Main Menu

A list of all of main menu actions and a short description on what they do.

New in version 5.0: Actions, including all of the main menu actions can now be searched with Ctrl + Enter.

	Edit Menu

	File Menu

	Help Menu

	Image Menu

	Layers Menu

	Select Menu

	Settings Menu

	Tools Menu

	View Menu

	Window Menu

 Edit Menu

Edit Menu

	Undo
	Undoes the last action. Shortcut: Ctrl + Z

	Redo
	Redoes the last undone action. Shortcut: Ctrl + Shift+ Z

	Cut
	
	If shapes are selected, then they are cut from the image and saved into the clipboard.

	If Selections are active, then that area is cut in all the layers selected in the layer docker and saved into the clipboard.

	If no selection, the layers selected inside the layer docker are cut from the image and saved into the clipboard.

	Shortcut: Ctrl + X

	Copy
	Similar to Cut, but elements are only copied into the clipboard without modifying existing image. Shortcut: Ctrl + C

	Cut (Sharp)
	This prevents semi-transparent areas from appearing on your cut pixels, making them either fully opaque or fully transparent.

	Copy (Sharp)
	Same as Cut (Sharp) but then copying instead.

	Copy Merged
	Copies the selection over all layers. Shortcut: Ctrl + Shift + C

	Paste
	
	If vector shapes are in the copied buffer, the shapes are pasted into the image as a new layer.

	If layers are in the copied buffer, these layers are pasted into the image above the active layer or inside a group layer if the active layer is a group layer.

	Shortcut: Ctrl + V

	Paste at Cursor
	Same as Paste, but aligns the image to the cursor. Shortcut: Ctrl + Alt + V

	Paste into Active Layer
	Pastes the copied buffer into the current layer as a new selection.

New in version 5.0.

	Paste into New Image
	Pastes the copied buffer into a new image. Shortcut: Ctrl + Shift + N

	Paste as Reference Image
	Pastes the selection as a new Reference Image.

	Paste Shape Style
	Used with Shape Selection Tool, this allows you to copy the style (the fill, outline and markers) of one vector shape to another.

New in version 4.4.2.

	Clear
	Empty the currently selected area or total area of all the selected layers. Shortcut: Del

	Fill with Foreground Color
	Fills the layer or selection with the foreground color without taking into account blending modes or opacity. Shortcut: Shift + Backspace

	Fill with Background Color
	Fills the layer or selection with the background color without taking into account blending modes or opacity. Shortcut: Backspace

	Fill with Pattern
	Fills the layer or selection with the active pattern without taking into account blending modes or opacity.

	Fill with Foreground Color (Opacity)
	Fills the layer or selection with the foreground color, taking blending modes and opacity into account. Shortcut: Ctrl + Shift + Backspace

	Fill with Background Color (Opacity)
	Fills the layer or selection with the background color, taking blending modes and opacity into account. Shortcut: Ctrl + Backspace

	Fill with Pattern (Opacity)
	Fills the layer or selection with the active pattern, taking blending modes and opacity into account.

	Stroke Selected Shapes
	Strokes the selected vector shape with the selected brush, will create a new layer.

	Stroke Selection
	Strokes the active selection using the menu.

 File Menu

File Menu

	New
	Make a new file. Shortcut: Ctrl + N

	Open…
	Open a previously created file. Shortcut: Ctrl + O

	Open Recent
	Open the recently opened document.

	Save
	File formats that Krita can save to. These formats can later be opened back up in Krita. Shortcut: Ctrl + S

	Save As…
	Save as a new file. Shortcut: Ctrl + Shift + S

	Sessions
	This opens the Sessions manager.

	Open existing Document as Untitled Document…
	Similar to import in other programs.

	Export…
	Additional formats that can be saved. Some of these formats may not be later imported or opened by Krita.

	Export Advanced…
	Similar to export, but it includes crop and resize options.

	Import Animation Frames…
	Import frames for animation.

	Import Video Animation…
	Import a video animation.

	Render Animation…
	Render an animation with FFmpeg. This is explained on the Render Animation page.

	Save Incremental Version
	Save as a new version of the same file with a number attached. Shortcut: Ctrl + Alt + S

	Save Incremental Backup
	Copies and renames the last saved version of your file to a backup file and saves your document under the original name. Shortcut: F4

	Create Template from Image…
	The *.kra file will be saved into the template folder for future use. All your layers and guides will be saved along!

	Create Copy from Current Image
	Makes a new document from the current image, so you can easily reiterate on a single image. Useful for areas where the template system is too powerful.

	Document Information
	Look at the document information. Contains all sorts of interesting information about image, such as technical information or metadata.

	Close
	Close the view or document. Shortcut: Ctrl + W

	Close All
	Close all views and documents. Shortcut: Ctrl + Shift + W

	Quit
	Close Krita. Shortcut: Ctrl + Q

 Help Menu

Help Menu

	Krita Handbook
	Opens a browser and sends you to the index of this manual. Shortcut: F1

	Report Bug…
	Sends you to the bugtracker. This is only available on beta versions of Krita.

	Show Krita Log for Bug Reports.
	Opens a window which logs the files and crashes that have recently happened. Like the system information below, this helps us figure out what is happening with particular bugs.

	Show System Information for Bug Reports
	This is a selection of all the difficult to figure out technical information of your computer. This includes things like, which version of Krita you have, which version your operating system is, and most prudently, what kind of OpenGL functionality your computer is able to provide. The latter varies a lot between computers and due that it is one of the most difficult things to debug. Providing such information can help us figure out what is causing a bug.

	About Krita
	Shows you the credits.

	About KDE
	Tells you about the KDE community that Krita is part of.

 Image Menu

Image Menu

	Properties…
	Gives you the image properties.

	Image Background Color and Transparency…
	Change the background canvas color.

	Convert Image Color Space…
	Converts the current image to a new colorspace.

	Trim to image size
	Trims all layers to the image size. Useful for reducing filesize at the loss of information.

	Trim to Current Layer
	A lazy cropping function. Krita will use the size of the current layer to determine where to crop.

	Trim to Selection
	A lazy cropping function. Krita will crop the canvas to the selected area.

	Rotate
	Rotate the image.

	Shear Image…
	Shear the image.

	Mirror Image Horizontally
	Mirror the image on the horizontal axis.

	Mirror Image Vertically
	Mirror the image on the vertical axis.

	Scale to New Size…
	The resize function in any other program. Shortcut Ctrl + Alt + I

	Offset Image…
	Offset all layers.

	Resize Canvas…
	Change the canvas size. Don’t confuse this with Scale to new size. Shortcut Ctrl + Alt + C

	Image Split
	Calls up the Image Split dialog.

	Wavelet Decompose…
	Does Wavelet Decompose on the current layer.

	Separate Image…
	Separates the image into channels.

 Layers Menu

Layers Menu

These are the topmenu options are related to Layer Management, check out that page first, if you haven’t.

	Cut Layer
	Cuts the whole selected layer/layers rather than just the pixels.

	Copy Layer
	Copy the whole selected layer/layers rather than just the pixels.

	Paste Layer
	Pastes all the layers saved in the clipboard.

	New
	Organizes the following actions:

	Paint Layer
	Add a new paint layer.

	New layer from visible
	Add a new layer with the visible pixels.

	Duplicate Layer or Mask
	Duplicates the layer.

	Cut Selection to New Layer
	Single action for cut+paste.

	Copy Selection to New Layer
	Single action for copy+paste.

	Import/Export
	Organizes the following actions:

	Save Layer or Mask
	Saves the Layer or Mask as a separate image.

	Save Vector Layer as SVG
	Save the currently selected vector layer as an SVG.

	Save Group Layers
	Saves the top-level group layers as single-layer images.

	Import Layer
	Import an image as a layer into the current file.

	Import as…
	Import an image as a specific layer type. The following layer types are supported:

	Paint layer

	Transparency Mask

	Filter Mask

	Selection Mask

	Convert
	Organizes the following actions:

Convert a layer to…

	Convert to Paint Layer
	Convert a mask or vector layer to a paint layer.

	Transparency Mask
	Convert a layer to a transparency mask. The image will be converted to grayscale first, and these grayscale values are used to drive the transparency.

	Filter Mask
	Convert a layer to a filter mask. The image will be converted to grayscale first, and these grayscale values are used to drive the filter effect area.

	Selection Mask
	Convert a layer to a selection mask. The image will be converted to grayscale first, and these grayscale values are used to drive the selected area.

	File Layer
	Convert the selected layer in to a file layer. This will open a dialog box, which will ask the user for a location to save the layer as file layer and reference it in place of the original layer. This feature cannot be used if the selected layer is either a clone layer or a file layer.

	Convert Group to Animated Layer
	This takes the images in the group layer and makes them into frames of an animated layer.

	Convert Layer Color Space
	This only converts the color space of the layer, not the image.

	Select:
	Organizes the following actions:

	All layers
	Select all layers.

	Visible Layers
	Select all visible layers.

	Invisible Layers
	Select all invisible layers, useful for cleaning up a sketch.

	Locked Layers
	Select all locked layers.

	Unlocked Layers
	Select all unlocked layers.

	Group
	Organizes the following actions:

	Quick Group
	Adds all selected layers to a group.

	Quick Clipping Group
	Adds all selected layers to a group and adds a alpha-inherited layer above it.

	Quick Ungroup
	Ungroups the activated layer.

	Transform
	Organizes the following actions:

	Mirror Layer Horizontally
	Mirror the layer horizontally using the image center.

	Mirror Layer Vertically
	Mirror the layer vertically using the image center.

	Rotate
	Rotate the layer around the image center.

	Scale Layer
	Scale the layer by the given amounts using the given interpolation filter.

	Shear Layer
	Shear the layer pixels by the given X and Y angles.

	Offset Layer
	Offset the layer pixels by a given amount.

	Split
	Organizes the following actions:

	Split Alpha
	Split the image transparency into a mask. This is useful when you wish to edit the transparency separately.

	Split Layer
	Split the layer into given color fields.

	Clones Array
	A complex bit of functionality to generate clone-layers for quick sprite making. See Clones Array for more details.

	Edit Metadata…
	Each layer can have its own metadata.

	Histogram
	Shows a histogram.

Deprecated since version 4.2: Removed. Use the Histogram Docker instead.

	Merge with Layer Below
	Merge a layer down.

	Flatten Layer
	Flatten a Group Layer or flatten the masks into any other layer.

	Rasterize Layer
	For making vectors into raster layers.

	Flatten Image
	Flatten all layers into one. Shortcut Ctrl + Shift + E

	Layer Style…
	Set the Layer Styles.

 Select Menu

Select Menu

	Select All
	Selects the whole layer. Shortcut Ctrl + A

	Deselect
	Deselects everything (except for active Selection Mask). Shortcut Ctrl + Shift + A

	Reselect
	Reselects the previously deselected selection. Shortcut Ctrl + Shift + D

	Invert Selection
	Inverts the selection. Shortcut Ctrl + Shift + I

	Edit Selection
	When a selection is active, this will switch the active layer to the global selection mask, and the active tool to the appropriate tool for editing the selection depending on whether it’s vector or raster.

	Convert to Vector Selection
	This converts a raster selection to a vector selection. Any layers of transparency there might have been are removed.

	Convert to Raster Selection
	This converts a vector selection to a raster selection.

	Convert Shapes to Vector Selection
	Convert a vector shape to a vector selection.

	Convert to Shape
	Converts a vector selection to a vector shape.

	Display Selection
	Display the selection. If turned off selections will be invisible. Shortcut Ctrl + H

	Show Global Selection Mask
	Shows the global selection as a selection mask in the layers docker. This is necessary to be able to select it for painting on.

	Scale…
	Scale the selection.

	Select from Color Range…
	Select from a certain color range.

	Select Opaque
	Select all opaque (non-transparent) pixels in the current active layer. If there’s already a selection, this will add the new selection to the old one, allowing you to select the opaque pixels of multiple layers into one selection. Semi-transparent (or semi-opaque) pixels will be semi-selected.

	Select Opaque (Replace)
	Only select the opaque pixels of the layer, regardless of selection.

	Select Opaque (Add)
	Adds the new selection from opaque pixels to the current selection.

	Select Opaque (Subtract)
	Subtracts the new selection from opaque pixels from the current selection.

	Select Opaque (Intersection)
	Gets the intersection between the new selection from opaque pixels and the current selection.

	Feather Selection…
	Feathering in design means to soften sharp borders. So this adds a soft border to the existing selection. Shortcut Shift + F6

	Grow Selection…
	Make the selection a few pixels bigger.

	Shrink Selection…
	Make the selection a few pixels smaller.

	Border Selection…
	Take the current selection and remove the insides so you only have a border selected.

	Smooth
	Make the selection a little smoother. This removes jiggle.

 Settings Menu

Settings Menu

The Settings Menu houses the configurable options in Krita and where you determine most of the “look and feel” of the application.

	Configure Krita
	Opens the Preferences.

	Manage Resource Libraries
	Allows you to manage which bundles are active.

New in version 5.0.

	Manage Resources
	Manage the resources. You can read more about it here.

	Active Author Profile
	This allows you to set which author profile is currently active.

	Reset all settings
	Reset all the Krita settings, as per Resetting Krita configuration.

New in version 5.0.

Configure Toolbars…

Krita allows you to highly customize the Toolbar interface. You can add, remove and change the order of nearly everything to fit your style of work. To get started, choose Settings ‣ Configure Toolbars… menu item.

[image: ../../_images/Configure_Toolbars_Krita.png]
The dialog is broken down into three main sections:

	The Toolbar
	Choose to either modify the “Main” or “Brushes and Stuff” toolbars.

	Available Actions:
	All the options that can be added to a toolbar.

	Current Actions:
	All the actions currently assigned and the order they are in.

Use the arrows between the Available and Current actions sections to move items back and forth and up and down in the hierarchy. This type of inclusion/exclusion interface has been around on PCs for decades, so we don’t need to go into great detail regarding its use. What is important though is selecting the correct Toolbar to work on. The Main Toolbar allows you to add items between the New, Open and Save buttons as well as to the right of the Save button. The Brushes and Stuff Toolbar, lets you modify anything from the Gradients button over to the right. This is probably where you’ll do most of your editing.

Here we’ve added Select Opaque, Local Selection, Transparency Mask, Isolate Layer, Show Assistant Previews. This is just an example of a couple of options that are used frequently and might trim your workflow. This is what it looks like in the configuration tool:

[image: ../../_images/Configure_Toolbars_Brushes_and_Stuff_Custom.png]
You’ll notice that some items are text only and some only icons. This is determined by whether the particular item has an associated icon in Krita. You can select anything from the Available section and move it to the Current one and rearrange to fit your own workflow.

If you add so many that they won’t all fit on your screen at once, you will see a small chevron icon appear. Click it and the toolbar expands to show the remaining items.

	Toolbars shown
	Gives a list of toolbars that can be shown.

At this time Krita does not support the ability to create additional toolbars. The ones available are:

[image: ../../_images/Toolbars_Shown.png]
Although not really advisable, you can turn them off (but why would you… really?)

New in version 4.2: Krita’s toolbars are now movable. You can move a toolbar by [image: mouseleft] dragging its left handle.

Show Dockers

	Show Dockers
	
Determines whether the dockers are visible. This is a nice aid to cleaning up the interface and removing unnecessary “eye-ball clutter” when you are painting. If you’ve got your brush, and you know you’re just going to be painting for a while why not flip the dockers off? You’d be amazed what a difference it makes while you’re working. However, if you know you’re swapping out tools or working with layer or any of the other myriad things Krita lets you do then there’s no point getting caught up in flipping the docks on and off. Use your time wisely!

Tip

This is a great candidate to add to the toolbar, so you can just click the dockers on and off and don’t even have to open the menu to do it. See Configure Toolbars… below for more.

Dockers

Krita subdivides the access of many of its features into functional panels called Dockers. Dockers are small windows that can contain, for example, things like the Layer Stack, Color Palette or Brush Presets. Think of them as the painter’s palette, or his water, or his brush kit.

Learning to use dockers effectively is a key concept to optimizing your time using Krita.

Themes and Style

Krita provides a number of color-themed interfaces or “looks”. The current set of themes are the following:

	Darker

	Dark (Default)

	Blender

	Bright

	Neutral

There is no easy way to create and share themes. The color themes are defined in the color-schemes folder inside the resource folder.

Similarly, the Style menu allows you to select a different ‘widget style’. These styles are Qt framework widget styles and there’s no easy way of customizing them.

Switch Application Language…

If you wish to use Krita in a different translation, you can select it here. It may require a restart, however.

 Tools Menu

Tools Menu

This contains three things.

Scripting

When you have python scripting enabled and have scripts toggled, this is where most scripts are stored by default.

Recording

Deprecated since version 3.0: Macro recording and playing is disabled since 3.0 due to unmaintained code and buggy behaviour leading to crash.

Record a macro. You do this by pressing start, drawing something and then pressing stop. This feature can only record brush strokes. The resulting file is stored as a *.kritarec file.

Macros

Deprecated since version 3.0: Macro recording and playing is disabled since 3.0 due to unmaintained code and buggy behaviour leading to crash.

Play back or edit a krita rec file. The edit can only change the brush preset on strokes or add and remove filters.

 View Menu

View Menu

	Show Canvas Only
	Only shows the canvas and what you have configured to show in Canvas Only settings. Shortcut Tab

	Full Screen mode
	This will hide the system bar. Shortcut Ctrl + Shift + F

	Detach Canvas
	This will pop-out the canvas into its own window, which is very useful for multi-monitor setups.

	Wrap Around Mode
	This will show the image as if tiled orthographically. Very useful for tiling 3d textures.

	Instant Preview Mode
	Toggle Instant Preview globally. Shortcut Shift + L

	Soft Proofing
	Activate Soft Proofing. Shortcut Ctrl + Y

	Out of Gamut Warnings
	See the Soft Proofing page for details. Shortcut Ctrl + Shift + Y

	Canvas
	Contains view manipulation actions.

	Mirror View
	This will mirror the view. Hit the M key to quickly activate it. Very useful during painting.

	Show Rulers
	This will display a set of rulers. [image: mouseright] the rulers after showing them, to change the units.

	Rulers Track Pointer
	This adds a little marker to the ruler to show where the mouse is in relation to them.

	Show Guides
	Show or hide the guides.

	Lock Guides
	Prevent the guides from being able to be moved by the cursor.

	Show Status Bar
	This will show the status bar. The status bar contains a lot of important information, a zoom and rotate widget, and the button to switch Selection Display Mode.

	Show Grid
	Shows and hides the grid. Shortcut: Ctrl + Shift + '

	Show Pixel Grid
	Show the pixel grid as configured in the Display Settings.

	Snapping
	Toggle the Snapping types.

	Show Painting Assistants
	Shows or hides the Assistants.

	Show Painting Previews
	Shows or hides the Previews.

	Show Reference Images
	Shows or hides the Reference Image.

 Window Menu

Window Menu

A menu completely dedicated to window management in Krita.

	New Window
	Creates a new window for Krita. Useful with multiple screens.

	New View
	Make a new view of the given document. You can have different zoom or rotation on these.

	Workspace
	A convenient access panel to the Workspaces.

	Close
	Close the current view.

	Close All
	Close all documents.

	Tile
	Tiles all open documents into a little sub-window.

	Cascade
	Cascades the sub-windows.

	Next
	Selects the next view.

	Previous
	Selects the previous view.

	List of open documents.
	Use this to switch between documents.

 Maths Input

Maths Input

Also known as Numerical Input boxes. You can make Krita do simple maths for you in the places where we have number input. Just select the number in a spinbox, or right-click a slider to activate number input. It doesn’t do unit conversion yet, but this is planned.

Possible Functions

	Addition (Operator: +)
	Just adds the numbers.
Usage: 50+100
Output: 150

	Subtraction (Operator: -)
	Just subtracts the last number from the first.
Usage: 50-100
Output: 50

	Multiplication (Operator: *)
	Just multiplies the numbers.
Usage: 50*100
Output: 5000

	Division (Operator: /)
	Just divides the numbers.
Usage: 50/100
Output: 0.5

	Exponent (Operator: ^)
	Makes the last number the exponent of the first and calculates the result.
Usage: 2^8
Output: 256

	Sine (Operator: sin())
	Gives you the sine of the given angle.
Usage: sin(50)
Output: 0.76

	Cosine (Operator: cos())
	Gives you the cosine of the given angle.
Usage: cos(50)
Output: 0.64

	Tangent (Operator: tan())
	Gives you the tangent of the given angle.
Usage: tan(50)
Output: 1.19

	Arc Sine (Operator: asin())
	Inverse function of the sine, gives you the angle which the sine equals the argument.
Usage: asin(0.76)
Output: 50

	Arc Cosine (Operator: acos())
	Inverse function of the cosine, gives you the angle which the cosine equals the argument.
Usage: acos(0.64)
Output: 50

	Arc Tangent (Operator: atan())
	Inverse function of the tangent, gives you the angle which the tangent equals the argument.
Usage: atan(1.19)
Output: 50

	Absolute (Operator: abs())
	Gives you the value without negatives.
Usage: abs(75-100)
Output: 25

	Exponent (Operator: exp())
	Gives you given values using e as the exponent.
Usage: exp(1)
Output: 2.7183

	Natural Logarithm (Operator: ln())
	Gives you the natural logarithm, which means it has the inverse functionality to exp().
Usage: ln(2)
Output: 0.6931

The following are technically supported but bugged:

	Common Logarithm (Operator: log10())
	Gives you logarithms of the given value.
Usage: log10(50)
Output: 0.64

Order of Operations.

The order of operations is a globally agreed upon reading order for interpreting mathematical expressions. It solves how to read an expression like:

2+3*4

You could read it as 2+3 = 5, and then 5*4 =20. Or you could say 3*4 = 12 and then 2+12 = 14.

The order of operations itself is Exponents, Multiplication, Addition, Subtraction. So we first multiply, and then add, making the answer to the above 14, and this is how Krita will interpret the above.

We can use brackets to specify certain operations go first, so to get 20 from the above expression, we do the following:

(2+3)*4

Krita can interpret the brackets accordingly and will give 20 from this.

Errors

Sometimes, you see the result becoming red. This means you made a mistake and Krita cannot parse your maths expression. Simply click the input box and try again.

 Pop-up Palette

Pop-up Palette

The Pop-up Palette is a feature unique to Krita amongst the digital painting applications. It is designed to increase productivity and save time of the artists by providing quick access to some of the most frequently used tools and features in Krita. The Pop-up palette can be accessed by [image: mouseright] on the canvas. A circular palette similar to what is shown in the image below will spawn at the position your mouse cursor.

[image: ../_images/popup-palette-detail.svg]As shown in the image above, the pop-up palette has the following tools and quick access shortcuts integrated into it.

	Foreground color and Background color indicators on the top left of the palette.

	A canvas rotation circular slider, which can help the artist quickly rotate the canvas while painting.

	A group of brush presets, based on the tag selected by the artist. By default the My Favorite tag is selected. By default only first 10 presets from the tag are shown, however you can change the number of brush presets shown by changing the value in the Pop-up Palette Settings in Krita’s Preferences dialog.

	Color Selector with which you can select the hue from the circular ring and lightness and saturation from the triangular area in the middle.

	Color history area shows the most recent color swatches that you have used while painting.

	The tag list for brush preset will show you the list of both custom and default tags to choose from, selecting a tag from this list will show the corresponding brush presets in the palette.

	The common brush options such as size, opacity, angle et cetera will be shown when you click the > icon. A dialog box will appear which will have the sliders to adjust the brush options. You can choose which options are shown in this dialog box by clicking on the settings icon.

	The zoom slider allows you to quickly zoom the canvas.

	The 100% button sets the zoom to the 100% of the image size.

	The button with the canvas icon switches to the canvas only mode, where the toolbar and dockers are hidden.

	The button with the mirror icon mirrors the canvas to help you spot the errors in the painting.

 Preferences

Preferences

Krita is highly customizable and makes many settings and options available to customize through the Preferences area. These settings are accessed by going to Settings ‣ Configure Krita… menu item. On macOS, the settings are under the topleft menu area, as you would expect of any program under macOS.

Krita’s preferences are saved in the file kritarc. This file is located in %LOCALAPPDATA%\ on Windows, ~/.config on Linux, and ~/Library/Preferences on macOS. If you would like to back up your custom settings or synchronize them from one computer to another, you can just copy this file. It even works across platforms!

If you have installed Krita through the Windows store, the kritarc file will be in another location:

%LOCALAPPDATA%\Packages\49800Krita_RANDOM STRING\LocalCache\Local\kritarc

Custom shortcuts are saved in a separate file kritashortcutsrc which can also be backed up in the same way. This is discussed further in the shortcuts section.

	Author Profile Settings

	Canvas Input Settings

	Canvas Only Mode

	Color Management Settings

	Color Selector Settings

	Display Settings

	G’Mic Settings

	General Settings

	Performance Settings

	Pop-up Palette Settings

	Python Plugin Manager

	Shortcut Settings

	Tablet Settings

 Author Profile Settings

Author Profile Settings

Krita allows creating an author profile that you can use to store contact info into your images.

The main element is the Author page. This page was overhauled massively in 4.0.

By default, it will use the “Anonymous” profile, which contains nothing. To create a new profile, press the “+” button, and write up a name for the author profile.

You can then fill out the fields.

[image: ../../_images/Krita_4_0_preferences_author_page.png]

The position field is special in that it has a list of hard coded common artists positions it can suggest.

In older versions of Krita there could only be one of each contact info. In 4.0, you can make as many contact entries as you’d like.

Press Add Contact Info to add an entry in the box. By default it will set the type to homepage, because that is the one that causes the least spam. Double [image: mouseleft] homepage to change the contact type. Double [image: mouseleft] the “New Contact Info” text to turn it into a line edit to change the value.

Using the new profile

To use a profile for your current drawing, go to Settings ‣ Active Author Profile and select the name you gave your profile. Then, when pressing Save on your current document, you will be able to see your last author profile as the last person who saved it in File ‣ Document Information ‣ Author.

Exporting author metadata to JPEG and PNG

New in version 4.0: The JPEG and PNG export both have Sign with author data options. Toggling these will store the Nickname and the first entry in the contact info into the metadata of PNG or JPEG.

For the above example in the screenshot, that would result in: ExampleMan (http://example.com) being stored in the metadata.

 Canvas Input Settings

Canvas Input Settings

Krita has ways to set mouse and keyboard combinations for different actions. The user can set which combinations to use for a certain Krita command over here. This section is under development and will include more options in future.

	Profile
	The user can make different profiles of combinations and save them.

 Canvas Only Mode

Canvas Only Mode

Canvas Only mode is Krita’s version of full screen mode. It is activated by hitting the Tab key on the keyboard. Select which parts of Krita will be hidden in canvas-only mode – The user can set which UI items will be hidden in canvas-only mode. Selected items will be hidden.

Changed in version 5.0: Canvas only-mode can also be entered by tapping the screen with 4 fingers.

 Color Management Settings

Color Management Settings

[image: ../../_images/Krita_Preferences_Color_Management.png]
Krita offers extensive functionality for color management, utilising Little CMS [http://www.littlecms.com/]
We describe Color Management in a more overall level here: Color Managed Workflow.

General

Default Color Model For New Images

Choose the default model you prefer for all your images.

When Pasting Into Krita From Other Applications

The user can define what kind of conversion, if any, Krita will do to an image that is copied from other applications i.e. Browser, GIMP, etc.

	Assume sRGB
	This option will show the pasted image in the default Krita ICC profile of sRGB.

	Assume monitor profile
	This option will show the pasted image in the monitor profile selected in system preferences.

	Ask each time
	Krita will ask the user each time an image is pasted, what to do with it. This is the default.

Note

When copying and pasting in Krita color information is always preserved.

Use Blackpoint Compensation

This option will turn on Blackpoint Compensation for the conversion. BPC is explained by the maintainer of LCMS as following:

BPC is a sort of “poor man’s” gamut mapping. It basically adjust contrast of images in a way that darkest tone of source device gets mapped to darkest tone of destination device. If you have an image that is adjusted to be displayed on a monitor, and want to print it on a large format printer, you should realize printer can render black significantly darker that the screen. So BPC can do the adjustment for you. It only makes sense on Relative colorimetric intent. Perceptual and Saturation does have an implicit BPC.

Allow LittleCMS optimizations

Uncheck this option to turn off optimizations. Sometimes, in case of working with linear colorspaces, the optimizations Little CMS does will not give the best results.

Changed in version 5.0: Since Krita 5.0, we ship the fast-float plugin for LittleCMS [https://www.littlecms.com/plugin/]. Turning this option off will also turn off the fast float plugin.

Enforce palette colors: always select the nearest color from the active palette

By default, palette selection widgets take the current foreground color, compare it to the swatches in its active palette and highlight the swatch that is nearest to the current foreground color.

When Enforce palette colors option is checked, it switches the internal color selector into a mode in which, instead of just highlighting the swatch, the current foreground color is replaced with the color of the nearest swatch.

Display

	Use System Monitor Profile
	This option when selected will tell Krita to use the ICC profile selected in your system preferences.

	Screen Profiles
	There are as many of these as you have screens connected. The user can select an ICC profile which Krita will use independent of the monitor profile set in system preferences. The default is sRGB built-in. On Unix systems, profile stored in $/usr/share/color/icc (system location) or $~/.local/share/color/icc (local location) will be proposed. Profile stored in Krita preference folder, $~/.local/share/krita/profiles will be visible only in Krita.

	Rendering Intent
	Your choice of rendering intents is a way of telling Littlecms how you want colors mapped from one color space to another. There are four options available, all are explained on the ICC profiles manual page.

Softproofing options

These allow you to configure the default softproofing options. To configure the actual softproofing for the current image, go to Image ‣ Image Properties ‣ Softproofing .

For indepth details about how to use softproofing, check out the page on softproofing.

 Color Selector Settings

Color Selector Settings

These settings directly affect Advanced Color Selector Dockers and the same dialog box appears when the user clicks the settings button in that docker as well. They also affect certain hotkey actions.

This settings menu has a drop-down for Advanced Color Selector, and Color Hotkeys.

Advanced Color Selector

These settings are described on the page for the Advanced Color Selector.

Color Hotkeys

These allow you to set the steps for the following actions:

	Make Brush Color Darker
	This is defaultly set to K key and uses the lightness steps. This uses luminance when possible.

	Make Brush Color Lighter
	This is defaultly set to L key and uses the lightness steps. This uses luminance when possible.

	Make Brush Color More Saturated
	This is defaultly unset and uses the saturation steps.

	Make Brush Color More Desaturated
	This is defaultly unset and uses the saturation steps.

	Shift Brushcolor Hue clockwise
	This is defaultly unset and uses the Hue steps.

	Shift Brushcolor Hue counter-clockwise
	This is defaultly unset and uses the Hue steps.

	Make Brush Color Redder
	This is defaultly unset and uses the Redder/Greener steps.

	Make Brush Color Greener
	This is defaultly unset and uses the Redder/Greener steps.

	Make Brush Color Yellower
	This is defaultly unset and uses the Bluer/Yellower steps.

	Make Brush Color Bluer
	This is defaultly unset and uses the Bluer/Yellower steps.

 Display Settings

Display Settings

[image: ../../_images/Krita_Preferences_Display.png]
Here various settings for the rendering of Krita can be edited.

Canvas Graphics Acceleration

Note

In Krita 3.2 and before, this used to be named OpenGL, with the checkbox for Canvas Graphics Acceleration being named Enable OpenGL.

OpenGL is a bit of code especially for graphics cards. Graphics cards a dedicate piece of hardware for helping your computer out with graphics calculations, which Krita uses a lot. All modern computer have graphics cards.

On Windows, Krita also supports using Direct3D instead with the help of the ANGLE library. ANGLE works by converting the OpenGL functions that Krita makes use of to the equivalent in Direct3D. It may (or may not) be slower than native OpenGL, but it has better compatibility with typical Windows graphics drivers.

	Canvas Graphics Acceleration
	Selecting this checkbox will enable the OpenGL / ANGLE canvas drawing mode. With a decent graphics card this should give faster feedback on brushes and tools. Also the canvas operations like Rotate, Zoom and Pan should be considerably faster.

Renderer (Requires Restart)

	Auto (Recommended)
	Krita will decide the best renderer to use based on some internal compatibility checking.

	OpenGL
	Krita will use OpenGL.

	OpenGL ES
	Krita will use OpenGl ES, which is a subset of OpenGL. Using this can be useful for less powerful devices.

	ANGLE Direct3D (Windows Only)
	Krita will use the ANGLE compatibility layer to convert the OpenGL calls to Direct3D calls. Whether this works better than regular OpenGL depends on the graphics drivers of the computer.

	Scaling Mode
	The user can choose which scaling mode to use while zooming the canvas. The choice here only affects the way the image is displayed during canvas operations and has no effect on how Krita scales an image when a transformation is applied.

	Nearest Neighbour
	This is the fastest and crudest filtering method. While fast, this results in a large number of artifacts - ‘blockiness’ during magnification, and aliasing and shimmering during minification.

	Bilinear Filtering
	This is the next step up. This removes the ‘blockiness’ seen during magnification and gives a smooth looking result. For most purposes this should be a good trade-off between speed and quality.

	Trilinear Filtering
	This should give a little better result than Bilinear Filtering.

	High Quality Filtering
	Only available when your graphics card supports OpenGL 3.0. As the name suggests, this setting provides the best looking image during canvas operations.

	Use Texture Buffer
	This setting utilizes the graphics card’s buffering capabilities to speed things up a bit. Although for now, this feature may be broken on some AMD/Radeon cards and may work fine on some Intel graphics cards.

	Use Large Pixmap Cache
	This should be enabled if you experience artifacts with the assistants.

HDR

New in version 4.2: These settings are only available when using Windows.

Since 4.2 Krita can not just edit floating point images, but also render them on screen in a way that an HDR capable setup can show them as HDR images.

The HDR settings will show you the display format that Krita can handle, and the current output format. You will want to set the preferred output format to the one closest to what your display can handle to make full use of it.

	Display Format
	The format your display is in by default. If this isn’t higher than 8bit, there’s a good chance your monitor is not an HDR monitor as far as Krita can tell. This can be a hardware issue, but also a graphics driver issue. Check if other HDR applications, or the system HDR settings are configured correctly.

	Current Output format
	What Krita is rendering the canvas to currently.

	Preferred Output Format
	Which surface type you prefer. This should be ideally the closest to the display format, but perhaps due to driver issues you might want to try other formats. This requires a restart.

Canvas Decorations

	Transparency Checkerboard:
	Krita supports layer transparency. Of course, the nasty thing is that transparency can’t be seen. So to indicate transparency at the lowest layer, we use a checker pattern. This part allows you to configure it.

	Size
	This sets the size of the checkers which show up in transparent parts of an image.

	Color
	The user can set the colors for the checkers over here.

	Canvas Border
	
	Color
	The user can select the color for the canvas i.e. the space beyond a document’s boundaries.

	Pixel Grid
	
New in version 4.0.

This allows configuring an automatic pixel-by-pixel grid, which is very useful for doing pixel art.

	Color
	The color of the grid.

	Start Showing at
	This determines the zoom level at which the pixel grid starts showing, as showing it when the image is zoomed out a lot will make the grid overwhelm the image, and is thus counter productive.

	Selection Overlay
	
	Outline Opacity
	Set the opacity of the regular Selection display mode.

	Overlay Color
	Set the color of the alternate Selection display mode. This mode is typically used when making complex selections.

	Opacity
	How opaque the selection overlay is.

Miscellaneous

	Hide canvas scrollbars.
	Hides the scrollbars on the canvas.

	Enable Curve Anti-Aliasing
	This allows anti-aliasing on previewing curves, like the ones for the circle tool, or the path tool.

	Hide Layer thumbnail popup
	This disables the thumbnail that you get when hovering over a layer.

	Color Channels in Color
	This configures whether the image display should be colored when only a single channel is selected in the channels docker.

	Enable Selection Outline Anti-Aliasing
	This allows automatic anti-aliasing on selection. It makes the selection feel less jaggy and more precise.

	Move Checkers When Scrolling
	When selected the checkers will move along with opaque elements of an image during canvas Panning, Zooming, etc. Otherwise the checkers remain stationary and only the opaque parts of an image will move.

 G’Mic Settings

G’Mic Settings

G’Mic or GREYC’s Magic for Image Computing is an opensource filter framework. The G’Mic plugin for Krita exists only on Windows and Linux.

Updates to G’Mic

There is a refresh button at the bottom of the G’Mic window that will update your version. You will need an internet connection to download the latest version.

If you have issues downloading the update through the plugin, you can also do it manually. If you are trying to update and get an error, copy the URL that is displayed in the error dialog. It will be to a “.gmic” file. Download it from your web browser and place the file in one of the following directories.

	Windows : %APPDATA%/gmic/update2XX.gmic

	Linux : $HOME/.config/gmic/update2XX.gmic

Load up the G’Mic plugin and press the refresh button for the version to update.

Deprecated since version 5.0: G’Mic is now included into Krita itself, and thus does not need to be configured separately anymore.

 General Settings

General Settings

You can access the General Category of the preferences by first going to Settings ‣ Configure Krita… menu item.

[image: ../../_images/Krita_Preferences_General.png]

Cursor Settings

Customize the drawing cursor here:

Cursor Shape

Select a cursor shape to use while the brush tools are used. This cursor will always be visible on the canvas. It is usually set to a type exactly where your pen nib is at. The available cursor types are shown below.

	Tool Icon
	Shows the currently selected tool icon, even for the freehand brush.

[image: ../../_images/Settings_cursor_tool_icon.png]

	Arrow
	Shows a generic cursor.

[image: ../../_images/Settings_cursor_arrow.png]

	Crosshair
	Shows a precision reticule.

[image: ../../_images/Settings_cursor_crosshair.png]

	Small circle
	Shows a small white dot with a black outline.

[image: ../../_images/Settings_cursor_small_circle.png]

	No Cursor
	Show no cursor, useful for tablet-monitors.

[image: ../../_images/Settings_cursor_no_cursor.png]

	Triangle Right-Handed.
	Gives a small white triangle with a black border.

[image: ../../_images/Settings_cursor_triangle_righthanded.png]

	Triangle Left-Handed.
	Same as above but mirrored.

[image: ../../_images/Settings_cursor_triangle_lefthanded.png]

	Black Pixel
	Gives a single black pixel.

[image: ../../_images/Settings_cursor_black_pixel.png]

	White Pixel
	Gives a single white pixel.

[image: ../../_images/Settings_cursor_white_pixel.png]

Outline Shape

Select an outline shape to use while the brush tools are used. This cursor shape will optionally show in the middle of a painting stroke as well. The available outline shape types are shown below. (pictures will come soon)

	No Outline
	Turns the outline off.

	Circle Outline
	Gives a circular outline approximating the brush size.

	Preview Outline
	Gives an outline based on the actual shape of the brush.

	Tilt Outline
	Gives a circular outline with a tilt-indicator.

While Painting…

	Show Outline
	This option when selected will show the brush outline while a stroke is being made. If unchecked the brush outline will not appear during stroke making, it will show up only after the brush stroke is finished. This option works only when Brush Outline is selected as the Cursor Shape.

Changed in version 4.1: Used to be called “Show Outline When Painting”.

	Use effective outline size
	
New in version 4.1: This makes sure that the outline size will always be the maximum possible brush diameter, and not the current one as affected by sensors such as pressure. This makes the cursor a little less noisy to use.

	Cursor Color:
	The default cursor color. This is mixed with the canvas image so that it will usually have a contrasting color, but sometimes this mixing does not work. This is usually due driver problems. When that happens, you can configure a more pleasant color here.

Use separate settings for eraser

This allows you to configure all of the above, but then when the blending mode is set to erase, which is the default on eraser presets as well when toggling erase with E. The settings are mostly identical except of the additional eraser tool icon.

Window Settings

	Multiple Document Mode
	This can be either tabbed like GIMP or Paint Tool SAI, or sub windows, like Photoshop.

	Show on-canvas popup messages
	Whether you want to see the on-canvas pop-up messages that tell you whether you are in tabbed mode, rotating the canvas, or mirroring it.

	Zoom Margin Size
	This determines how much margin in pixels will be added when using Fit Page. This is particularly useful for large monitors, where the total canvas area might be larger than the center of your field of vision. Using a margin can then center the image inside the canvas area more comfortably.

New in version 5.1.

	Subwindow mode
	
	Background image
	Allows you to set a picture background for sub window mode.

	Window Background
	Set the color of the sub window canvas area.

	Don’t show contents when moving sub-windows
	This gives an outline when moving windows to work around ugly glitches with certain graphics-cards.

	Use Custom Interface Font
	This allows you to tweak the interface font and the size. Requires a restart.

	Enable Hi-DPI support
	Attempt to use the Hi-DPI support. It is an option because we are still experiencing bugs on Windows.

	Enable fractional scale factor
	Allow the Hi-DPI support to use fractional (not multiples of 100%) display scaling. If you use a fractional display scaling, this option can make the interface of Krita match the interface size of the rest of your system, but it may cause some visual artifacts.

New in version 5.0.

	Allow only one instance of Krita
	An instance is a single entry in your system’s task manager. Turning this option makes sure that Krita will check if there’s an instance of Krita open already when you instruct it to open new documents, and then have your documents opened in that single instance. There’s some obscure uses to allowing multiple instances, but if you can’t think of any, just keep this option on.

Deprecated since version 5.0: Since Krita 5.0 this has been deprecated, as it now uses a SQLite database for handling the resources, and this cannot be managed by multiple instances.

Tools Settings

	Tool Options Location
	
	In Docker (default)
	Gives you the tool options in a docker.

	In Toolbar
	Gives you the tool options in the toolbar, next to the brush settings. You can open it with the \ key.

	Brush Flow Mode
	In Krita 4.2 the behavior of flow in combination with opacity was changed. This allows you to turn it back to the 4.1 behavior. This will however be removed in future versions.

	CMYK Blending Mode
	This allows you to control the way blending modes are handled for CMYK.

	Subtractive (Krita 5.2+)
	Channels are inverted before the blending mode is applied. This will result in most blending modes having a similar effect to the same blending modes in RGB. This is useful when you are doing interchange using PSD files.

	Additive (Krita 5.1 and earlier)
	Channels are not inverted before the blending mode is applied, which means that for example, the multiply mode, which decreases pixel values, will in RGB look like it makes things darker, while in this additive CMYK mode it will make things lighter.

New in version 5.2.

	Switch Control/Alt Selection Modifiers
	This switches the function of the Ctrl and Alt keys when modifying selections. Useful for those used to Gimp instead of Photoshop, or Lefties without a right Alt key on their keyboard.

	Enable Touch painting
	This allows finger painting with capacitive screens. Some devices have both capacitive touch and a stylus, and then this can interfere. In that case, just toggle this.

Changed in version 5.0: When this is disabled, panning the canvas can be done with by dragging a single finger over the canvas, while when enabled, panning will only be done by dragging three fingers.

	Activate transform tool after pasting
	
New in version 4.2: A convenience feature. When enabling this, the transform tool will activate after pasting for quick moving or rotating.

	Enable Touch Rotation
	Without this, gestures on the canvas only allow zoom and pan, with this turned on, the two-finger gesture also allows to rotate.

Deprecated since version 5.1: Since Krita 5.1, this is removed. Instead it’s now possible to configure the navigation gestures inside the Canvas Input Settings.

	Enable Smooth Zooming
	When using [image: mousescroll], zooming switches between predefined zoom levels. Turning this on switches that to be a smooth increment.

Deprecated since version 5.1: This got replaced with the Zoom Steps between powers of Two option.

	Zoom Steps between powers of Two
	How many zoom steps there are between values that are powers of 2 (For example, 2^-1 is 50%, 2^-2 is 25%, 2^2 is 400%). With this, you can decide how many steps steps go inbetween those. The higher the value, the smoother the zoom with a [image: mousescroll].

	Kinetic Scrolling (Needs Restart)
	This enables kinetic scrolling for scrollable areas.

[image: ../../_images/Krita_4_0_kinetic_scrolling.gif]

Kinetic scrolling on the brush chooser drop-down with activation mode set to On Click Drag, with this disabled all of these clicks would lead to a brush being selected regardless of drag motion.

	Activation
	How it is activated.

	On Middle-Click Drag
	Will activate when using the middle mouse button.

	On Touch Drag
	Will activate if it can recognize a touch event. May not always work.

	On Click Drag
	Will activate when it can recognize a click event, will always work.

	Sensitivity
	How quickly the feature activates, this effective determines the length of the drag.

	Hide Scrollbar
	Whether to show scrollbars when doing this.

File Handling

New in version 4.2.

	Enable Autosaving
	Determines whether Krita should periodically autosave.

	Autosave Every
	Here the user can specify how often Krita should autosave the file, you can tick the checkbox to turn it off. For Windows these files are saved in the %TEMP% directory. If you are on Linux it is stored in /home/'username'.

	Unnamed autosave files are hidden by default
	This determines whether the filename of autosaves has a period prepended to the name. On Linux and macOS this is a technique to ensure the file is hidden by default.

	Create Backup File
	When selected Krita will, upon save, rename the original file as a backup file and save the current image to the original name. The result is that you will have saved the image, and there will be a copy of the image that is saved separately as a backup. This is useful in case of crashes during saves.

	Backup File Location
	The default location these backups should be stored.

	Same Folder as Original File
	Store the file in the same folder as the original file was stored.

	User Folder
	This is the main folder of your computer. On Linux and macOS this is the ‘Home’ folder, on Windows, the c:UsersYOUR_USER_NAME folder (where YOUR_USER_NAME is your windows username).

	Temporary File Folder
	This stored the file in the temp folder. Temp folders are special folders of which the contents are emptied when you shut down your computer. If you don’t particularly care about your backup files and want them to be ‘cleaned’ automatically, this is the best place. If you want your backup files to be kept indefinitely, this is a wrong choice.

	Backup File Suffix
	The suffix that will be placed after the full filename. filename.kra will then be saved as filename.kra~, ensuring the files won’t show up in Krita’s open file dialog.

	Number of Backup Files Kept
	Number of backup files Krita keeps, by default this is only one, but this can be up to 99. Krita will then number the backup files.

	Compress *.kra files more (slows loading/saving)
	This increases the ZIP compression on the saved Krita files, which makes them lighter on disk, but this takes longer to load.

	Use Zip64
	KRA files are ZIP files. Zip64 allows you to make really large image files (which is useful for animation), however, not all ZIP file programs can read Zip64, including older versions of Krita.

	Trim Files before Saving
	Normally, Krita will always keep pixels outside the visible canvas area and save that. With this option turned on, Krita will first crop all the layers to the canvas-area and then save it.

	Trim frames when importing animations
	This will crop frames that where imported using any of the options Krita has available. This saves RAM, but may not always be what is required.

When Pasting Into Krita From Other Applications

New in version 5.1.

Some applications, like Google Chrome, provide multiple formats when pasting or dropping an image. This toggle asks which of these you prefer.

	Prefer downloading the original source (this requires Internet access).
	If the clipboard data contains an URL, Krita will try to download those contents and paste them inside Krita.

	Prefer a local copy (if available; metadata may be lost)
	If the file had been downloaded by your computer previously (for example, to show it inside the web browser), Krita will use that instead.

	Paste the attached sRGB bitmap (no filesystem or Internet access required, but metadata will be lost).
	Just paste the attached bitmap. This will always work, and may be the best option if all you copy images for is to make small edits to share with friends. If you intend to copy and edit HDR images however, this option will make your life harder because the HDR version of the image will not be selected by default.

	Ask each time
	Krita will show a prompt whenever there are multiple options.

Miscellaneous

	When Krita starts
	This is the option for handling user sessions. It has the following options:

	Open Default Window
	This opens the regular empty window with the last used workspace.

	Load Previous Session
	Load the last opened session. If you have Save session when Krita closes toggled, this becomes the last files you had open and the like.

	Show Session Manager
	Show the session manager directly, so you can pick a session.

New in version 4.1.

	Save session when Krita closes
	Save the current open windows, documents and the like into the current session when closing Krita, so you can resume where you left off.

New in version 4.1.

	Upon importing Images as Layers, convert to the image color space.
	This makes sure that layers are the same color space as the image, necessary for saving to PSD.

	Undo Stack Size
	This is the number of undo commands Krita remembers. You can set the value to 0 for unlimited undo commands.

	Enable Logging For Bug Reports
	This controls whether Krita keeps a log of the important actions, which can then be attached to a bug report. You can view the log itself via Help ‣ Show Krita Log for Bug Reports, and the log itself is stored in the shared application settings.

Note

Krita does not automatically transfer data anywhere. The log needs to be uploaded by users themselves if necessary.

	Hide splash screen on startup.
	This’ll hide the splash screen automatically once Krita is fully loaded.

Deprecated since version 4.1: Deprecated because Krita now has a welcome widget when no canvas is open.

	Enable Native File Dialog
	This allows you to use the system file dialog. Turned off by default, because we cannot seem to get native file dialogues 100% bug free.

	Maximum brush size
	This allows you to set the maximum brush size to a size of up to 10,000 pixels. Do be careful with using this, as a 10,000 pixel size can very quickly be a full gigabyte of data being manipulated, per dab. In other words, this might be slow.

	Recalculate animation cache in background.
	Krita will recalculate the cache when you’re not doing anything.

Changed in version 4.1: This is now in the Performance Settings under Animation Cache.

	Automatically Pin New layers To Timeline.
	Used with the Animation Timeline Docker, this will pin all animation layers to the timeline automatically. Depending on your workflow, this can be quite intense, so hence the option to turn it off.

New in version 5.0.

	Adapt playback range to key frames.
	This option decides whether adding key frames outside the current playback range automatically extends the playback range or not.

New in version 5.0.

	Font DPI Workaround
	We had a bug in Krita 4.x where the DPI of the display affected the DPI of the text.

Now when loading a file created in Krita 4.4 we convert its font sizes using the DPI of the display and bake this new value into the file. The user can override this behavior by selecting another DPI in here. Setting this value to 72 DPI will effectively disable any scaling.

In Krita 4.x the size of the text was also affected by the HiDPI settings, the best conversion results are dependent on whether Use HiDPI and Use Fractional HiDPI were used when creating the text. In other words, if you want the text to look exactly the same, try to match the Krita 5 HiDPI settings to the Krita 4 HiDPI settings. You don’t have to keep these settings the same after the conversion has happened.

New in version 5.0.

Automatic Layer Suffixes

By default, Krita will add extra info behind layers it generates. These toggles allow you to turn that off.

	Add “Merged” to merged group layers.
	When you flatten a group layer into a single paint layer, Krita will add “Merged” after the layer name. If you make frequent use of merging, it can be useful to turn this off.

	Add “(Pasted)” to pasted layers.
	When you copy and paste a section of a layer, Krita will add “(Pasted)” after the layer name so you can keep track of that.

New in version 5.2.

Resources

For determining the location of the resource folder and the cache.

New in version 5.0.

	Cache Location
	Sets where the SQLite Database that manages all the resources is located.

	Resource Folder
	Sets where the Resource Folder itself is located.

 Performance Settings

Performance Settings

Krita, as a painting program, juggles a lot of data around, like the brushes you use, the colors you picked, but primarily, each pixel in your image. Due to this, how Krita organizes where it stores all the data can really speed up Krita while painting, just like having an organized artist’s workplace can really speed up the painting process in real life.

These preferences allow you to configure Krita's organisation, but all do require you to restart Krita, so it can do this organisation properly.

RAM

RAM, or Random Access Memory, is the memory your computer is immediately using. The difference between RAM and the hard drive memory can be compared to the difference between having files on your desk and having files safely stored away in an archiving room: The files on your desk as much easier to access than the ones in your archive, and it takes time to pull new files from the archive. This is the same for your computer and RAM. Files need to be loaded into RAM before the computer can really use them, and storing and removing them from RAM takes time.

These settings allow you to choose how much of your virtual desk you dedicate to Krita. Krita will then reserve them on start-up. This does mean that if you change any of the given options, you need to restart Krita so it can make this reservation.

	Memory Limit
	This is the maximum space Krita will reserve on your RAM on startup. It’s both available in percentages and Bytes, so you can specify precisely. Krita will not take up more space than this, making it safe for you to run an internet browser or music on the background.

	Internal Pool
	A feature for advanced computer users. This allows Krita to organize the area it takes up on the virtual working desk before putting its data on there. Like how a painter has a standard spot for their canvas, Krita also benefits from giving certain data it uses its place (a memory pool), so that it can find them easily, and it doesn’t get lost among the other data (memory fragmentation). It will then also not have to spend time finding a spot for this data.

Increasing this, of course, means there’s more space for this type of data, but like how filling up your working desk with only one big canvas will make it difficult to find room for your paints and brushes, having a large internal pool will result in Krita not knowing where to put the other non-specific data.

On the opposite end, not giving your canvas a spot at all, will result in you spending more time looking for a place where you will put the new layer or that reference you just took out of the storage. This happens for Krita as well, making it slower.

This is recommended to be a size of one layer of your image, e.g. if you usually paint on the image of 3000x3000x8bit-ARGB, the pool should be something like 36 MiB.

As Krita does this on start-up, you will need to restart Krita to have this change affect anything.

Deprecated since version 4.4: This setting was not needed from user side and is deprecated starting from 4.4.

	Swap Undo After
	Krita also needs to keep all the Undo states on the virtual desk (RAM). Swapping means that parts of the files on the virtual desk get sent to the virtual archive room. This allows Krita to dedicate more RAM space to new actions, by sending old Undo states to the archive room once it hits this limit. This will make undoing a little slower, but this can be desirable for the performance of Krita overall.
This too needs Krita to be restarted.

Swapping

	File Size Limit
	This determines the limit of the total space Krita can take up in the virtual archive room. If Krita hits the limit of both the memory limit above, and this Swap File limit, it can’t do anything anymore (and will freeze).

	Swap File Location
	This determines where the Swap File will be stored on your hard-drive. Location can make a difference, for example, Solid State Drives (SSD) are faster than Hard Disk Drives (HDD). Some people even like to use USB-sticks for the swap file location.

Advanced

Multithreading

Since 4.0, Krita supports multithreading for the animation cache and handling the drawing of brush tips when using the pixel brush.

	CPU Limit
	The number of cores you want to allow Krita to use when multithreading.

	Frame Rendering Clones Limit
	When rendering animations to frames, Krita multithreads by keeping a few copies of the image, with a maximum determined by the number of cores your processor has. If you have a heavy animation file and lots of cores, the copies can be quite heavy on your machine, so in that case try lowering this value.

	Frame Rendering Timeout
	To prevent Krita from hanging on a single frame, we limit how long it can spend on rendering a frame before moving on the next. If rendering an animation fails very often due a timeout, you can increase this value. Do note that it might also be caused by the file being too complex.

Other

	Limit frames per second while painting.
	This makes the canvas update less often, which means Krita can spend more time calculating other things. Some people find fewer updates unnerving to watch however, hence this is configurable.

	Debug logging of OpenGL framerate
	Will show the canvas framerate on the canvas when active.

	Debug logging for brush rendering speed.
	Will show numbers indicating how fast the last brush stroke was on canvas.

	Disable vector optimizations (for AMD CPUs)
	Vector optimizations are a special way of asking the CPU to do maths, these have names such as SIMD and AVX. These optimizations can make Krita a lot faster when painting, except when you have an AMD CPU under Windows. There seems to be something strange going on there, so just deactivate them then.

	Progress reporting
	This allows you to toggle the progress reporter, which is a little feedback progress bar that shows up in the status bar when you let Krita do heavy operations, such as heavy filters or big strokes. The red icon next to the bar will allow you to cancel your operation. This is on by default, but as progress reporting itself can take up some time, you can switch it off here.

	Performance logging
	This enables performance logging, which is then saved to the Log folder in your working directory. Your working directory is where the autosave is saved at as well.

So for unnamed files, this is the $HOME folder in Linux, and the %TEMP% folder in Windows.

Animation Cache

New in version 4.1.

The animation cache is the space taken up by animation frames in the memory of the computer. A cache in this sense is a cache of precalculated images.

Playing back a video at 25 FPS means that the computer has to precalculate 25 images per second of video. Now, video playing software is able to do this because it really focuses on this one single task. However, Krita as a painting program also allows you to edit the pictures. Because Krita needs to be able to do this, and a dedicated video player doesn’t, Krita cannot do the same kind of optimizations as a dedicated video player can.

Still, an animator does need to be able to see what kind of animation they are making. To do this properly, we need to decide how Krita will regenerate the cache after the animator makes a change. There’s fortunately a lot of different options how we can do this. However, the best solution really depends on what kind of computer you have and what kind of animation you are making. Therefore in this tab you can customize the way how and when the cache is generated.

Cache Storage Backend

	In-memory
	Animation frame cache will be stored in RAM, completely without any limitations. This is also the way it was handled before 4.1. This is only recommended for computers with a huge amount of RAM and animations that must show full-canvas full resolution 6k at 25 fps. If you do not have a huge amount (say, 64GiB) of RAM, do not use this option (and scale down your projects).

Warning

Please make sure your computer has enough RAM above the amount you requested in the General tab. Otherwise you might face system freezes.

	For 1 second of FullHD @ 25 FPS you will need 200 extra MiB of Memory.

	For 1 second of 4K UltraHD@ 25 FPS, you will need 800 extra MiB of Memory.

	On-disk
	Animation frames are stored in the hard disk in the same folder as the swap file. The cache is stored in a compressed way. A little amount of extra RAM is needed.

Since data transfer speed of the hard drive is slow, you might want to limit the Cached Frame Size to be able to play your video at 25 fps. A limit of 2500 px is usually a good choice.

Cache Generation Options

	Limit Cached Frame Size
	Render scaled down version of the frame if the image is bigger than the provided limit. Make sure you enable this option when using On-Disk storage backend, because On-Disk storage is a little slow. Without the limit, there’s a good chance that it will not be able to render at full speed. Lower the size to play back faster at the cost of lower resolution.

	Use Region Of Interest
	We technically only need to use the section of the image that is in view. Region of interest represents that section. When the image is above the configurable limit, render only the currently visible part of it.

	Enable Background Cache Generation
	This allows you to set whether the animation is cached for playback in the background (that is, when you’re not using the computer). Then, when animation is cached when pressing play, this caching will take less long. However, turning off this automatic caching can save power by having your computer work less.

Instant Preview

	Use in-stack preview in Transform Tool
	Whether to use a floating preview for the Transform Tool, or whether to have it rendered in place.

	Force instant preview in Transform Tool
	Turns on Instant Preview for the Transform Tool even when it’s off in View ‣ Instant preview.

	Force instant preview in Move Tool
	Turns on Instant Preview for the Move Tool even when it’s off in View ‣ Instant preview.

	Force instant preview in Filters
	Turns on Instant Preview for the Filters even when it’s off in View ‣ Instant preview.

 Pop-up Palette Settings

Pop-up Palette Settings

New in version 5.0.

These settings affect the Pop-up Palette.

	Number of Brush Presets
	This determines the number of available slots to offer the brush presets of the selected tag.

	Palette Size
	This determines the diameter of the circular main element.

	Color Selector
	This offers two options for the color selector in the palette center:

	sRGB Triangle Selector
	This is a minimalistic HSV selector with a triangle to select Value and Saturation and a ring to select the Hue. The triangle tip with the most intense color always points to the selected Hue on the ring. As the name implies, this selector is limited to sRGB color gamut.

	Wide Gamut Selector
	This selector supports multiple configurations derived from Color Selector Settings. To fit the circular design, linear sliders become mirrored arcs instead.
It also adapts to the color space of the current layer in order to offer the full gamut.

Note

The circular design is not suitable for a 4-channel selector, so CMYK will fall back to sRGB.
Furthermore, unlike the sRGB Triangle Selector, this selector currently lacks automatic gamut limitation, so it will show (and select) colors out of gamut for CMYK.

	Selector Size
	The size of the color selector in the center of the palette.

	Dynamically Adjust Slot Count
	When having a tag with less presets than there are slots, the slot count will be adjusted automatically. Some people prefer this, while others prefer the slot count to be static.

	Show Color History Ring
	Enables the color history ring around the color selector in the pop-up palette.

	Show Rotation Ring
	Enables the canvas rotation ring on the pop-up palette.

 Python Plugin Manager

Python Plugin Manager

This is part of Krita’s python support.

[image: ../../_images/Krita_4_0_preferences_python_plugin_manager.png]
The python plugin manager can be accessed from Settings ‣ Configure Krita… ‣ Python Plugin Manager. It allows you decide which of the Python Plugins are active.

It will show you a list of python plugins Krita has found, as well as their description. By default, Python Plugins are disabled, because many python scripts are autostarted, so this ensures only the ones you want to run are being run.

You can use the checkboxes to toggle them. A restart is required to complete switching off or on the python plugin.

If you [image: mouseleft] a plugin, and the plugin has a manual, Krita will display it in the box at the bottom.

For more information on python, check the python scripting category.

 Shortcut Settings

Shortcut Settings

Configuring shortcuts is another way to customize the application to fit you. Whether you are transitioning from another app, like Photoshop or MyPaint, or you think your own shortcut keys make more sense for you then Krita has got you covered. You get to the shortcuts interface through Settings ‣ Configure Krita… and by choosing the Keyboard Shortcuts tab.

Most of Krita’s shortcuts are configured in the menu section Settings ‣ Configure Krita… ‣ Shortcuts. The shortcuts configured here are simple key combinations, for example the Ctrl + X shortcut to cut. Shortcuts can also be sequences of key combinations (e.g. Shift + S shortcut then the B key). Krita also has a special interface for configuring the mouse and stylus events sent to the canvas, found under Canvas Input Settings.

To use, just type the Action into the Search box you want to assign/reassign the shortcut for. Suppose we wanted to assign the shortcut Ctrl + G to the Action of Group Layers so that every time we pressed the Ctrl + G shortcut a new Layer Group would be created. Use the following steps to do this:

	Type “Group Layer”.

	Click on Group Layer and a small inset box will open.

	Click the Custom radio button.

	Click on the first button and type the Ctrl + G shortcut.

	Click OK.

From this point on, whenever you press the Ctrl + G shortcut you’ll get a new Group Layer.

Tip

Smart use of shortcuts can save you significant time and further streamline your workflow.

New in version 5.0: Actions, which includes everything that can be assigned a shortcut, can now be searched with Ctrl + Enter, reducing the need to assign a shortcut to every single action. This itself is called the Search Actions shortcut, and can also be reassigned if desired.

Menu Items

	Search bar
	Entering text here will search for matching shortcuts in the shortcut list.

	Shortcut List
	Shortcuts are organized into sections. Each shortcut can be given a primary and alternate key combination.

	Load/Save Shortcuts Profiles
	The bottom row of buttons contains commands for exporting and import keyboard shortcuts.

[image: ../../_images/Krita_Configure_Shortcuts.png]

Configuration

	Primary and alternate shortcuts
	Each shortcut is assigned a default, which may be empty. The user can assign up to two custom shortcuts, known as primary and alternate shortcuts. Simply click on a “Custom” button and type the key combination you wish to assign to the shortcut. If the key combination is already in use for another shortcut, the dialog will prompt the user to resolve the conflict.

	Shortcut schemes
	Many users migrate to Krita from other tools with different default shortcuts. Krita users may change the default shortcuts to mimic these other programs. Currently, Krita ships with defaults for Photoshop and Paint Tool Sai. Additional shortcut schemes can be placed in the ~/.config/krita/input/ folder.

	Saving, loading and sharing custom shortcuts
	Users may wish to export their shortcuts to use across machines, or even share with other users. This can be done with the save/load drop-down. Note: the shortcuts can be saved and overridden manually by backingup the text file kritashortcutsrc located in ~/.config/krita/. Additionally, the user can export a custom shortcut scheme file generated by merging the existing scheme defaults with the current customizations.

 Tablet Settings

Tablet Settings

[image: ../../_images/Krita_Preferences_Tablet_Settings.png]

	Tablet
	Input Pressure Global Curve : This is the global curve setting that your tablet will use in Krita. The settings here will make your tablet feel soft or hard globally.

	Use Mouse Events for Right and Middle clicks.
	Some tablet devices don’t tell us whether it has side buttons on a stylus. If you have such a device, you can try activate this workaround. Krita will try to read right and middle-button clicks as if they were coming from a mouse instead of a tablet. It may or may not work on your device (depends on the tablet driver implementation). After changing this option Krita should be restarted.

New in version 4.2.

	Use Tablet Driver Stamps For Brush Speed
	This changes the way freehand brush smoothing works in Krita by using the driver’s timestamps instead of a timer-based one.

New in version 5.0.

	Maximum Brush Speed
	This sets what Krita should consider the maximum brush speed. You can find the maximum value by using the tablet tester.

New in version 5.1.

	Brush Speed Smoothing
	With some devices the speed samples can be very erratic. This can be reduced by instead of using each sample on its own, several samples are compared to find a smoother value. This controls how many speed samples should be taken into account. Note that too many samples can result in the loss of subtle speed changes.

New in version 5.1.

	For Krita 3.3 or later:Tablet Input API
	On Windows 8 or above only.

	WinTab
	Use the WinTab API to receive tablet pen input. This is the API being used before Krita 3.3. This option is recommended for most Wacom tablets.

	Windows 8+ Pointer Input
	Use the Pointer Input messages to receive tablet pen input. This option depends on Windows Ink support from the tablet driver. This is a relatively new addition so it’s still considered to be experimental, but it should work well enough for painting. You should try this if you are using an N-Trig device (e.g. recent Microsoft Surface devices) or if your tablet does not work well with WinTab.

Advanced Tablet Settings for WinTab

[image: ../../_images/advanced-settings-tablet.png]
When using multiple monitors or using a tablet that is also a screen, Krita will get conflicting information about how big your screen is, and sometimes if it has to choose itself, there will be a tablet offset. This window allows you to select the appropriate screen resolution.

	Use Information Provided by Tablet
	Use the information as given by the tablet.

	Map to entire virtual screen
	Use the information as given by Windows.

	Map to Custom Area
	Type in the numbers manually. Use this when you have tried the other options. You might even need to do trial and error if that is the case, but at the least you can configure it.

If you have a dual monitor setup and only the top half of the screen is reachable, you might have to enter the total width of both screens plus the double height of your monitor in this field.

New in version 4.2: To access this dialog in Krita versions older than 4.2, you had to do the following:

	Put your stylus away from the tablet.

	Start Krita without using a stylus, that is using a mouse or a keyboard.

	Press the Shift key and hold it.

	Touch a tablet with your stylus so Krita would recognize it.

If adjusting this doesn’t work, and if you have a Wacom tablet, an offset in the canvas can be caused by a faulty Wacom preference file which is not removed or replaced by reinstalling the drivers.

To fix it, use the “Wacom Tablet Preference File Utility” to clear all the preferences. This should allow Krita to detect the correct settings automatically.

Warning

Clearing all wacom preferences will reset your tablet’s configuration, thus you will need to recalibrate/reconfigure it.

Tablet Tester

New in version 4.1.

This is a special feature for debugging tablet input. When you click on it, it will open a window with two sections. The left section is the Drawing Area and the right is the Text Output.

If you draw over the Drawing Area, you will see a line appear. If your tablet is working it should be both a red and blue line.

The red line represents mouse events. Mouse events are the most basic events that Krita can pick up. However, mouse events have crude coordinates and have no pressure sensitivity.

The blue line represents the tablet events. The tablet events only show up when Krita can access your tablet. These have more precise coordinates and access to sensors like pressure sensitivity.

Important

If you have no blue line when drawing on the lefthand drawing area, Krita cannot access your tablet. Check out the page on drawing tablets for suggestions on what is causing this.

When you draw a line, the output on the right will show all sorts of text output. This text output can be attached to a help request or a bug report to figure out what is going on.

External Links

David Revoy wrote an indepth guide on using this feature to maximum advantage [https://www.davidrevoy.com/article182/calibrating-wacom-stylus-pressure-on-krita].

 Render Animation

Render Animation

Render animation allows you to render your animation to an image sequence, .gif, .mp4, .mkv, or .ogg file. It replaces Export Animation.

For rendering to an animated file format, Krita will first render to a PNG sequence and then use FFmpeg, which is really good at encoding into video files, to render that sequence to an animated file format. The reason for this two-step process is that animation files can be really complex and really big, and this is the best way to allow you to keep control over the export process. For example, if your computer has a hiccup, and one frame saves out weird, first saving the image sequence allows you to only resave that one weird frame before rendering.

This means that you will need to find a good place to stick your frames before you can start rendering. If you only do throwaway animations, you can use a spot on your hard-drive with enough room and select Delete Sequence After Rendering.

General

	First Frame
	The first frame of the range of frames you wish to adjust. Automatically set to the first frame of your current selection in the timeline. This is useful when you only want to re-render a little part.

	Last Frame
	As above, the last frame of the range of frames you wish to adjust. Automatically set to the last frame of your current selection in the timeline.

Export as Image Sequence

	File Format
	The file format to export the sequence to. When rendering we enforce PNG. The usual export options can be modified with ….

	Image Location
	Where you render the image sequence to. Some people prefer to use a flash-drive or perhaps a harddrive that is fast.

	Base Name
	The base name of your image sequence. This will get suffixed with a number depending on the frame.

	Start numbering at.
	The frames are named by using Base Name above and adding a number for the frame. This allows you to set where the frame number starts, so rendering from 8 to 10 with starting point 3 will give you images named 11 and 15. Useful for programs that don’t understand sequences starting with 0, or for precision output.

	Only Unique Frames
	Normally Krita generates a frame for every FPS in the sequence. Ticking this will only generate keyframes, saving space.

Export as Video

	Width
	Set the desired width in pixels.

	Height
	Set the desired height in pixels.

	FPS
	Set the desired frames per second.

	Filter
	Set the scaling filter. Bicubic is fine for most cases, but if you want to, say, export a pixel art animation at twice the size, [Nearest] Neighbour will preserve the fine details better.

	Render As
	The file format to render to. All except GIF have extra options that can be manipulated via ….

	Video Location
	Location and name of the rendered animation.

	Include Audio
	Include any audio you have added.

	FFmpeg
	The location where your have FFmpeg.

Changed in version 5.2: This is now optional. Krita’s bundled FFMpeg functionality is able to provide some options, but it is still useful to set this if you want to use a specific version of FFMpeg for rendering videos.

	Delete Sequence After Rendering
	Delete the prerendered image sequence after done rendering. This allows you to choose whether to try and save some space, or to save the sequence for when encoding fails.

Deprecated since version 5.2: Since 5.2, Krita will always delete the image sequence if Export as Image Sequence is not checked while Export as Video is.

Warning

Krita currently does not support rendering video with transparent elements, and will instead render them as black. To combat this, you can add in a fully colored, opaque layer at the bottom of the file before rendering.

Setting Up Krita for Exporting Animations

Changed in version 5.2.

Since Krita 5.2, Krita bundles a small part of FFmpeg. This means that you will not strictly have to download and setup FFMpeg to render animations. Different versions of the program have different options however, and video experts might want to use a specific version of FFMpeg to get more codec options.

The bundled FFmpeg supports the following containers: Webm, Matroska and OGG, which are a wrapper around the video data (amongst others), which are encoded with codecs, of which the bundled FFMpeg supports:

	AOM AV1

	VPX VP9

	VPX VP8

	
	264 (via openH264)

	Theora

The following instructions will explain how to get a non-bundled version of FFMpeg and set it up. The setup is a one-time thing so you won’t have to do it again.

Step 1 - Downloading FFmpeg

For Windows

Open the FFmpeg download page. [https://www.gyan.dev/ffmpeg/builds/]

Go to release section and choose the download link that says ffmpeg-release-essentials.zip.

Note

Don’t download the file which filename contains the word shared. It won’t work with Krita.

If the filename ends with .7z, you can still use it, but then you need to have a program that can open 7zip archives (for example 7zip itself [https://www.gyan.dev/ffmpeg/builds/]). In case of a .zip file, you can open it just using the Windows file browser.

For macOS

Please see the section above. However, FFmpeg is obtained from here [https://evermeet.cx/ffmpeg/] instead. Just pick the big green button on the left under the FFmpeg heading. You will also need an archiving utility that supports .7z, since FFmpeg provides their macOS builds in .7z format. If you don’t have one, try something like Keka [https://www.kekaosx.com].

Alternatively you can find the smaller text under the big green button that says Download as ZIP. Then you should be able to extract it just using Finder.

For Linux

FFmpeg can be installed from the repositories on most Linux systems. Version 2.6 is required for proper GIF support, as we use the palettegen functionality.

Step 2 - Unzipping and Linking to Krita

For Windows

Once you’ve downloaded, go to the file location. Right click on the FFmpeg file, and select Extract All.... Select the file destination, and rename the file to ‘ffmpeg’.

Hint

It is easiest to save the file under C: drive, but any location is fine.

Open Krita back up and go to File ‣ Render Animation…. Under Export > Video, click the file icon next to FFmpeg. Select this file C:/ffmpeg/bin/ffmpeg.exe and click OK.

[image: FFmpeg path.]

Tip

If you have saved FFmpeg to a different location, choose <ffmpeg location>/ffmpeg/bin/ffmpeg.exe.

For macOS

After downloading FFmpeg, you just need to extract it and then simply point to it in the FFmpeg location in Krita like /Users/user/Downloads/ffmpeg (assuming you downloaded and extracted the .7z file to /Users/user/Downloads).

For Linux

FFmpeg is, if installed from the repositories, usually found in /usr/bin/ffmpeg.

Step 3 - Testing out an animation

ffmpeg.exe is what Krita uses to do all of its animation export magic. Now that it is hooked up, let us test it out.

Let’s make an animated GIF. In the Render Animation dialog, change the Render As field to “GIF image”. Choose the file location where it will save with the “File” menu below. I just saved it to my desktop and called it “export.gif”. When it is done, you should be able to open it up and see the animation.

Warning

By default, FFmpeg will render MP4 files with a too new codec, which means that Windows Media Player won’t be able to play it. So for Windows, select “baseline” for the profile instead of “high422” before rendering.

Note

macOS does not come with any software to play MP4 and MKV files. If you use Chrome for your web browser, you can drag the video file into that and the video should play. Otherwise you will need to get a program like VLC to see the video.

 Resource Management

Resource Management

Resources are pluggable bits of data, like brush presets or patterns. Krita has a sophisticated resource management system, which allows tagging, disabling, sharing and more.

Changed in version 5.0.

All resources are stored in the resource folder. This folder can be configured in the general preferences. As keeping track of all those resources can be a handful, Krita creates a SQLite cache in which it keeps the tags, names, version and other data about the resource.

Thanks to this cache, Krita can avoid loading a resource until necessary. This makes Krita a lot lighter than when it did not have this cache. Deleting the cache will delete the tags and relationships it keeps track of, so be careful.

If you have not changed your resource folder location, the resources can be found at…

	Linux
	$HOME/.local/share/krita/

	Windows
	%APPDATA%\krita\

	macOS
	~/Library/Application Support/Krita/

	If you installed Krita in the Windows Store, your custom resources will be in a location like:
	%LOCALAPPDATA%\Packages\49800Krita_RANDOM STRING\LocalCacheRoamingkrita

Resource Libraries

Krita can load a variety of resource libraries.

	Resource Folder
	The resource folder is considered the primary library. When creating new resources, they will all end up here. You can configure its location in the general preferences.

	Resource Bundle
	The primary format to share resources is Resource Bundles, which is a compressed file containing all the resources together. It also contains some other information like metadata and a manifest so Krita can check there’s no errors in the file.

	Adobe Brush Library
	An ABR with multiple images inside. Previous versions of Krita could not load this, but now Krita will load them as a library of brushes.

	Adobe Style Library
	This is the Photoshop ASL format, which stores Layer Styles.

	Document Storage
	Every Krita document can store resources and act as a resource library. This is currently only used for palettes.

	Memory Storage
	Finally, the memory library is where temporary resources are kept, which are generated by Krita and have no physical version on disk. This is currently used for the fore-to-background gradient.

You can manage resource libraries by going to Settings ‣ Manage Resource Libraries. In this dialog, you can import resource libraries, deactivate them, and also Creating your own Bundle.

Importing Bundles

To import a bundle click on Import button on the top right side of the dialog.
Select .bundle file format from the file type if it is not already selected, browse to the folder where you have downloaded the bundle, select it and click Open. Once the bundle is imported it will be listed in the bundle view. To enable or disable a bundle, select the entry in the view, and then select Deactivate.

Creating your own Bundle

You can create your own bundle from the resources of your choice. Click on the Create bundle button. This will open a dialog box as shown below.

[image: ../_images/Creating-bundle.png]
The left hand section is for filling up information about the bundle like author name, website, email, bundle icon, etc.
The right hand side provides a list of available resources. Choose the type of resource you wish to add in to the bundle from the drop-down above and add it to the bundle by selecting a resource and clicking on the arrow button.

Warning

Make sure you add brush tips for used in the respective paintop presets you are adding to the bundle. If you don’t provide the brush tips then the brush presets loaded from this bundle will have a ‘X’ mark on the thumbnail denoting that the texture is missing. And the brush preset won’t be the same.

Once you have added all the resources you can create bundle by clicking on the Save button, the bundle will be saved in the location you have specified. You can then share this bundle with other artists or load it on other workstations.

Deleting Imported Bundles

In case you wish to delete the bundles you have imported permanently click on the Open Resource Folder button in the Manage Resources dialog. This will open the resource folder in your file browser. Go inside the bundles folder and delete the bundle file which you don’t need any more. The next time you start Krita the bundle and its associated resources will not be loaded.

Managing Resources

As mentioned earlier Krita has a flexible resource management system. Starting from version 2.9 you can share various resources mentioned above by sharing a single compressed ZIP file created within Krita.

The manage resources section in the settings was also revamped for making it easy for the artists to prepare these bundle files. You can open manage resource section by going to Settings ‣ Manage Resources… menu item.

[image: ../_images/Manageresources.png]
You can do a variety of things here, like deleting backup files, mass-tagging, deleting/deactivating the resource itself, importing resources and open the create bundle dialog.

Importing resources

To import resources, select the import in the resource choosers or the resource manager.

The resource chooser import is fairly straight forward. You can only select certain kinds of files, and all the files you can select are possible to import for that resource.

The import button in the resource manager however sometimes needs to make a choice on whether an imported *.png file is a brush tip or a texture. When importing a format that can be used for multiple types of resources, a window will pop up asking which resource type you intended to import the file for.

Activating and Deactivating

Deactivating resources is done by selecting them in their respective resource chooser, and pressing the trashcan icon.

For activating a resource, go to Settings ‣ Manage Resources…, then turn on Show Deleted Resources. The deactivated resources should now be visible, select them, and then press Undelete Resource.

Returning a resource to the previous version

	First go to the resource folder, Settings ‣ Manage Resources… ‣ Open Resource Folder.

	Then go into the paintoppresets folder.

	Backup (select and cut) all versions of the related resource into a place you can find them. Delete all these files from the paintoppresets folder.

	restart Krita.

	add only the desired version of the resource.

Deleting Backup files

When you delete a preset from Krita, Krita doesn’t actually delete the physical copy of the preset. It just adds it to a black list so that the next time when you start Krita the presets from this list are not loaded. To delete the brushes from this list click on Delete Backup Files.

Note

Deleting backup files has temporarily been disabled for 5.0.

Tags

Tagging allows you to manage the resources on the fly while painting. All Krita resources can be tagged. These tags can be added via the resource manager, but also via the respective dockers such as brush preset docker, pattern docker etc. You can [image: mouseleft] the + icon in the docker and add a tag name. In addition to adding you can rename and delete a tag as well.

[image: ../_images/Tags-krita.png]

	Resources can belong to one or more tags. For example, you may have a Brush Preset of a favorite Ink Pen variant and have it tagged so it shows in up in your Inking, Painting, Comics and Favorites groups of brushes.

	Every resource can be tagged, so brushes in the Predefined tab of the Brush Settings Editor can be also tagged and grouped for convenience.

In the resource manager, you can tag multiple resources at once. To select multiple resources, use Ctrl for adding individual resources to the selection or Shift for adding every resource at once. Then press the plus icon next to the tags section to add a tag to every selected resource.

Some tags are translated. If you make bundles for others, using such tags can be useful to ensure cross-language compatibility. The tags that get localized are…

	Digital

	Erasers

	FX

	Favorites

	Ink

	Paint

	Pixel_Art

	Sketch

	Textures

Filtering

Some dockers, for example the brush preset docker as shown below, have a resource filter, which functions like a search bar for the resource in question.

[image: ../_images/Brushpreset-filters.png]
You can enter brush name, tag name to quickly pull up a list of brush presets you want. When you select any tag from the tag drop-down and want to include brush presets from other tags as well then you can add filters based on the partial, case insensitive name of the resources by using partialname or !partialname.

	Resource Zooming
	If you find the thumbnails of the resources such as color swatches brushes and pattern to be small you can make them bigger or Zoom in. All resource selectors can be zoomed in and out of, by hovering over the selector and using the Ctrl + [image: mousescroll] shortcut.

Resource Types in Krita

Main Resource Types

	Brush Preset

	Brushes

	Gradients

	Patterns

	Workspaces

	SeExpr Scripts

Other Resource Types

	Gamut Masks Docker

	Layer Styles

	Task Sets Docker

	Symbol Libraries

	Palette Docker

 Brush Preset

Brush Preset

Brush Presets, known within Krita as paintoppresets, store the preview thumbnail, brush-engine, the parameters, the brush tip, and, if possible, the texture. They are saved as .kpp files, except for MyPaint brushes, which are saved as .myb files.

For information regarding the brush system, see Brushes.

The Docker

The docker for Paint-op presets is the Preset Docker. Here you can tag, add, remove and search brush presets.

Editing the preview thumbnail

You can edit the preview thumbnail in the brush-scratchpad, but you can also open the *.kpp file in Krita to get a 200x200 file to edit to your wishes. For MyPaint brushes, there is a separate PNG file which is the same name as the .myb file, except with _prev attached.

Structure

MyPaint brushes are stored as JSON files with an accompanying preview image, while .kpp files are PNGs which contain an annotation with the XML data for the brush engine. You can view this data when having the .kpp file open, via image ‣ properties ‣ annotations, or by using the ImageMagick command identify -verbose {FILENAME} on the .kpp.

 Brushes

Brushes

These are the brush tip or textures used in the brush presets. They can be PNG files or .abr file from Photoshop or .gbr files from GIMP.

Note

Currently Krita only import a brush texture from abr file, you have to recreate the brushes by adding appropriate values in size, spacing etc.

They can be modified/tagged in the brush preset editor.

See Brush Tips for more info.

Example: Loading a Photoshop Brush (*.ABR)

For some time Photoshop has been using the ABR format to compile brushes into a single file. Krita can read and load .abr files, although there are certain features. For this example we will use an example of an .abr file that contains numerous images of types of trees and ferns. We have two objectives. The first is to create a series of brushes that we an quickly access from the Brush Presets dock to easily put together a believable forest. The second is to create a single brush that we can change on the fly to use for a variety of flora, without the need to have a dedicated Brush Preset for each type.

	First up is download the file (.zip, .rar,…) that contains the .abr file and any licensing or other notes. Be sure to read the license if there is one!

	Extract the .abr file into Krita’s home directory for brushes.

	In your Brush Presets dock, select one of your brushes that uses the Pixel Brush Engine. An Ink Pen or solid fill type should do fine.

	Open the Brush Settings Editor (F5 key).

	Click on the tab “Predefined” next to “Auto”. This will change the editor to show a scrollable screen of thumbnail images, most will be black on a white background. At the bottom of the window are two icons:

[image: ../../_images/600px-BSE_Predefined_Window.png]

	Click on the blue file folder on the left and then navigate to where you saved your .abr file and open it.

	If everything went fine you will see a number of new thumbnails show up at the bottom of the window. In our case, they would all be thumbnails representing different types of trees. Your job now is to decide which of these you want to have as Brush Preset (Just like your Pencil) or you think you’ll only use sporadically.

	Let’s say that there is an image of an evergreen tree that we’re pretty sure is going to be a regular feature in some of our paintings and we want to have a dedicated brush for it. To do this we would do the following:

	Click on the image of the tree we want.

	Change the name of the brush at the very top of the Brush Editor Settings dialog. Something like “Trees - Tall Evergreen” would be appropriate.

	Click the “Save to Presets” button.

	Now that you have a “Tall Evergreen” brush safely saved you can experiment with the settings to see if there is anything you would like to change, for instance, by altering the size setting and the pressure parameter you could set the brush to change the tree size depending on the pressure you were using with your stylus (assuming you have a stylus!).

	Once you’re satisfied with your brush and its settings you need to do one last thing (but click Overwrite Brush first!).

It’s time now to create the Brush Preview graphic. The simplest and easiest way to do this for a brush of this type is to clear out the ScratchPad using the Reset button. Now, center your cursor in the Brush Preview square at the top of the ScratchPad and click once. You should see an image of your texture (in this case it would be the evergreen tree). In order to work correctly though the entire image should fit comfortably within the square. This might mean that you have to tweak the size of the brush. Once you have something you are happy with then click the Overwrite Brush button and your brush and its preview image will be saved.

An alternative method that requires a little more work but gives you greater control of the outcome is the following:

Locate the Brush Preview thumbnail .kpp file in Krita and open it to get a 200x200 file that you can edit to your wishes.

You’re ready to add the next texture! From here on it’s just a matter of wash, rinse and repeat for each texture where you want to create a dedicated Brush Preset.

 Gradients

Gradients

Accessing a Gradient

The Gradients configuration panel is accessed by clicking the Gradients icon (usually the icon next to the disk).

[image: ../../_images/Gradient_Toolbar_Panel.png]
Gradients are configurations of blending between colors. Krita provides over a dozen preset dynamic gradients for you to choose from. In addition, you can design and save your own.

Some typical uses of gradients are:

	Fill for vector shapes.

	Gradient tool

	As a source of color for the pixel brush.

There is no gradients docker. They can only be accessed through the gradient “quick-menu” in the toolbar.

Editing a Gradient

Krita has two gradient types:

	Segmented Gradients, which are compatible with GIMP, have many different features but are also a bit complicated to make.

	Stop Gradients, which are saved as SVG files and similar to how most applications do their gradients, but has less features than the segmented gradient.

Initially we could only make segmented gradients in Krita, but in 3.0.2 we can also make stop gradients.

[image: ../../_images/Krita_new_gradient.png]
You can make a new gradient by going into the drop-down and selecting the gradient type you wish to have. By default Krita will make a stop-gradient.

Stop Gradients

Stop gradients are simply a list of gradient stops. A gradient stop has two properties associated with it: a position and a color.

New in version 4.4: Gradients can have stops that use the currently selected Foreground or Background colors. This makes them dynamic: if a gradient uses the Foreground or Background colors then changing those will also change the gradient appearance.

Creating stop gradients is very straight forward. Following is a breakdown of the stop gradient editor:

[image: ../../_images/stop_gradient_editor_breakdown.png]

	Name text field - In this text field you can write a name for the gradient.

	Select stop - With these arrow buttons you can select the previous or next stop.

	Selected stop label - This label shows the currently selected stop index.

	Delete stop - With this button you can delete the currently selected stop.

	Gradient slider - This slider is the main part of the editor, where the gradient preview is shown and where you can perform some basic operations to change the gradient:

	[image: mouseleft] on the gradient to add a stop.

	[image: mouseleft] on the stop handles (the drop-shaped icons) to select a stop, and drag to move them.

	Drag the stop handles outside of the bar or press Delete key to remove the selected stop.

	Double-[image: mouseleft] on a stop handle or press Enter key to open a color dialog where you can choose the color of the stop.

	Use the [image: mousescroll] or the Left and Right keys to move the selected stop. If you also press Shift key the increment will be smaller.

	Use Ctrl + [image: mousescroll] or Ctrl + Left and Ctrl + Right shortcuts to select the previous or next stop.

	Color type - With these three buttons you can select the type of color used by the selected stop (Foreground, Background or custom).

	Color button - If the selected stop uses a custom color then you can use this button to open a color dialog and change the color.

	Flip gradient - With this button you can reverse the order of the stops in the gradient.

	Sort stops by value - Clicking this button will sort the stops by its value.

	Distribute stops evenly - Clicking this button will space the stops leaving the same amount of space between them.

	Sort stops by hue - Clicking this button will sort the stops by its hue.

	Opacity slider - If the selected stop uses a custom color then you can use this slider to change its opacity.

	Position slider - This slider allows to fine-tune the position of the selected stop.

As per SVG spec, you can make a sudden change between stops by moving them close together. The stops will overlap, but you can still drag them around:

[image: ../../_images/Krita_stop_sudden_change.png]
Right now, stop gradients are the only ones that are capable of handling colors outside of sRGB.

Segmented Gradients

Segmented gradients are a list of gradient segments. A gradient segment has the following properties:

	A start and end positions that denote where the segment is placed inside the gradient.

	A start and end colors associated with the start and end positions.

New in version 4.4: Gradients can have segment endpoints that use the currently selected Foreground or Background colors, and those endpoints can be transparent. This makes them dynamic: if a gradient uses the Foreground or Background colors then changing those will also change the gradient appearance. These features allow full compatibility with GIMP gradients.

	A blending strategy used to fill the segment inbetween the extreme colors. This strategy is formed by two different properties:

	A color model:

[image: ../../_images/Krita_gradient_segment_color_model.png]

	RGB - Does the blending in RGB model.

	HSV clockwise - Blends the two colors using the HSV model, and follows the hue clockwise (red-yellow-green-cyan-blue-purple). The above screenshot is an example of this.

	HSV counter-clock wise - Blends the color as the previous options, but then counter-clockwise.

	An interpolation function used to determine how the colors should vary along the segment:

[image: ../../_images/Krita_gradient_segment_blending.png]

	Linear - Does a linear blending between both extreme colors.

	Curved - This causes the mix to ease-in and out faster.

	Sine - Uses a sine function. This causes the mix to ease in and out slower.

	Sphere, increasing - This puts emphasis on the later color during the mix.

	Sphere, decreasing - This puts emphasis on the first color during the mix.

	A segment middle position used to set where the center color obtained with the blending strategy should go. The visual effect is as if you stretched one half of the segment and squashed the other.

[image: ../../_images/Krita_gradient_segment_mid_position.png]

The segmented gradient editor is very similar to the stop gradient editor. The main difference is that you can select three different types of handles to edit the gradient: segment, stop, and middle point handles. When selecting one of these handles the widgets around the gradient slider will change to reflect the actions that you can perform on that handle. For example, for a segment handle you can change the start and end colors (amongst other actions), but for a middle point handle you can only change its position.

Following are a general breakdown and three specific breakdowns of the editor corresponding to the different user interfaces that are presented when the different handles are selected.

	General UI Breakdown
	[image: ../../_images/segment_gradient_editor_general_breakdown.png]

	Name text field - In this text field you can write a name for the gradient.

	Select handle buttons - With these arrow buttons you can select the previous or next handle.

	Selected handle label - This label shows the currently selected handle index.

	Handle actions area - In this area will appear some actions you can perform on the selected handle. They vary depending on the type of handle selected.

	Flip gradient - With this button you can reverse the order of the segments (and their start and end colors) in the gradient.

	Distribute segments evenly - Clicking this button will make all the segments have the same amount of space.

	Gradient slider - This slider is the main part of the editor, where the gradient preview is shown and where you can perform some basic operations to change the gradient. These operations basically make changes to the different handles and are explained in the following sections. You can change the selected handle by pressing Ctrl key and using [image: mousescroll] or by pressing Ctrl + Left and Ctrl + Right shortcuts.

	Handle properties area - In this area will appear some widgets you can use to change the different properties of the selected handle.

Segment Handle UI Breakdown

[image: ../../_images/segment_gradient_editor_segment_handle_breakdown.png]

	Delete segment - Pressing this button will delete the selected segment (unless it is the only one).

	Flip segment - Pressing this button you can reverse the start and end colors of the selected segment as well as its middle point.

	Split segment - Pressing this button will divide the selected segment in two, using the segment middle point as the cutting position.

	Duplicate segment - Pressing this button will create a copy of the selected segment to its right.

	Gradient slider - Here is a list of the segment related actions you can perform on the gradient slider:

	You can select a segment by [image: mouseleft] on an area of the slider where there is no stop handle (the drop-shaped icon) or middle point handle (the rhombus-shaped icon).

	You can move the whole segment by [image: mouseleft] and dragging on an area of the slider where there is no stop handle or middle point handle. You can also move the segment by using [image: mousescroll] or Left and Right keys and while doing that, if you also press Shift key, then the increment will be smaller. The first and last segments can not be moved.

	You can delete the selected segment by pressing Delete key or by dragging it outside the slider area.

	You can split a segment by pressing Ctrl + [image: mouseleft] shortcut on it. The cutting point will be where you clicked.

	You can duplicate a segment by pressing Shift + [image: mouseleft] shortcut on it.

	Left color - In this row of widgets you can change the properties related to the start of the segment:

	With the first three buttons you can set the type of color used (Foreground, Background or custom).

	Next to the color type buttons will appear a check box when the color type is Foreground or Background that you can use to establish that the color should also be transparent. If the color type is custom, then instead a color button and an opacity slider will appear to let you choose a specific color.

	Lastly there is a position slider you can use to fine-tune the start position of the segment. This also changes the end position of the previous segment.

	Right color - In this row of widgets you can change the properties related to the end of the segment. They are pretty much the same as the ones explained in the previous point.

	Interpolation - In this row you can set the interpolation method and color model used to blend the colors inbetween the segment.

	Stop Handle UI Breakdown
	Keep in mind that a segmented gradient is just a list of gradient segments. There isn’t really a concept of stop associated with it. The stop handles are just a convention used in the editor to ease the editing of the gradient. When manipulating or changing the properties of a stop handle you are really modifying the end of the segment on the left and the start of the segment on the right synchronously.

[image: ../../_images/segment_gradient_editor_stop_handle_breakdown.png]

	Delete stop - Pressing this button will delete the selected stop. Under the hood this action will merge the left and right segments, keeping the start of the left segment and the end of the right segment.

	Center stop - Pressing this button will center the stop between the start position of the left segment and the end position of the right segment.

	Gradient slider - Here is a list of the stop related actions you can perform on the gradient slider:

	You can select a stop handle by [image: mouseleft] on one of the drop-shaped icons.

	You can move the stop handle by [image: mouseleft] and dragging the drop-shaped icon. You can also move the stop handle by using [image: mousescroll] or Left and Right keys and while doing that, if you also press Shift key, then the increment will be smaller. The first and last stop handles can not be moved.

	You can delete the selected stop by pressing Delete key or by dragging it outside the slider area.

	You can create a new stop by pressing Ctrl + [image: mouseleft] shortcut on an area of the slider where there is no stop handle or middle point handle. This is exactly the same action as splitting a segment.

	Left Color - In this row of widgets you can change the properties related to the end of the segment on the left of the stop:

	With the first three buttons you can set the type of color used (Foreground, Background or custom).

	Next to the color type buttons will appear a check box when the color type is Foreground or Background that you can use to establish that the color should also be transparent. If the color type is custom, then instead a color button and an opacity slider will appear to let you choose a specific color.

	Right color - In this row of widgets you can change the properties related to the start of the segment on the right of the stop. They are pretty much the same as the ones explained in the previous point.

	Link colors - If this button is checked then changing the properties on the left color area will also change the properties on the right color area and vice versa. Check it if you want the two colors to be synchronized.

	Position - you can use this slider to fine-tune the position of the stop. This changes the end position of the segment on the left and the start position of the segment on the right.

Middle Point Handle UI Breakdown

[image: ../../_images/segment_gradient_editor_midpoint_handle_breakdown.png]

	Center middle point - Pressing this button will center the middle point of the selected segment.

	Gradient slider - Here is a list of the middle point related actions you can perform on the gradient slider:

	You can select a segment middle point by [image: mouseleft] on one of the rhombus-shaped icons.

	You can move the middle point by [image: mouseleft] and dragging the rhombus-shaped icon. You can also move it by using [image: mousescroll] or Left and Right keys and while doing that, if you also press Shift key, then the increment will be smaller.

	Position - With this slider you can fine-tune the position of the middle point of the segment.

Compact Gradient Editors

In some places in the GUI a compact version of the gradient editors may be used because of the lack of space or other reasons. They just show the gradient slider and all the other functionality that is exposed in the non-compact mode is compacted and moved to the side.

[image: ../../_images/compact_stop_gradient_editor.png]

Generic Gradient Editor

In some places you will find that the previously mentioned gradient preset
chooser and editors are shown together and that they are interconnected. When
this happens, you are probably using the generic gradient editor, that was
introduced to ease the creation and manipulation of gradients.

Its main features are:

	Allows you to load/save gradients from/to the gradient resources to/from the
editor.

	Allows to overwrite an existing gradient resource.

	A specific editor is shown automatically depending on the type of the
gradient (stop gradient or segmented gradient).

	Allows to convert between gradient types

Following is a breakdown of the interface of the editor:

[image: ../../_images/generic_gradient_editor_breakdown.png]

	Add gradient button - Pressing this button you can add the current gradient to
the resources.

	Update gradient button - Pressing this button you can overwrite the gradient
resource that is currently selected in the gradient chooser. Keep in mind
that the type of the gradient resource and the type of the gradient that is
currently being edited must match.

	Convert gradient button - Pressing this button you can convert the current
gradient to a stop gradient if it is a segmented gradient or to a segmented
gradient if it is a stop gradient.

	Convert gradient warning - This icon will appear when pressing the convert
button means that some data or info will be lost in the conversion. This can
happen when converting from a segmented gradient to a stop gradient.

	Gradient presets button - Pressing this button will pop-up a gradient preset
chooser to let you choose a gradient and edit it. This button is only
available if the “use a pop-up gradient preset chooser” is checked.

	Options button - Pressing this button will show an options menu.

	Specific editor area - Here the stop or segmented gradient editor will be
shown when a gradient is selected. The specific gradient editors are
documented in the previous sections.

	Gradient preset chooser - This widget shows a collection of gradient resources
and allows you to load one of those gradients into the editor.

	Use a pop-up gradient preset chooser - If this option is checked, the
gradient preset chooser will be accessed through a pop-up window that is
shown by clicking the “choose gradient preset” button. If this option is not
checked then the gradient preset chooser is shown inline above all the other
widgets.

	Show compact gradient preset chooser - If this option is checked,
then only the collection of gradient resources is shown, without any
surrounding buttons or options. If it is not checked then the gradient
preset chooser will also show some extra buttons, like tag filtering or
viewing options.

 Patterns

Patterns

[image: ../../_images/Krita_Patterns.png]
Patterns are small raster files that tile. They can be used as following:

	As fill for a vector shape.

	As fill-tool color.

	As height-map for a brush using the ‘texture’ functionality.

	As fill for a generated layer.

Adding new patterns

You can add new patterns via the pattern docker, or the pattern-quick-access menu in the toolbar.
At the bottom of the docker, beneath the resource-filter input field, there are the Import resource and Delete resource buttons. Select the former to add png or JPG files to the pattern list.

Similarly, removing patterns can be done by pressing the Delete resource button. Krita will not delete the actual file then, but rather deactivate it, and thus not load it.

Temporary patterns and generating patterns from the canvas

You can use the pattern drop-down to generate patterns from the canvas but also to make temporary ones.

First, draw a pattern and open the pattern drop-down.

[image: ../../_images/Generating_custom_patterns1.png]
Then go into custom and first press Update to show the pattern in the docker. Check if it’s right. Here, you can also choose whether you use this layer only, or the whole image. Since 3.0.2, Krita will take into account the active selection as well when getting the information of the two.

[image: ../../_images/Generating_custom_patterns2.png]
Then, click either Use as Pattern to use it as a temporary pattern, or Add to predefined patterns to save it into your pattern resources!

You can then start using it in Krita by for example making a canvas and doing Edit –> Fill with Pattern.

[image: ../../_images/Generating_custom_patterns3.png]

Patterns Docker

You can tag patterns here, and filter them with the resource filter.

 Workspaces

Workspaces

Workspaces are basically saved configurations of dockers. Each workspace saves how the dockers are grouped and where they are placed on the screen. They allow you to easily move between workflows without having to manual reconfigure your setup each time. They can be as simple or as complex as you want.

Workspaces can only be accessed via the toolbar or Window ‣ Workspaces There’s no docker for them. You can save workspaces, in which your current configuration is saved. You can also import them (from a *.kws file), or delete them (which deactivates them).

Workspaces can technically be tagged, but outside of the resource manager this is not possible.

Window Layouts

When you work with multiple screens, a single window with a single workspace won’t be enough. For multi monitor setups we instead can use sessions. Window layouts allow us to store multiple windows, their positions and the monitor they were on.

You can access Window Layouts from the workspace drop-down in the toolbar.

	Primary Workspace Follows Focus
	This treats the workspace in the first window as the ‘primary’ workspace, and when you switch focus, it will switch the secondary windows to that primary workspace. This is useful when the secondary workspace is a very sparse workspace with few dockers, and the primary is one with a lot of different dockers.

	Show Active Image In All Windows
	This will synchronise the currently viewed image in all windows. Without it, different windows can open separate views for an image via Window ‣ New View ‣ document.kra.

Sessions

Sessions allow Krita to store the images and windows opened. You can tell Krita to automatically save current or recover previous sessions if so configured in the Miscellaneous.

You can access sessions from File ‣ Sessions.

 SeExpr Scripts

SeExpr Scripts

[image: ../../_images/SeExpr_editor.png]
SeExpr scripts allow you to render dynamically generated textures.
They are saved as .se files.
They can be used as fill for generated layers.

See also

	Introduction to SeExpr

	SeExpr Quick Reference

	SeExpr

	“Procedural texture generator (example and wishes)” on Krita Artists [https://krita-artists.org/t/procedural-texture-generator-example-and-wishes/7638]

	Inigo Quilez’s articles [https://iquilezles.org/www/index.htm]

	The Book of Shaders [https://thebookofshaders.com/]

Adding new scripts

Like with Patterns, there is a similar UI with which you
can manage SeExpr presets.
This panel is available by opening the Fill Layer dialog, and selecting
SeExpr:

[image: ../../_images/SeExpr_script.png]
At the bottom of the tab, beneath the resource-filter input field, there are the Import resource and Delete resource buttons. Select the former to add presets to the list.

Similarly, removing presets can be done by pressing the Delete resource button. Krita will not delete the actual file then, but rather deactivate it, and thus not load it.

Temporary scripts

Layers keep a copy of the textual script that was used to generate them.
You can access it by going to the Options tab and copying the text.
You can then paste it into a new SeExpr Fill Layer.

 SeExpr Quick Reference

SeExpr Quick Reference

This page details all the available variables, functions, and operators in SeExpr.
It is a heavily edited version of the official user documentation [https://wdas.github.io/SeExpr/doxygen/userdoc.html], adapted for usage with Krita.

See also

	Source code at KDE Invent [https://invent.kde.org/lsegovia/seexpr]

	Disney’s SeExpr API Documentation [http://wdas.github.io/SeExpr/doxygen/]

See also

	Introduction to SeExpr

	SeExpr

	SeExpr Scripts

	“Procedural texture generator (example and wishes)” on Krita Artists [https://krita-artists.org/t/procedural-texture-generator-example-and-wishes/7638]

	Inigo Quilez’s articles [https://iquilezles.org/www/index.htm]

	The Book of Shaders [https://thebookofshaders.com/]

Contents

	SeExpr Quick Reference

	Variables

	External variables

	Local Variables

	Control Structures

	Operators (listed in decreasing precedence)

	Assignment Operators

	Comments

	Logging Functions

	Color, Masking, and Remapping Functions

	Noise Functions

	Selection Functions

	General Mathematical Constants and Functions

	Trigonometry Functions

	Vector Functions

	Vector Support

	Curve Functions

	Custom Plugins

Variables

External variables

These variables are provided by host applications, in this case Krita.
They are registered with SeExpr’s autocomplete help, which can be
accessed by Ctrl+Space.

	$u, $v
	Pixel position in normalized coordinates.

	$w, $h
	Image’s width and height in pixels.

Local Variables

Local variables can be defined at the start of the expression:

$a = noise($P);
$b = noise($a * 1);
pow($a, 0.5) + $b

External variables can also be overridden by local assignment. This can be useful to scale the noise frequency for instance:

$P = $P * 10; # increase noise frequency
fbm(vnoise($P) + $P/4)

You can also define namespaced variables, e.g.:

$A::a = $u * 10;

Control Structures

SeExpr provides the well-known if conditional structure:

if ($ u > 0.5) {
 $color = [0, 0, 1];
}
else {
 $color = [1, 0, 0];
}

$color

And the ternary operator:

$u = $i < .5 ? 0.0 : 10.0

You can freely nest ternary operators, e.g.:

$color = $u < .5 ? ($v < 0.5 ? [0, 0, 1] : [1, 0, 0]) : [0, 1, 0];
$color

You can also achieve the same with if structures:

if ($ u > 0.5) {
 if ($v < 0.5) {
 $color = [0, 0, 1];
 }
 else {
 $color = [1, 0, 0];
 }
}
else {
 $color = [1, 0, 0];
}

$color

Operators (listed in decreasing precedence)

	[a,b,c]
	vector constructor

	$P[n]
	vector component access

Hint

n must be 0, 1, or 2, e.g.:

$P[0]

	^
	exponentiation

Note

Same as the pow function.

	!
	logical NOT

	~
	inversion

Hint

~$A

gives the same result as:

1 - $A

	*/ %
	multiply, divide, modulus

Note

% is the same as the fmod function.

	+-
	add, subtract

	<> <= >=
	comparison: less than, greater than, less or equal than, greater or equal than

Note

Only uses the first component of a vector.

	== !=
	equality, inequality

	&&
	logical AND

	||
	logical OR

	?:
	ternary if operator

Hint

Example:

$u < .5 ? 0 : 1

	->
	apply - The function on the right of the arrow is applied to the expression on the left.

Hint

Examples:

$Cs->contrast(.7) -> clamp(0.2,0.8)
$u->hsi(20,1.2,1,$Cs->gamma(1.2))

Assignment Operators

Besides the basic assignment statement:

$foo = $bar

you can also do operator assignments such as:

$foo += $bar;

which is equivalent to:

$foo = $foo + $bar;

Additionally, there are:

	+=

	-=

	/=

	%=

	*=

	^=

Comments

You can add comments to your script by using the # character.
SeExpr will then skip the rest of the line for rendering purposes.
However, they are not ignored; comments can still be used to declare
the valid value range of integer, float, and vector variables.
This enables you to manage them using widgets that will accept the
specified range.

Hint

$var0 is an integer variable that ranges between 0 and 10 inclusive:

$var0 = 0; # 0, 10

$var1 is a floating point variable with the same range:

$var1 = 0; # 0.000, 10.000

$var2 is a vector variable:

$var2 = [0, 0, 0] # 0.000, 10.000

The latter is very helpful; SeExpr considers vectors with range [0, 1] as colors:

this is a dark red
$color = [0.5, 0, 0] # 0.000, 1.000

In all cases, if not specified, the associated widgets’ range will go from 0 to 1.

For a multi-line expression, each line may have its own comment.

Logging Functions

	float printf (string format, [param0, param1, …])
	Prints a string to stdout that is formatted as given. Formatting
parameters possible are %f for float (takes the first component of vector
argument) or %v for vector.

Hint

For example, if you wrote:

$u = printf("test %f %v",[1,2,3],[4,5,6]);

you would get in your console:

test 1 [4,5,6]

	string sprintf (string format, [double|string, double|string, …])
	Returns a string formatted from the given values. See man sprintf for format details.

Color, Masking, and Remapping Functions

	float bias (float x, float b)
	Variation of gamma where control parameter goes from 0 to 1 with
values > 0.5 pulling the curve up and values < 0.5 pulling the curve
down. Defined as pow(x, log(b)/log(0.5)).

	float boxstep (float x, float a)
	float gaussstep (float x, float a, float b)
	float linearstep (float x, float a, float b)
	float smoothstep (float x, float a, float b)
	The step functions are zero for x < a and one for x > b (or x > a in
the case of boxstep). Between a and b, the value changes
continuously between zero and one. The gausstep function uses the
standard Gaussian “bell” curve which is based on an exponential
curve. The smoothstep function uses a cubic curve. Intuitively,
gausstep has a sharper transition near one and a softer transition
near zero whereas smoothstep has a medium softness near both one
and zero.

	float clamp (float x, float lo, float hi)
	Constrain x to range [lo, hi].

	float compress (float x, float lo, float hi)
	Compress the dynamic range from [0, 1] to [lo, hi].

	float contrast (float x, float c)
	Adjust the contrast. For c from 0 to 0.5, the contrast
is decreased. For c > 0.5, the contrast is increased.

	float expand (float x, float lo, float hi)
	Expand the dynamic range from [lo, hi] to [0, 1].

	float fit (float x, float a1, float b1, float a2, float b2)
	Linear remapping of [a1..x..b1] to [a2..x..b2]

	float gamma (float x, float g)
	pow(x, 1/g)

	float invert (float x)
	Invert the value. Defined as 1 - x.

	color hsi (color x, float h, float s, float i, float map=1)
	The hsi function shifts the hue by h (in degrees) and
scales the saturation and intensity by s and i
respectively. A map may be
supplied which will control the shift - the full shift will happen
when the map is one and no shift will happen when the map is zero.
The shift will be scaled back for values between zero and one.

	color hsltorgb (color hsl)
	color rgbtohsl (color rgb)
	RGB to HSL color space conversion.
HSL is Hue, Saturation, Lightness (all in the range [0, 1]).
These functions have also been extended to support RGB and HSL values
outside of the range [0, 1] in a reasonable way. For any RGB or HSL
value (except for negative values), the conversion is well-defined
and reversible.

	color midhsi (color x, float h, float s, float i, float map, float falloff=1, int interp=0)
	The midhsi function is just like the hsi function except that the
control map is centered around the mid point (value of 0.5) and can
scale the shift in both directions. At the mid point, no shift
happens. At 1.0, the full shift happens, and at 0.0, the full
inverse shift happens. Additional falloff and interp controls are
provided to adjust the map using the remap function. The default
falloff and interp values result in no remapping.

	float mix (float a, float b, float alpha)
	Blend of a and b according to alpha. Defined as
a*(1-alpha) +b*alpha.

	float remap (float x, float source, float range, float falloff, int interp)
	General remapping function. When x is within ± range of source,
the result is one. The result falls to zero beyond that range over
falloff distance. The falloff shape is controlled by interp.

Note

Numeric values or named constants may be used:

	int linear = 0

	int smooth = 1

	int gaussian = 2

Noise Functions

	float cellnoise (vector v)
	float cellnoise1 (float x)
	float cellnoise2 (float x, float y)
	float cellnoise3 (float x, float y, float z)
	color ccellnoise (vector v)
	cellnoise generates a field of constant colored cubes based on the
integer location. This is the same as the PRMan cellnoise function [https://renderman.pixar.com/resources/RenderMan_20/cellnoise.html].

Note

ccellnoise outputs color cellnoise.

	float fbm (vector v, int octaves=6, float lacunarity=2, float gain=0.5)
	color cfbm (vector v, int octaves=6, float lacunarity=2, float gain=0.5)
	vector vfbm (vector v, int octaves=6, float lacunarity=2, float gain=0.5)
	float fbm4 (vector v, float time, int octaves=6, float lacunarity=2, float gain=0.5)
	color cfbm4 (vector v, float time, int octaves=6, float lacunarity=2, float gain=0.5)
	vector vfbm4 (vector v, float time, int octaves=6, float lacunarity=2, float gain=0.5)
	fbm (Fractal Brownian Motion) is a multi-frequency noise function.
The base frequency is the same as the noise function. The total
number of frequencies is controlled by octaves. The lacunarity
is the spacing between the frequencies - a value of 2 means each
octave is twice the previous frequency. The gain controls how much
each frequency is scaled relative to the previous frequency.

Note

cfbm and cfbm4 outputs color noise.

vfbm and vfbm4 outputs vector noise.

	float hash (float seed1, [float seed2, …])
	Like rand, but with no internal seeds. Any number of seeds may be
given and the result will be a random function based on all the
seeds.

	float noise (vector v)
	float noise (float x, float y)
	float noise (float x, float y, float z)
	float noise (float x, float y, float z, float w)
	color cnoise (vector v)
	color cnoise4 (vector v, float t)
	float pnoise (vector v, vector period)
	float snoise (vector v)
	float snoise4 (vector v, float t)
	vector vnoise (vector v)
	vector vnoise4 (vector v, float t)
	noise is a random function that smoothly blends between samples at
integer locations. This is Ken Perlin’s original noise function.

Note

cnoise and cnoise4 output color noise.

noise4 outputs signed vector noise.

pnoise outputs periodic noise.

snoise and snoise4 output signed noise with range [-1, 1].

vnoise outputs signed vector noise.

	float rand ([float min, float max], [float seed])
	Random number between [min, max] (or [0, 1] if unspecified).
If a seed is supplied, it will be used in addition to the internal
seeds and may be used to create multiple distinct generators.

	float turbulence (vector v, int octaves=6, float lacunarity=2, float gain=0.5)
	color cturbulence (vector v, int octaves=6, float lacunarity=2, float gain=0.5)
	vector vturbulence (vector v, int octaves=6, float lacunarity=2, float gain=0.5)
	turbulence is a variant of fbm where the absolute value of each
noise term is taken. This gives a more billowy appearance.

	float voronoi (vector v, int type=1, float jitter=0.5, float fbmScale=0, int fbmOctaves=4, float fbmLacunarity=2, float fbmGain=0.5)
	color cvoronoi (vector v, int type=1, float jitter=0.5, float fbmScale=0, int fbmOctaves=4, float fbmLacunarity=2, float fbmGain=0.5)
	vector pvoronoi (vector v, float jitter=0.5, float fbmScale=0, int fbmOctaves=4, float fbmLacunarity=2, float fbmGain=0.5)
	voronoi is a cellular noise pattern. It is a jittered variant of
cellnoise.
The type parameter describes different variants of the noise
function. The jitter param controls how irregular the pattern is
(0 is like ordinary cellnoise). The fbm... params can be
used to distort the noise field. When fbmScale is zero (the
default), there is no distortion. The remaining params are the same
as for the fbm function.

Hint

Voronoi types 1 through 5:

[image: image0] [image: image1] [image: image2] [image: image3] [image: image4]

Note

cvoronoi returns a random color for each cell and
pvoronoi returns the point location of the center of the cell.

Selection Functions

	float choose (float index, float choice1, float choice2, […])
	Chooses one of the supplied choices based on the index (assumed to be
in the range [0, 1]).

	int cycle (int index, int loRange, int hiRange)
	Cycles through values between loRange and hiRange based on supplied
index. This is an offset mod function. The result is computed as
loRange + value % (hiRange-loRange+1).

	int pick (float index, int loRange, int hiRange, [float weights, …])
	Picks values randomly between loRange and hiRange based on supplied
index (which is automatically hashed). The values will be
distributed according to the supplied weights. Any weights not
supplied are assumed to be 1.0.

	float wchoose (float index, float choice1, float weight1, float choice2, float weight2, […])
	Chooses one of the supplied choices based on the index (assumed to be
in range [0, 1]). The values will be distributed according to
the supplied weights.

Hint

This example returns integer values between 1 and 10:

pick(value, 1, 10)

This example returns the values 1 and 2 twice and 2.5 times as often
respectively as compared to the other values (3-10):

pick(value, 1, 10, 2, 2.5)

This example returns 10, 11, and 13 through 20 (12 is skipped due to zero weight):

pick(value, 10, 20, 1, 1, 0)

General Mathematical Constants and Functions

	float PI
	float PI = 3.14159...

	float E
	float E = 2.71828...

	float abs (float x)
	Absolute value of x.

	float cbrt (float x)
	Cube root.

	float ceil (float x)
	Next higher integer.

	float exp (float x)
	E raised to the x power.

	float floor (float x)
	Next lower integer.

	float fmod (float x, float y)
	Remainder of x / y.

Note

Also available as the % operator.

	float log (float x)
	Natural logarithm.

	float log10 (float x)
	Base 10 logarithm.

	float max (float a, float b)
	Greater of a and b.

	float min (float a, float b)
	Lesser of a and b.

	float pow (float x, float y)
	x to the y power.

Note

Also available as the ^ operator.

	float round (float x)
	Nearest integer.

	float sqrt (float x)
	Square root.

	float trunc (float x)
	Nearest integer towards zero.

Trigonometry Functions

	float acos (float x)
	Arc cosine.

	float acosd (float x)
	Arc cosine in degrees.

	float acosh (float x)
	Hyperbolic arc cosine.

	float asin (float x)
	Arc sine.

	float asind (float x)
	Arc sine in degrees.

	float asinh (float x)
	Hyperbolic arc sine.

	float atan (float x)
	Arc tangent.

	float atand (float x)
	Arc tangent in degrees.

	float atan2 (float y, float x)
	Arc tangent of y/x between -PI and PI.

	float atan2d (float y, float x)
	Arc tangent in degrees of y/x between -180º and 180º.

	float atanh (float x)
	Hyperbolic arc tangent.

	float cos (float x)
	Cosine.

	float cosd (float x)
	Cosine in degrees.

	float cosh (float x)
	Hyperbolic cosine.

	float deg (float x)
	Radians to degrees.

	float hypot (float x, float y)
	Length of 2D vector [x, y].

	float rad (float x)
	Degrees to radians.

	float sin (float x)
	Sine.

	float sind (float x)
	Sine in degrees.

	float sinh (float x)
	Hyperbolic sine.

	float tan (float x)
	Tangent.

	float tand (float x)
	Tangent in degrees.

	float tanh (float x)
	Hyperbolic tangent.

Vector Functions

	float angle (vector a, vector b)
	Angle between two vectors (in radians).

	vector cross (vector a, vector b)
	Vector cross product.

	float dist (vector a, vector b)
	Distance between two points.

	float dot (vector a, vector b)
	Vector dot product.

	float length (vector v)
	Length of vector.

	vector norm (vector v)
	Vector scaled to unit length.

	vector ortho (vector a, vector b)
	Vector orthographic to two vectors.

	vector rotate (vector v, vector axis, float angle)
	Rotates v around axis by the given angle (in radians).

	vector up (vector v, vector up)
	Rotates v such that the Y axis points in the given up direction.

Vector Support

Vectors (points, colors, or 3D vectors) may be intermixed with scalars
(simple floating point values). If a scalar is used in a vector context, it is
replicated into the three components, e.g. 0.5 becomes [0.5, 0.5, 0.5].

If a vector is used in a scalar context, only the first component is used.
One of the benefits of this is that all the functions that are defined
to work with scalars automatically extend to vectors. For instance,
pick, choose, cycle, spline, etc., will work just fine
with vectors.

Arithmetic operators such as +, *, etc., and scalar functions are
applied component-wise to vectors. For example, applying the gamma
function to a map adjusts the gamma of all three color channels.

Curve Functions

Interpolation of parameter values to a set of control points is governed
by the following functions.

	color ccurve (float param, float pos0, color val0, int interp0, float pos1, color val1, int interp1, […])
	Interpolates color ramp given by control points at param. Control
points are specified by triples of parameters pos_i, val_i, and
interp_i.

Hint

Interpolation codes are:

	0 - none

	1 - linear

	2 - smooth

	3 - spline

	4 - monotone (non-oscillating) spline

	float curve (float param, float pos0, float val0, int interp0, float pos1, float val1, int interp1, […])
	Interpolates a 1D ramp defined by control points at param. Control
points are specified by triples of parameters pos_i, val_i, and
interp_i.

Hint

Interpolation codes are:

	0 - none

	1 - linear

	2 - smooth

	3 - spline

	4 - monotone (non-oscillating) spline

	float spline (float param, float y1, float y2, float y3, float y4, […])
	Interpolates a set of values to the parameter specified where
y1, …, yn are distributed evenly from [0, 1].

Custom Plugins

Custom functions may be written in C++ and loaded as one or more dynamic plugins. See Writing Custom Expression Plugins [https://wdas.github.io/SeExpr/doxygen/plugins.html] for more details.

Warning

This functionality is not supported in Krita.

 Separate Image

Separate Image

The separate image dialog allows you to separate the channels of the image into layers. This is useful in game texturing workflows, as well as more advanced CMYK workflows. When confirming, Separate Image creates a series of layers for each channel. So for RGB, it will create Red, Green and Blue layers, each representing the pixels of that channel, and for CMYK, Cyan, Magenta, Yellow and Key layers.

	Source
	Which part of the image should be separated.

	Current Layer
	The active layer.

	Flatten all layers before separation
	The total image.

	Alpha Options
	What to do with the alpha channel. All Krita images have an alpha channel, which is the transparency. How should it be handled when separating?

	Copy Alpha Channel to Each separate channel as an alpha channel.
	This adds the transparency of the original source to all the separation layers.

	Discard Alpha Channel
	Just get rid of the alpha altogether.

	Create separate separation from alpha channel
	Create a separate layer with the alpha channel as a grayscale layer.

	Downscale to 8bit before separating.
	Convert the image to 8bit before doing the separation.

	Output to color, not grayscale.
	This results in the Red separation using black to red instead of black to white. This can make it easier to recombine using certain methods.

	Activate the current channel
	If the separated layers are in color, activate only the channel that was the origin of this separation layer.

 Getting Krita logs

Getting Krita logs

There are three different kinds of logs that Krita can produce. Depending on the issue, you might be asked for a specific one or for all of them. This page will tell you how to gather the necessary information to give to Krita developers or user supporters.

	Krita Usage Log – this log contains your last 10 Krita sessions (one session means opening Krita). It shows times when you opened it, basic information about your system and Krita, and all files you created, opened and saved, including all auto-saves.

	System information – this is not exactly a log, but a file that contains detailed system information related to Krita.

	Crash log/backtrace – this log is created when Krita closes incorrectly because of an internal issue. This log is often necessary to get the issue fixed if developers cannot reproduce issue (repeat steps to get the crash).

	Krita console output/Log Viewer output/DebugView output – this log contains anything random that Krita felt the need to report. It often contains some useful additional information that can help solving the issue.

Quick access

	Windows

	Krita Usage Log

	System information

	Backtrace

	Krita text output from Log Viewer (in GUI), console or DebugView (external application)

	Linux

	Krita Usage Log

	System information

	Backtrace

	Krita text output from Log Viewer (in GUI) or console

	macOS

	Krita Usage Log

	System information

	Backtrace

	Krita text output from Log Viewer (in GUI) or console

	Android

	Krita Usage Log

	System information

	Backtrace

	Logcat

Krita Usage Log

Through GUI

The easiest way to get Krita Usage Log is through Krita’s GUI. Go to Help ‣ Show Krita Log for bug reports. A new dialog will open, showing the content of the log.

From the file system

Sometimes however it is not possible to use Krita’s GUI, for example when it doesn’t even open. Since logs are regular text files, you can get them from your file system by yourself.

The file is called krita.log. Location of the file:

	Linux
	$HOME/.local/share/krita.log

	Windows
	%LOCALAPPDATA%\krita.log

	macOS
	$HOME/Library/Application Support/krita.log

	Android
	
	Play Store version: <storage>/Android/data/org.krita/files/krita.log

	Krita Next: <storage>/Android/data/org.krita.next/files/krita.log

Note

In Windows you can simply paste this path into the Windows Explorer’s search box, on the top bar, and it will find the file for you.

System information related to Krita

Through GUI

The easiest way to get system information related to Krita is through Krita’s GUI. Go to Help ‣ Show system information for bug reports. A new dialog will open, showing the content.

From the file system

Sometimes however it is not possible to use Krita’s GUI, for example when it doesn’t even open. Since logs are regular text files, you can get them from your file system by yourself.

The file is called krita-sysinfo.log. Location of the file:

	Linux
	$HOME/.local/share/krita-sysinfo.log

	Windows
	%LOCALAPPDATA%\krita-sysinfo.log

	macOS
	$HOME/Library/Application Support/krita-sysinfo.log

	Android
	
	Play Store version: <storage>/Android/data/org.krita/files/krita-sysinfo.log

	Krita Next: <storage>/Android/data/org.krita.next/files/krita-sysinfo.log

Note

In Windows you can simply paste this path into the file browser textbox on the top bar and it will find you the file.

Crash log and backtrace

Location and the way to get a backtrace is different on all systems.

Windows

Usually, it is sufficient to share the content of Help ‣ Show Krita Log for bug reports as it contains the backtrace.

If you cannot open Krita because it crashes on startup, please provide the %LOCALAPPDATA%\kritacrash.log. Sometimes more detailed information is needed, then you will be asked to closely follow Dr. Mingw debugger guide.

Linux

On Linux, there are five ways of installing Krita.

	Using distribution packages

	Building Krita yourself from source

	Using a snap package

	Using a flatpak package

	Using the official AppImage

Only distribution packages and built-from-source can produce usable crash logs/backtraces. For distribution packages, you will need to install the corresponding debug or dbg packages; the method for that is different from distribution to distribution. If you use distribution packages and the KDE Plasma Desktop, a crash dialog will be shown that has the backtrace in the “Developer” tab.

Otherwise, you have to use gdb in a terminal window.

	Open Krita in gdb:

if you have Krita installed from repositories, you may need to only write 'gdb krita'
if not, write the path to the executable file
gdb path/to/krita

	Disable pagination:

set pagination off

	Run Krita:

run

	Make it crash.

	Get the short backtrace:

thread apply all bt

	Get the long backtrace:

thread apply all bt full

	Short and long backtraces save to separate text files.

	From the short backtrace, it’s recommended to cut out all threads that are identical to some others or don’t seem to hold any additional information.

If you feel like you know which part of the backtrace is the most important (it’s usually the longest thread), then cut it out and put this fragment in the bug report in a comment. Both backtraces still will be needed: attach them to the bug report as well.

If you prefer not to make this decision, just attach both files with backtraces to the bug report.

macOS

On macOS it’s recommended to use lldb.

	Open Terminal.app

	Open Krita in lldb:

lldb /Applications/krita.app/Contents/MacOS/krita

	Run Krita:

run

	Make it crash.

	Get the backtrace:

thread backtrace all

	Save the backtrace to a text file.

	From the backtrace it’s recommended to cut out all threads that are identical to some others or don’t seem to hold any additional information to put into the comment (so it’s easily accessible for the developer).

If you feel like you know which part of the backtrace is the most important (it’s usually the longest thread), then cut it out and put this fragment in the bug report in a comment. The full backtrace still will be needed: attach it to the bug report as well.

If you prefer not to make this decision, just attach the file with the backtrace to the bug report.

Android

To get the logs using the GUI, share the content of Help ‣ Show crash log for bug reports.

If you cannot open Krita because it crashes on startup, please provide the <storage>/Android/data/org.krita/files/kritacrashlog.txt.

Logcat (Android)

To get the logcat output for Krita, share the content of Help ‣ Show Android log for bug reports.

Krita’s text output

Most of Krita’s text output can be gathered using Log Viewer. The only exception are messages from when Krita is starting up, so there is no GUI yet, or when it closes or crashes so no user interaction is possible after the event.

Through GUI

	Go to Settings ‣ Dockers ‣ Log Viewer.

	The first button from the left enables and disables logging, so make sure it is pressed.

	Do the thing you want to get the output of.

	Use the third button (tooltip says: Save the log) to save the log to a file.

	Attach the file to the bug report.

From the console

Using the console is the most reliable way to get Krita’s text output. This way is similar on macOS and Linux.

Changed in version 5.0: This is now also possible on Windows using the krita.com executable.

Note

The krita.com executable starts Krita as a command-line program with a console window. This was not available before Krita version 5.0. If you have an older version or would prefer to use the krita.exe program without a console window, see DebugView guide.

	On macOS open Terminal.app, on Linux open your favorite terminal or console application. On Windows, open a Command Prompt by typing cmd.exe on the Start Menu and pressing Enter.

	Write the path to the Krita executable.

On Linux, if installed from repositories:
krita
On Linux, in all other cases:
(remember that if you want to reference a file from the directory
you're currently in, you need to write: './krita_filename' instead of 'krita_filename'
and remember that this file need to have execution rights to be executed)
path/to/krita

On macOS:
/Applications/krita.app/Contents/MacOS/krita

REM On Windows:
REM By default, cmd.exe will prefer running the .COM file over the .EXE, so
REM you may also leave out the .COM file extension.
"C:\Program Files\Krita (x64)\bin\krita.com"

	Do the thing you want to get the output of.

	Copy the content, save to a file and attach to the bug report.

From the DebugView

To get the text output of Krita on Windows using the graphical program, you need an external program called DebugView. Compared to using the console, DebugView has the benefit of including timestamps to the log entries.

	Download DebugView [https://docs.microsoft.com/en-us/sysinternals/downloads/debugview] if you haven’t already. Click on the blue bold Download DebugView text with underline, downloading should start immediately.

	The file you download is a .zip archive. Windows 10 has a zip archive opener already included. Just extract all of the files somewhere. You can learn more about extracing on Windows extracting manual page [https://support.microsoft.com/en-us/help/4028088/windows-zip-and-unzip-files].

	There is a file inside the archive that is called DbgView.exe (which you can see as DbgView, depending on your system settings). Double-click on it.

	Let the program run and open Krita.

	Do things you want to get output of.

	Switch to DebugView and copy the content. Save to a file and attach to the bug report.

 Split Layer

Split Layer

Splits a layer according to color. This is useful in combination with the Colorize Mask and the R + [image: mouseleft] shortcut to select layers at the cursor.

At the top, of the dialog there is a dropdown, here you can choose between…

	Split Into Layers
	The image’s colors is split into paint layers. Fantastic for artwork that works more with flats, such as the cel-shaded look.

	Split Into Local Selection Masks
	
New in version 4.2.9.

The image’s colors are outlined as a selection, and a Selection Masks is made. This is useful for artwork that has a more painterly look, with the selection masks making it easy to select several areas at once. Because selection masks are not paint layers, several of the options below are unavailable.

The other options are:

	Put all new layers in a group layer
	Put all the result layers into a new group.

	Put every layer in its own, separate group layer
	Put each layer into its own group.

	Alpha-lock every new layer
	Enable the alpha-lock for each layer so it is easier to color.

	Hide the original layer
	Turns off the visibility on the original layer so you won’t get confused.

	Sort layers by amount of non-transparent pixels
	This ensures that the layers with large color swathes will end up at the top.

	Disregard opacity
	Whether to take into account transparency of a color.

	Fuzziness
	How precise the algorithm should be. The larger the fuzziness, the less precise the algorithm will be. This is necessary for splitting layers with anti-aliasing, because otherwise you would end up with a separate layer for each tiny pixel.

	Palette to use for naming the layers
	Select the palette to use for naming. Krita will compare the main color of a layer to each color in the palette to get the most appropriate name for it.

 SVG Storyboard Export Templates

SVG Storyboard Export Templates

Krita’s Storyboard Docker has a variety of options for exporting your storyboards to PDF or SVG file formats.

The simplest of those are the procedural layout options, such as “rows”, “columns”, and “grid” modes.
Using these modes, Krita can generate a somewhat basic page layout with just a few settings.
As a quick and easy preview or in a pinch, these modes do a decent job of showing you what you need to see.

However, for the highest level of control and the best aesthetics, the layout option that we recommend
is one that makes use of an SVG template file. This template file, either written by hand or made in an SVG editor
program like Inkscape, gives you full control over where and how your storyboard elements are to be placed on
the final exported page, with full support for background and overlay layers.

Using an SVG template, you can hopefully export storyboards that fit the needs of whatever project you’re working on,
or even fit the exact specifications of an existing storyboard paper format!

Krita’s Default SVG Storyboard Export Template

For convenience, Krita ships with its own default SVG storyboard template that you’re (of course) free to use for any project,
to modify to suit your needs, and to study from when creating your own SVG template files. (And, not to toot my own horn or anything
but I’d say it looks pretty cool, too!)

So, if you’re simply looking for an awesome way to export and present the storyboards that you’ve made in Krita,
you can stop reading now and just use the SVG template file that comes with Krita’s default resources.

If you still want or need to create your own SVG storyboard export template file, however, read on!

Vector Editing with Inkscape

While it’s perfectly possible to write one of these SVG template files by hand (if you’re a masochist), the way that I recommend
is to use an SVG editor like Inkscape. Much like Krita, Inkscape is a free and open source program that you can use
to create vector art, design logos, and more. In our case, we’re going to use it to create a template file that Krita can understand
and work with. Inkscape is pretty good, so give it a try! https://inkscape.org/

This is not going to be a full Inkscape tutorial or anything (I couldn’t give one if I wanted to, frankly), but this page should
hopefully give you the essential details needed to create a working storyboard export template.

[image: ../_images/storyboard_export_template.png]

Krita’s default storyboard export template loaded into Inkscape. Labeled boxes are used to control the layout of elements. (Pretty colors are optional.)

Designing Your Own SVG Storyboard Export Template

Setup:

After opening Inkscape, the first thing we need to do is select our preferred Page Size and Display Unit.
Both of these settings can be found in the “File > Document Properties…” menu inside of Inkscape.
I decided to go with A4 paper and mm units, but whatever you want should also work.

Next, we need to create a few specific layers (background, layout, and overlay) that Krita will recognize and use to draw our page correctly.
The “background” and “overlay” layers are relatively simple: anything that belongs to the “background” layer will be drawn underneath the storyboard elements (the images, comments and other metadata), and anything that belongs to the “overlay” layer will be drawn on top of the storyboard elements.
Whether you should use these layers in your own storyboard export template depends on your own needs and how you design your sheet.
Finally, the “layout” layer is where we will be placing the various rectangles that we will use to tell Krita exactly where we want our storyboard elements to appear. We’ll run through that process in detail later, but first we need to get the layers set up correctly.

As of the time of writing this, Inkscape makes it slightly complicated to change the ID of our layers.
First we need to open Inkscape’s Object > Objects… panel, where we can see all of our layers, groups, and other SVG objects.
Click on the + and create a layer called “background”, then again with the name “layout”, and finally another one called “overlay”.

This next part is important! You should have 3 layers now, but because we use the ID attribute of the SVG object, we have to do a little bit more work to make sure that Krita will recognize our layers. If you select your layer and open Inkscape’s Object > Object Properties… panel, you will see that everything is grayed out and we are not able to change the “ID” parameter! Here’s how to get around that: first, we have to convert our layers into groups by clicking on the icon in the T column on Inkscape’s Objects… panel. Once all three of our layers are groups, we can open the Object Properties… panel and edit the “ID” parameter. The ID of each layer should be “background”, “layout”, and “overlay” respectively.

Warning

Another weird thing is that, right now, Inkscape requires you to hit Enter or click on the Set button after changing the ID, so make sure that you hit enter or click set!

Once you’ve made sure that each of your groups has been given the appropriate ID, the last thing that you need to do is convert your groups back into layers the same way that we did it before, by clicking on the icon in the T column.

Tip

Ok, that was a bit more complicated that we wanted it to be, but it’s all downhill from here! If you run into problems creating your template, it’s probably going to be some part of that last step that’s to blame, so it’s worth double-checking that each of your layers has the correct ID. (By the way, the ID can also be edited manually using a text editor, but that’s probably out of the scope of this tutorial.)

Whew… Ok. So now the [slightly] more fun stuff…

Background and Overlay Visuals:

At this point you have the option of adding whatever visual design elements you want to the “background” and “overlay” layers. If you have an actual piece of storyboard paper that you want to use then I recommend putting it into the “background” layer, and if you want to overlay some panels or text, I recommend adding them to the “overlay” layer. Just remember, everything in the “background” layer will be rendered under your storyboard elements, and everything in the “overlay” layer will be rendered on top.

Note

As of Inkscape 1.1, new objects are automatically added to the layer that you currently have selected or that you last added something to. As such, I find it easiest to work on one layer at a time.

Warning

Also as of Inkscape 1.1, I find that text often gets transformed in strange ways that make it appear correctly in Inkscape but show up in the completely wrong place in Krita and other programs! I don’t know why this happens or how to fix it, but I do know how to work around it. If you use text elements and you run into problems with them not showing up where they’re supposed to, I recommend converting them to paths with the Path > Object to Path function.

Layout Basics:

Once we have our page looking the way we want it to, we’re ready to populate the “layout” layer.

Krita will use the rectangles that you place into this layer to determine where to put various storyboard elements, including images, comments, and metadata. As an example, Krita will find all of the rectangles that have labels beginning with the word “image” (image0, image1, image2, etc.) and replace them with your storyboard images. Cool, huh?

Tip

For organizational reasons I like to color code each rectangle by type (for example making all of the images red, while making the comments green), but because nothing in this layer is ever drawn it makes no visual difference. The rectangles in this layer are used strictly for placement, and they will be replaced with the contents of your storyboards!

It doesn’t really matter how you arrive at the final result, but I think a good way of doing this quickly is to place rectangles for the various elements of a single storyboard first, select them all and create duplicates for as many boards that you want to fit on your page. For Krita’s default storyboard export template, we decided that it would be nice to have 5 storyboards with 2 comment tracks per page. It’s up to you how you want to layout your storyboard pages.

So let’s layout a storyboard…

Warning

Don’t forget to save!

Creating Your Layout (Part 1):

The first thing I would start with is the image rectangle. With the “layout” layer selected in Inkscape, drag a rectangle wherever you want the first storyboard image to be placed. To tell Krita that we want to replace this rectangle with this page’s first storyboard image, all we have to do is rename this rectangle to something like “image0” or “image1” (the number doesn’t matter as much as the order).

Tip

Once you’ve renamed your rectangle you can open Inkscape’s Object Properties… panel to see that its “label” attribute has changed. This “label” attribute is what Krita looks for when placing elements, so it’s really important! If something is showing up in the wrong place, you’ve probably just forgotten to change the label (…or click on the “set” button).

Now we do the same thing for comments. As the template maker, it’s up to you to decide how many comment tracks you want to support and what those tracks should be used for and named. Like I mentioned above, I opted for 2 comment tracks on the default template. One, simply called “comment”, can be used for whatever you want, but probably for a short description of the action in each shot, and should match the default name of a comment track within Krita. The other one, called “sound”, is meant to be used as a description of the audio during each cut, including dialogue, sound effects, and background music.
Having studied some of the storyboard books that I own from shows that I love, I decided to put “sound” on the left side of the image, and “comment” on the right.

Note

Because we wanted to support any number of comment tracks with any name, the user has to make sure that the names of their comment tracks within Krita’s Storyboard Docker match the labels of the rectangles in the SVG storyboard export template that they’re using. For instance, if you’re using Krita’s default storyboard export template file, then you should name your comment tracks “comment” (the default name, by the way) and “sound”, respectively. Similarly, whatever you decide to name the comment rectangles in your template, your users will have to follow the same naming scheme inside Krita. This is important!

The last few layout rectangles we should add before we move on are for metadata. A rectangle named “shot” will be replaced with a unique storyboard shot number, and a rectangle named “time” will be replaced by the duration of the shot, expressed in “Seconds + Frames” format. Of course, just like the “image” and “comment” boxes, these “shot” and “time” boxes will be duplicated later for each of the storyboards that we want on our page. From there we only have “page-number” and “page-time” rectangles left. We probably only need one of these per page, since “page-time” represents the total duration of all of the shots on that page and “page-number” is, well… the page number.

Creating Your Layout (Part 2):

OK! At this point we should have enough rectangles in place for a single storyboard shot, including an “image” box, probably one or more “comment” boxes, a “shot” box, a “time” box, as well as the page-specific “page-number” and “page-time” boxes. We’re almost finished!

All we have to do now is decide how many boards we want on our page, duplicate the initial board-specific layout a few times, and then give each of the objects their final, numbered names.

Please go ahead and duplicate your “image”, comment(s), “shot”, and “time” boxes until you’ve filled up your page.

Tip

Inkscape’s guides and powerful snapping features make arranging all of your storyboard elements a snap!

Once you’re ready, we just need to make sure that every rectangle has a unique label that ends in a number. Like I mentioned above, these labels, and the numbers hanging off the end, will tell Krita exactly which image, comment, shot number, etc., to place where.

Starting with the “image” boxes, let’s number them from one end to the next, like “image0”, “image1”, “image2”, and so on. For the default template, I created 5 storyboards, and each one has an “image” box with logical numbering from top to bottom. Do the same thing with your “shot” boxes (“shot0”, “shot1”, etc.) and then again with your “time” boxes (“time0”, “time1”, etc.).

Finally, we need to do the comments using the same method. The big difference being that it’s up to you how many comment tracks you have and what they’re called. Just remember, whatever you call them has to match up with the names that the storyboard artist uses for their tracks within Krita’s Storyboard Docker! I went with the default name “comment” (“comment0”, “comment1”, etc.), as well as “sound” (“sound0”, “sound1”, etc.).

After that whole process, every one of the rectangles in your “layout” layer should have a unique and logical name.

And we’re done! Save your storyboard export template as an SVG file, use it to export some storyboards, and feast your eyes on your beautiful, customized storyboard pages.

Note

This is a complicated but reasonably flexible system. Of course, as Krita is an open source and community-driven project, get in touch with the development team if you have ideas (or, even better, a patch!) for how we can improve or build upon this system.

 Stroke Selection

Stroke Selection

Sometimes, you want to add an even border around a selection. Stroke Selection allows you to do this. It’s under Edit ‣ Stroke Selection.

First make a selection and call up the menu:

[image: ../_images/Krita_stroke_selection_1.png]
The main options are about using the current brush, or lining the selection with an even line. You can use the current foreground color, the background color or a custom color.

Using the current brush allows you to use textured brushes:

[image: ../_images/Stroke_selection_2.png]
Lining the selection also allows you to set the background color, on top of the line width in pixels or inches:

[image: ../_images/Krita_stroke_selection_3.png]
This creates nice silhouettes:

[image: ../_images/Stroke_Selection_4.png]

 Tools

Tools

The contents of the toolbox docker.

	Shape Selection Tool

	Shape Edit Tool

	Text Tool

	Gradient Editing Tool

	Pattern Editing Tool

	Calligraphy Tool

	Freehand Brush Tool

	Straight Line Tool

	Rectangle Tool

	Ellipse Tool

	Polygon Tool

	Polyline Tool

	Bezier Curve Tool

	Freehand Path Tool

	Dynamic Brush Tool

	Multibrush Tool

	Crop Tool

	Move Tool

	Transform Tool

	Fill Tool

	Enclose and Fill Tool

	Gradient Tool

	Color Sampler Tool

	Colorize Mask

	Smart Patch Tool

	Assistant Tool

	Reference Images Tool

	Measure Tool

	Rectangular Selection Tool

	Elliptical Selection Tool

	Freehand Selection Tool

	Polygonal Selection Tool

	Contiguous Selection Tool

	Path Selection Tool

	Similar Color Selection Tool

	Magnetic Selection Tool

	Zoom Tool

	Pan Tool

 Shape Selection Tool

Shape Selection Tool

[image: toolshapeselection]

The shape selection tool used to be called the “default” tool. This had to do with Krita being part of an office suite once upon a time. But this is no longer the case, so we renamed it to its purpose in Krita: Selecting shapes! This tool only works on vector layers, so trying to use it on a paint layer will give a notification.

After you create vector shapes, you can use this tool to select, transform, and access the shape’s options in the tool options docker. There are a lot of different properties and things you can do with each vector shape.

Selection

Selecting shapes can be done by two types of actions:

	[image: mouseleft] on a single shape to select it.

	
	[image: mouseleft] and drag to select multiple shapes.
	
	Blue selection (drag left to right): selects only shapes fully covered.

	Green selection (drag right to left): selects all the touched shapes.

[image: Left: Blue selection. Right: Green selection.]

Blue selection: left-to-right, selects fully covered images. – Green selection: right-to-left, selects touched shapes.

Placement, Scale, Angle and Distortion

Once an object is selected, a dashed bounding box will appear around it. The box will also have square handles. You can use this bounding box to do adjust: placement, scale, angle and distortion of the selected object.

[image: Left to right: Placement, Scale, Angle and Distortion.]

Left to right: Placement, Scale, Angle and Distortion.

	Placement
	[image: mouseleft] and hold inside the bounding box, while holding move the shape to the desired position.

	Scale
	[image: mouseleft] and hold inside any of the square handles, move to adjust the dimensions of the object.

	Angle
	Place the cursor slightly outside any of the corner handles. [image: mouseleft] and drag to adjust the angle of the shape.

	Distortion
	Place the cursor slightly outside any of the middle handles. [image: mouseleft] and drag to skew the shape.

Tool Options

The tool options of this menu are quite involved, and separated over 3 tabs.

Geometry

[image: Tool options: Geometry tool.]
Geometry is the first section in the tool options. This section allows you to set precisely the ‘x’ and ‘y’ coordinates, and also the width and height of the shape.

	Scale Styles
	Enabled: when scaling, it will scale the stroke width with the shape.

Not enabled: when scaling, the stroke width will stay the same.

	Global coordinates
	Determines whether the width and height bars use the width and height of the object, while taking transforms into account.

	Opacity
	The general opacity, or transparency, of the object. Opacity for stroke and fill are explained in the next two sections.

Warning

Anchor Lock is not implemented at the moment.

Stroke

[image: Tool options: Stroke tool.]
The stroke tab determines how the stroke around the object should look.

The first set of buttons allows us to set the fill of the stroke: None, Color and Gradient; the same options exist for the fill of the shape, please refer to the following “Fill” section for more details on how to use both of them.

Then, there are the settings for the stroke style:

	Thickness
	Sets the width of the stroke. When creating a shape, Krita will use the current brush size to determine the width of the stroke.

	Cap and corner style
	Sets the stroke cap and stroke corner style, this can be accessed by pressing the three dots button next to the thickness entry.

	Line-style
	Sets the line style of the stroke: solid, dashes, dots, or mixes of dashes and dots.

	Markers
	Adds markers to the stroke. Markers are little figures that will appear at the start, end or all the nodes in between, depending on your configuration.

Fill

[image: Tool options: Fill tool.]
This section is about the color that fills the shape. As mentioned above in the Stroke section, the features are the same for both the fill of the stroke and the fill of the shape. Here is the explanation for both:

A fill can be: solid color, gradient, or none (transparent)

	None
	No fill. It’s transparent.

	Color
	A flat color, you can select a new one by pressing the color button.

	Gradient
	As the name implies this type fills the shape with a gradient. It has the following options:

	Type
	A linear or radial gradient.

	Repeat
	How the gradient repeats itself.

	Preset
	A menu for selecting a base gradient from a set of predefined gradient presets, which can be edited as desired.

	Save Gradient
	A quick way for saving the current gradient as a preset.

	Stops Options Line
	A representation of how the gradient colors should look.
The stops are represented by triangles. There are two stops by default one at the beginning and one at the end. You can create more stops just by clicking anywhere on the line. To select a stop [image: mouseleft] inside the triangle. To delete the stops, [image: mouseleft] drag them to left or right until the end of the line.

	Flip Gradient
	A quick way to invert the order of the gradient.

	Stop
	Choose a color for the current selected stop.

	Opacity
	Choose the opacity for the current selected stop.

Hint

When a stop triangle is selected, it is highlighted with a slight blue outline. The selected stop triangle will change its color and opacity accordingly when these options are changed.

Hint

You can edit the gradient in two ways. The first one is the actual gradient in the docker that you can manipulate. Vectors always use stop-gradients.
The other way to edit gradients is editing their position on the canvas.

	Mesh Gradient
	Fills the shape with a Mesh Gradient. It has following options:

	Stop
	Change the color of the selected stop. Only the color of a Corner can be changed (rectangle), changing the color of Bezier handle (circle) is not possible.

	Rows
	Change the number of rows in a Mesh Gradient.

	Columns
	Change the number of columns in a Mesh Gradient.

	Smoothing
	There are two possible values, Bilinear (default) and Bicubic. Bilinear is the linear interpolation of the color of stops, however it may create Mach Banding effect [https://en.wikipedia.org/wiki/Mach_bands]. Bicubic is the bicubic interpolation of the color stops, this should produce smoother gradient.

Note

Mesh Gradients follow SVG draft 2 [https://svgwg.org/svg-next/pservers.html#MeshGradients] for the rendering.

Creating Mesh Gradients

When Mesh Gradients option is selected for a shape, Krita fills it with default mesh gradient, which is an alternating color (it alternates between background color and white). Changing number of rows and columns from Tool Options, will add more patches to the Mesh Gradient and corners can be changed individually.

Editing Mesh Gradients

The way to edit Mesh Gradients is pretty straight forward. Each curve is an individual Bezier Curve. There are two ways to change the structure, one is by dragging the corner (rectangle) and other is by dragging the handle (circle).

[image: Left to right: Normal, Corner Hovered, Corner Moved and Selected.]

Left to right: Normal, Corner Hovered, Corner Moved and Selected.

To change the color, a corner has to be selected and then Tool Options can be used to change the color of the selected corner.

Note

When importing from Inkscape, shapes may be grouped, which may not allow Krita to edit Mesh Gradients. To fix this, first ungroup (via [image: mouseright]) them.

Right-click menu

The shape selection tool has a nice right click menu that gives you several features. If you have an object selected, you can perform various functions like cutting, copying, or moving the object to the front or back.

[image: ../../_images/Vector-right-click-menu.png]
If you have multiple objects selected you can perform “Logical Operators” on them, or boolean operations as they are commonly called. It will be the last item on the right-click menu. You can unite, intersect, subtract, or split the selected objects.

 Shape Edit Tool

Shape Edit Tool

[image: toolshapeedit]

The shape editing tool is for editing vector shapes. In Krita versions before 4.0 it would only show up in the docker when you had a vector shape selected. In Krita 4.0, this tool is always visible and has the Shape Properties docker as a part of it.

[image: ../../_images/Shape-editing-tool-example.png]
You can access the Edit Shapes tool by clicking on the icon in the toolbox, but you can also access it by pressing the Enter key when in the Shape Selection tool and having a shape selected that can be most efficiently edited with the edit shapes tool (right now, that’s all shapes but text).

On Canvas Editing of Shapes

As detailed further in the Tool Options, there’s a difference between path shapes and specialized vector shapes that make it easy to have perfect ellipses, rectangles and more.

Path Shapes

Path shapes can be recognized by the different nodes they have.

Paths in Krita are mostly bezier curves, and are made up of nodes. For straight lines, the nodes are connected by a line-segment and that’s it. For curved lines, each node has a side handle to allow curving of that segment using the cubic bezier curve algorithm [https://en.wikipedia.org/wiki/B%C3%A9zier_curve#/media/File:B%C3%A9zier_3_big.gif].

What that means, in short, is that moving the side handles into a given direction will make the segment curve in that direction, and the longer the line of the node to the side handle, the stronger the curving.

Selecting Nodes for Editing

You can select a single node with [image: mouseleft], they will turn bright green if selected.

[image: mouseleft] + Shift on unselected nodes will add them to a selection.

[image: mouseleft] + drag will make a selection rectangle. All nodes whose handles are touched by the rectangle will be selected. This combines with the [image: mouseleft] + Shift shortcut above.

Selected Nodes

You can add and remove side handles from a selected node with the [image: mouseleft] + Shift shortcut.

Krita has several node-types that allow you control the side handles more efficiently. These are the corner, smooth and symmetric modes.

	Corner
	Represented by a diamond, the corner type allows you to have handles that can point in different directions and have different lengths.

	Smooth
	Represented by a circle, the smooth type will ensure a smooth transition by always pointing the handles into opposite directions, but they can still have different lengths.

	Symmetric
	Represented by a square, the symmetric node will force handles to always point in opposite directions and have the same length.

[image: mouseleft] + Ctrl on a selected node will cycle between the node-types.

Del key will remove the selected node.

Selected Segments

Segments are the lines between nodes. Hovering over a segment will show a dotted line, indicating it can be selected.

You can [image: mouseleft] and drag on a segment to curve it to the mouse point. Clicking on different parts of the segment and dragging will curve it differently.

Double [image: mouseleft] on a segment will add a node on the segment under the mouse cursor. The new node will be selected.

Other Shapes

Shapes that aren’t path shapes only have a single type of node: A small diamond like, that changes the specific parameters of that shape on-canvas. For example, you can change the corner radius on rectangles by dragging the nodes, or make the ellipse into a pie-segment.

Tool Options

[image: ../../_images/Shape-editing-tool-tool-options.png]
Path shapes have options. The top left options are for converting to different anchor point types. The bottom left options are for adding or removing points. The top right options are for converting the line to different types. The bottom right options are for breaking and joining line segments.

The tool options of the Edit Shapes Tool change depending on the type of shape you have selected. With the exception of the path shape, all shapes have a Convert to Path action, which converts said shape to a path shape.

Path Shapes

[image: toolbeziercurve], [image: toolline], [image: toolpolyline], [image: toolpolygon], [image: toolfreehandpath]

Path shapes are the most common shape and can be made with the following tools:

	Bezier Curve Tool

	Straight Line Tool

	Polygon Tool

	Polyline Tool

	Freehand Path Tool

	Node Editing
	Edit the nodes.

	Corner Point
	Make the selected node a corner or cusp. This means that the side handles can point in different directions and be different lengths.

	Smooth Point
	Make the selected node smooth. The two side handles will always point in opposite directions, but their length can be different.

	Symmetric Point
	Make the selected node symmetric. The two side handles will always point in opposite directions, and their length will stay the same.

	Insert Point
	Insert a new node into the middle of the selected segment.

	Remove Point
	Remove the selected node.

	Line Segment Editing
	Edit line segments between nodes.

	Segment To Line
	Make the current segment a straight line.

	Segment To Curve
	Make the current segment a curve: It’ll add side handles for this segment to the nodes attached to it.

	Make Line Point
	Turn the selected node into a sharp corner: This will remove the side handles.

	Make Curve Point
	Turn the selected node into one that can curve: This will add side handles to the node.

	Break at Point
	Break the path at this point.

	Break Segment
	Break the path at the selected segment.

	Join with Segment
	Join two nodes that are only attached on one side with a segment.

	Merge Points
	Merge two nodes into one, if the nodes are adjacent or if both nodes are only attached on one side with a segment.

Rectangle Shapes

[image: toolrectangle]

Rectangle shapes are the ones made with the Rectangle Tool. It has extra options to make rounded corners easy.

	Corner radius x
	The radius of the x-axis of the corner curve.

	Corner radius y
	The radius of the y-axis of the corner curve.

Ellipse Shapes

[image: toolellipse]

Ellipse shapes are the ones made with the Ellipse Tool.

	Type
	The type of ellipse shape it is.

	Arc
	An arc shape will keep the path open when it isn’t fully circular.

	Pie
	A pie shape will add two extra lines to the center when the shape isn’t fully circular, like how one cuts out a piece from a pie.

	Chord
	A cord shape will add a straight line between the two ends if the path isn’t fully circular, as if a cord is being strung between the two points.

	Start Angle
	The angle at which the shape starts.

	End Angle
	The angle at which the shape ends.

	Close Ellipse
	An action to quickly make the ellipse fully circular.

 Text Tool

Text Tool

[image: tooltext]

This tool allows you to add text to your artwork.

Note

The text layout got reworked in Krita 5.2, however the text tool itself has not yet received an update. For now, if you want to use features like inline-size for wrapping or writing-mode:vertical-rl for vertical text, you will need to use the SVG source editor. We will update the text tool in future versions of Krita.

You use it by doing [image: mouseleft] + drag to create a rectangular selection. When releasing [image: mouseleft] a default text will be created and the text editor window will pop-up.

Hovering over other text shapes will highlight their bounding box. [image: mouseleft] on a highlighted text will select it as the active text.

Tool Options

[image: ../../_images/Krita-tool-options-text.png]

	Create new texts with…
	This contains features with which to create new texts, the following items are available:

	Font
	The letter type used by newly created texts.

	Size in pt
	The letter-size used by newly created texts. It is in pts (points), which is a common standard for fonts that is measured 72 points per inch. It therefore will stay proportionally the same size if you increase or decrease canvas dpi.

	Anchor/Align text to the left/middle/right
	Text alignment. This allows you to align text to the left, center it, or to the right. This is called text-anchor because SVG 1.1’s multiline text only uses text-anchor, and this is a slight bit different than text-align (and also the reason justify isn’t available at the moment).

	Letter Spacing
	The letter spacing used by newly created texts.

	Edit Text
	This will summon the text editor for the currently selected shape. This can be quickly invoked with either pressing the Enter key or double-click + [image: mouseleft] shortcut on the shape.

Text Editor

A small window for all your text editing needs. The Text Editor has two tabs: Rich text and SVG source.

[image: ../../_images/Text-editor-example.png]

	Activating
	You can use the Text tool to first create a text box. There are a few options in the tool options if you want to customize how the text will be adding. You will need to drag a rectangle on the canvas to create the text area. Once your text is created, you can edit the text from two ways:

	Select the text with the shape selection tool (first tool). Press the Enter key. The text editor will appear.

	Select the text with the shape selection tool (first tool). Then click the Text tool. In the tool options there is an Edit Text button. When you click that the text editor window will appear.

	Editing
	If you are unfamiliar with the way SVG text works, use the rich text tab, it will allow you to edit the text as you see it, at the cost of not having all functionality.

If you are a little bit more familiar with SVG text, you can directly edit the SVG source. Do note that not all attributes and properties are converted back to the rich text editor, so do be careful when switching back.

Press Save as you’re done with your edits to preview them on canvas.

	File
	
	Save Ctrl + S
	Save current edits to the text on canvas.

	Close Ctrl + W
	Close the editor.

	Edit
	Basic editing functions:

	Undo Ctrl + Z
	Undo the last action in the text editor.

	Redo Ctrl + Shift + Z
	Redo the last undone action in the text editor.

	Cut Ctrl + X
	Cut selected text to the clipboard.

	Copy Ctrl + C
	Copy selected text to the clipboard.

	Paste Ctrl + V
	Paste text from the clipboard.

	Select all Ctrl + A
	Select all text in the active editor.

	Deselect Ctrl + Shift + A
	Deselect any selected text.

	Find Ctrl + F
	Pops up a window with an input to find the given text in the active editor.

	Find Next F3
	Searches for the next text using the last search key.

	Find Previous Shift + F3
	Searches for the last text using the last search key.

	Replace… Ctrl + R
	Pops up a dialog with two inputs: The string you wish to find, and the string you wish to replace it with. Will always replace ALL found instances.

	View
	
	Zoom Out Ctrl + -
	Zoom out the text.

	Zoom In Ctrl + +
	Zoom in the text.

	Insert
	
	Special Character… Alt + Shift + C
	Pops up a dialog that allows you to search for special characters that are difficult to type in with your keyboard.

	Format
	
	Bold Ctrl + B
	Set the font-weight to bold.

	Italic Ctrl + I
	Sets the selected text italic.

	Underline Ctrl + U
	Underline the selected text.

	Strike-Through
	Adds a strike-through text decoration.

	Superscript Ctrl + Shift + P
	Sets the text to super-script baseline.

	Subscript Ctrl + Shift + B
	Sets the text to subscript baseline.

	Weight
	Sets the font weight a little more specifically. Possibilities are… Light, Normal, Bold, and Black.

	Align Left
	Align the selected paragraph to the left.

	Align Center Ctrl + Alt + C
	Center the selected paragraph.

	Align Right Ctrl + Alt + R
	Align the selected paragraph to the right.

	Kerning
	Toggles kerning for selected text.

	Settings
	
	Settings…
	Calls up the text-editor settings dialog.

Text Editor Settings

The settings that can be configured for the text editor.

	Editor Mode
	Whether you want both the Rich Text Editor and the SVG Source Editor, or only one of either.

	Colors
	Here you can configure the syntax highlighting for the SVG source.

	Keyword
	These highlights important characters like <, /, and >.

	Element
	The format for highlighting the element tag name. text and tspan are examples of element names.

	Attribute
	The format for highlighting the attributes of the tag. For example, font-family, when it isn’t in the style tag is usually written as an attribute.

	Value
	The format for highlighting value of attributes.

	Comment
	This highlights XML comments, which are written as following: <!-- This is an XML comment -->. Comments are pieces of text that never get interpreted.

	Editor Text Color
	The main color of the editor.

	Editor background color
	The main background color of the editor.

	Fonts
	This allows you to filter the selection of fonts in the editor by writing system. Some systems have a lot of fonts specifically for showing foreign languages properly, but these might not be useful for you. You just tick the writing systems which you use yourself, and the font drop-down will only show fonts that have full support for that language.

Fine typographic control with the SVG Source tab

So, the rich text editor cannot control all functionality that SVG text allows for. For that, you will need to touch the SVG source directly. But to do that, you will first need to go to the text editor settings and enable either SVG Source or Both editor mode. The Rich Text editor will lose some information, so if you go all out, use SVG Source.

Word-spacing, Letter-spacing and Kerning

These three are written and read from the rich text tab, but only two of them can be controlled from Rich Text tab.

	Kerning
	Kerning, in SVG 1.1 [https://www.w3.org/TR/SVG/text.html#KerningProperty] behaves slightly differently than font-kerning in CSS. Krita by default uses the auto property for this, which means it is on. To turn it off use kerning: 0; in the style section of the text. Any other numeric value will be added to current letter-spacing.

[image: ../../_images/Krita_4_0_text_kerning.png]
<text style="kerning:0; font-family:Dancing Script; font-size:18pt; font-size-adjust:0.265625">
 <tspan>No Kerning on Valhalla Tower.</tspan>
</text>

	Letter-spacing
	This is the distance between letters in pts, usually. Just write letter-spacing in the style and add a distance in pts behind it. A negative value will decrease the value between letters.

	Word-spacing
	This is the extra distance between words, defaulting to pts. By default, word-spacing: 0; will have it use only the width of the space character for that font. A negative value will decrease the amount of space between words:

[image: ../../_images/Krita_4_0_letter_and_word_spacing.png]
<text style="font-family:Noto Serif; font-size:12pt; font-size-adjust:0.389915; text-anchor:middle">
 <tspan>No Adjustment.</tspan>
 <tspan style="letter-spacing:2" x="0" dy="22pt">Letter spacing: 2</tspan>
 <tspan style="letter-spacing:-2" x="0" dy="22pt">Letter spacing: -2</tspan>
 <tspan style="word-spacing:5" x="0" dy="22pt">Word spacing: 5</tspan>
 <tspan style="word-spacing:-5" x="0" dy="22pt">Word spacing: -5</tspan>
</text>

x, y, dx, dy

These are even finer-grained controls that can be used to position text. However, they CANNOT be reliably converted to the format of the rich text editor, because the rich text editor uses these to figure out if a line is a new-line and thus writes to these.

	X and Y
	X and Y are absolute coordinates. But because you cannot change the absolute coordinates of the text from the editor, these get added to the position when they show up in a tspan.

	dx and dy
	These are relative coordinates to the position of the previous letter.

Font-stretch and Small-caps

These can also be stored and written to the rich text tab’s internal format, but they don’t get used in the on screen text object.

Dominant Baseline, Alignment baseline, Font-size-adjust, Writing mode, Glyph-orientation, rotate

These are not stored in the rich text right now, and while they can be written into the SVG text, the SVG text-shape doesn’t do anything with them.

Krita generates font-size-adjust for the font when coming from rich text, as this can help designers when they want to use the SVG source as a basis for later adjustments.

 Gradient Editing Tool

Gradient Editing Tool

[image: toolgradientedit]

Deprecated since version 4.0: This tool has been removed in Krita 4.0, and its functionality has been folded into the Shape Selection Tool.

This tool allows you to edit the gradient on canvas, but it only works for vector layers. If you have a vector shape selected, and draw a line over the canvas, you will be able to see the nodes, and the stops in the gradient. Move around the nodes to move the gradient itself. Select the stops to change their color in the tool options docker, or to move their position in the on canvas gradient. You can select preset gradient in the tool docker to change the active shape’s gradient to use those stops.

 Pattern Editing Tool

Pattern Editing Tool

[image: toolpatternedit]

Deprecated since version 4.0: The pattern editing tool has been removed in 4.0, currently there’s no way to edit pattern fills for vectors.

The Pattern editing tool works on Vector Shapes that use a Pattern fill. On these shapes, the Pattern Editing Tool allows you to change the size, ratio and origin of a pattern.

On Canvas-editing

You can change the origin by click dragging the upper node, this is only possible in Tiled mode.

You can change the size and ratio by click-dragging the lower node. There’s no way to constrain the ratio in on-canvas editing, this is only possible in Original and Tiled mode.

Tool Options

There are several tool options with this tool, for fine-tuning:

First there are the Pattern options.

	Repeat:
	This can be set to:

	Original:
	This will only show one, unstretched, copy of the pattern.

	Tiled (Default):
	This will let the pattern appear tiled in the x and y direction.

	Stretch:
	This will stretch the Pattern image to the shape.

	Reference point:
	Pattern origin. This can be set to:

	Top-left

	Top

	Top-right

	Left

	Center

	Right

	Bottom-left

	Bottom

	Bottom-right.

	Reference Point Offset:
	For extra tweaking, set in percentages.

	X:
	Offset in the X coordinate, so horizontally.

	Y:
	Offset in the Y coordinate, so vertically.

	Tile Offset:
	The tile offset if the pattern is tiled.

	Pattern Size:
	Fine Tune the resizing of the pattern.

	W:
	The width, in pixels.

	H:
	The height, in pixels.

And then there’s Patterns, which is a mini pattern docker, and where you can pick the pattern used for the fill.

 Calligraphy Tool

Calligraphy Tool

[image: toolcalligraphy]

The Calligraphy tool allows for variable width lines, with input managed by the tablet.
Press down with the stylus/left mouse button on the canvas to make a line, lifting the stylus/mouse button ends the stroke.

Tool Options

Fill

Doesn’t actually do anything.

Calligraphy

The drop-down menu holds your saved presets, the Save button next to it allows you to save presets.

	Follow Selected Path
	If a stroke has been selected with the default tool, the calligraphy tool will follow this path.

	Use Tablet Pressure
	Uses tablet pressure to control the stroke width.

	Thinning
	This allows you to set how much thinner a line becomes when speeding up the stroke. Using a negative value makes it thicker.

	Width
	Base width for the stroke.

	Use Tablet Angle
	Allows you to use the tablet angle to control the stroke, only works for tablets supporting it.

	Angle
	The angle of the dab.

	Fixation
	The ratio of the dab. 1 is thin, 0 is round.

	Caps
	Whether or not an stroke will end with a rounding or flat.

	Mass
	How much weight the stroke has. With drag set to 0, high mass increases the ‘orbit’.

	Drag
	How much the stroke follows the cursor, when set to 0 the stroke will orbit around the cursor path.

Note

The calligraphy tool can be edited by the edit-line tool, but currently you can’t add or remove nodes without converting it to a normal path.

 Freehand Brush Tool

Freehand Brush Tool

[image: toolfreehandbrush]

The default tool you have selected on Krita start-up, and likely the tool that you will use the most.

The freehand brush tool allows you to paint on paint layers without constraints like the straight line tool. It makes optimal use of your tablet’s input settings to control the brush-appearance.
To switch the brush, make use of the brush-preset docker.

Hotkeys and Sticky keys

The freehand brush tool’s hotkey is B.

	The alternate invocation is the ‘’color sampler’’ (standardly invoked by the Ctrl key). Press the Ctrl key to switch the tool to “color sampler”, use left or right click to sample fore and background color respectively. Release the Ctrl key to return to the freehand brush tool.

	The Primary setting is “size” (standardly invoked by the Shift key). Press the Shift key and drag outward to increase brush size. Drag inward to decrease it.

	You can also press the V key as a stickykey for the straight-line tool.

The hotkey can be edited in Settings ‣ Configure Krita… ‣ Shortcuts.
The sticky-keys can be edited in Settings ‣ Configure Krita… ‣ Canvas Input Settings.

Tool Options

Smoothing

Smoothing, also known as stabilising in some programs, allows the program to correct the stroke. Useful for people with shaky hands, or particularly difficult long lines.

The following options can be selected:

	No Smoothing.
	The input from the tablet translates directly to the screen. This is the fastest option, and good for fine details.

	Basic Smoothing.
	This option will smooth the input of older tablets like the Wacom Graphire 3. If you experience slightly jagged lines without any smoothing on, this option will apply a very little bit of smoothing to get rid of those lines.

	Weighted smoothing:
	This option allows you to use the following parameters to make the smoothing stronger or weaker:

	Distance
	The distance the brush needs to move before the first dab is drawn. (Literally the amount of events received by the tablet before the first dab is drawn.)

	Stroke Ending
	This controls how much the line will attempt to reach the last known position of the cursor after the left-mouse button/or stylus is lifted. Will currently always result in a straight line, so use with caution.

	Smooth Pressure
	This will apply the smoothing on the pressure input as well, resulting in more averaged size for example.

	Scalable Distance
	This makes it so that the numbers involved will be scaled along the zoom level.

	Stabilizer
	This option averages all inputs from the tablet. It is different from weighted smoothing in that it allows for always completing the line. It will draw a circle around your cursor and the line will be a bit behind your cursor while painting.

	Distance
	This is the strength of the smoothing.

	Delay
	This toggles and determines the size of the dead zone around the cursor. This can be used to create sharp corners with more control.

	Finish Line
	This ensures that the line will be finished.

	Stabilize sensors
	Similar to Smooth Pressure, this allows the input (pressure, speed, tilt) to be smoother.

	Scalable Distance
	This makes it so that the numbers involved will be scaled along the zoom level.

Assistants

Ticking this will allow snapping to Assistant Tool, and the hotkey to toggle it is Ctrl + Shift + L. See Painting with Assistants for more information.

The slider will determine the amount of snapping, with 1000 being perfect snapping, and 0 being no snapping at all. For situations where there is more than one assistant on the canvas, the defaultly ticked Snap Single means that Krita will only snap to a single assistant at a time, preventing noise. Unticking it allows you to chain assistants together and snap along them.

You may not always want erasers to snap, especially when using assistants liberally during the sketching process. Snap Eraser will allow you to turn off snapping for brushes with the blending mode Erase.

 Straight Line Tool

Straight Line Tool

[image: toolline]

This tool is used to draw lines. Click the [image: mouseleft] to indicate the first endpoint, keep the button pressed, drag to the second endpoint and release the button.

Hotkeys and Sticky Keys

To activate the Line tool from freehand brush mode, use the V key. Use other keys afterwards to constraint the line.

Use the Shift key while holding the mouse button to constrain the angle to multiples of 15º. You can press the Alt key while still keeping the [image: mouseleft] down to move the line to a different location.

Note

Using the Shift keys BEFORE pushing the holding the left mouse button/stylus down will, in default Krita, activate the quick brush-resize. Be sure to use the Shift key after.

Tool Options

The following options allow you to modify the end-look of the straight-line stroke with tablet-values.
Of course, this only work for tablets, and currently only on Paint Layers.

	Use sensors
	This will draw the line while taking sensors into account. To use this effectively, start the line and trace the path like you would when drawing a straight line before releasing. If you make a mistake, make the line shorter and start over.

	Preview
	This will show the old-fashioned preview line so you know where your line will end up.

 Rectangle Tool

Rectangle Tool

[image: toolrectangle]

This tool can be used to paint rectangles, or create rectangle shapes on a vector layer. Click and hold [image: mouseleft] to indicate one corner of the rectangle, drag to the opposite corner, and release the button.

Hotkeys and Sticky-keys

There’s no default hotkey for switching to rectangle.

If you hold the Shift key while drawing, a square will be drawn instead of a rectangle. Holding the Ctrl key will change the way the rectangle is constructed. Normally, the first mouse click indicates one corner and the second click the opposite. With the Ctrl key, the initial mouse position indicates the center of the rectangle, and the final mouse position indicates a corner. You can press the Alt key while still keeping [image: mouseleft] down to move the rectangle to a different location.

You can change between the corner/corner and center/corner drawing methods as often
as you want by pressing or releasing the Ctrl key, provided that you keep [image: mouseleft] pressed. With the Ctrl key pressed, mouse movements will affect all four corners of the rectangle (relative to the center), without the Ctrl key, one of the corners is unaffected.

New in version 5.0.

If you hold Ctrl and Alt keys while drawing, the rectangle will be rotated around the marked corner. If used with holding Shift key, a square will be rotated around the marked corner.

Tool Options

Fill

	Not filled
	The rectangle will be transparent from the inside.

	Foreground color
	The rectangle will use the foreground color as fill.

	Background color
	The rectangle will use the background color as fill.

	Pattern
	The rectangle will use the active pattern as fill.

Outline

	No Outline
	The Rectangle will render without outline.

	Brush
	The Rectangle will use the current selected brush to outline.

	Brush (Background Color)
	The Rectangle will use the current selected brush with the current background color to outline.

Note

On vector layers, the rectangle will not render with a brush outline, but rather a vector outline.

Pattern Transform

New in version 4.4.

This enables upon using pattern as the fill, and has options for changing the pattern transformation a little.

	Rotation
	This allows you to rotate the pattern used in the fill.

	Scale
	This allows you to scale the pattern used in the fill.

Size

	Width
	Gives the current width. Use the lock to force the next rectangle made to this width.

	Height
	Gives the current height. Use the lock to force the next rectangle made to this height.

	Ratio
	
New in version 4.2.

Gives the current ratio. Use the lock to force the next rectangle made to this ratio.

	Round X
	The horizontal radius of the rectangle corners.

	Round Y
	The vertical radius of the rectangle corners.

 Ellipse Tool

Ellipse Tool

[image: toolellipse]

Use this tool to paint an ellipse. The currently selected brush is used for drawing the ellipse outline. Click and hold the left mouse button to indicate one corner of the ‘bounding rectangle’ of the ellipse, then move your mouse to the opposite corner. Krita will show a preview of the ellipse using a thin line. Release the button to draw the ellipse.

While dragging the ellipse, you can use different modifiers to control the size and position of your ellipse:

In order to make a circle instead of an ellipse, hold the Shift key while dragging. After releasing the Shift key any movement of the mouse will give you an ellipse again:

[image: ../../_images/Krita_ellipse_circle.gif]
In order to keep the center of the ellipse fixed and only growing and shrinking the ellipse around it, hold the Ctrl key while dragging:

[image: ../../_images/Krita_ellipse_from_center.gif]
In order to move the ellipse around, hold the Alt key:

[image: ../../_images/Krita_ellipse_reposition.gif]
You can change between the corner/corner and center/corner dragging methods as often as you want by holding down or releasing the Ctrl key, provided you keep the left mouse button pressed. With the Ctrl key pressed, mouse movements will affect all four corners of the bounding rectangle (relative to the center), without the Ctrl key, the corner opposite to the one you are moving remains still. With the Alt key pressed, all four corners will be affected, but the size stays the same.

New in version 5.0.

If you hold Ctrl and Alt keys while drawing, the ellipse will be rotated around the marked corner of the bounding rectangle. If used with holding Shift key, a circle will be rotated around the marked corner.

Tool Options

 Polygon Tool

Polygon Tool

[image: toolpolygon]

With this tool you can draw polygons. Click the [image: mouseleft] to indicate the starting point and successive vertices, then double-click or press the Enter key to connect the last vertex to the starting point.

Shift + Z undoes the last clicked point.

New in version 5.1.2: [image: mouseright] wills also undo the last added point.

Tool Options

 Polyline Tool

Polyline Tool

[image: toolpolyline]

Polylines are drawn like Polygon Tool, with the difference that the double-click indicating the end of the polyline does not connect the last vertex to the first one.

 Bezier Curve Tool

Bezier Curve Tool

[image: toolbeziercurve]

You can draw curves by using this tool. Click [image: mouseleft] to indicate the starting point of the curve, then click again for consecutive control points of the curve. While creating a control point, drag to create the handles, they will show as red lines.

With an intermediate control point (i.e. a point that is not the starting point and not the ending point), you can move the direction handles separately to have the curve enter and leave the point in different directions. After editing a point, you can just click on the canvas to continue adding points to the curve. When creating a path on a vector layer, the resulting path can be further edited with the Shape Edit Tool.

[image: ../../_images/path_tool_usage.png]

The path preview that shows while drawing a path. The start of the path is indicated with a white square, the preview for the path itself in black, and the red dotted lines being the control points for the current handle.

Double-click [image: mouseleft] on any point of the curve or press the Enter key to finish drawing, or press the Esc key to cancel the entire curve.

While drawing a curve, pressing the Ctrl key while dragging will push the handles both ways. The Alt key will create a sharp corner, and the Shift key will allow you to make a handle while at the end of the curve. [image: mouseright] will undo the last added point.

Tool Options

New in version 4.1.3:

	Autosmooth Curve
	Toggling this will have nodes initialize with smooth curves instead of angles. Untoggle this if you want to create sharp angles for a node. This will affect curve sharpness from dragging after clicking.

	Angle Snapping Delta
	The angle to snap to.

	Activate Angle Snap
	Angle snap will make it easier to have the next line be at a specific angle of the current. The angle is determined by the Angle Snapping Delta.

 Freehand Path Tool

Freehand Path Tool

[image: toolfreehandpath]

With the Freehand Path Tool you can draw a path (much like the Shape Brush Engine) the shape will then be filled with the selected color or pattern and outlined with a brush if so chosen. While drawing a preview line is shown that can be modified in pattern, width and color.

This tool can be particularly good for laying in large swaths of color quickly.

 Dynamic Brush Tool

Dynamic Brush Tool

[image: tooldyna]

Add custom smoothing dynamics to your brush. This will give you similar smoothing results as the normal freehand brush. There are a couple options that you can change.

	Mass
	Average your movement to make it appear smoother. Higher values will make your brush move slower.

	Drag
	A rubberband effect that will help your lines come back to your cursor. Lower values will make the effect more extreme.

Recommended values are around 0.02 Mass and 0.92 Drag.

 Multibrush Tool

Multibrush Tool

[image: toolmultibrush]

The Multibrush tool allows you to draw using multiple instances of a freehand brush stroke at once, it can be accessed from the Toolbox docker or with the default shortcut Q. Using the Multibrush is similar to toggling the Mirror Tools, but the Multibrush is more sophisticated, for example it can mirror freehand brush strokes along a rotated axis.

The settings for the tool will be found in the tool options dock.

The multibrush tool has a few modes and the settings for each can be found in the tool options dock. Symmetry and mirror reflect over an axis which can be set in the tool options dock. The default axis is the center of the canvas.

[image: ../../_images/Krita-multibrush.png]
The available modes are:

	Symmetry
	Symmetry will reflect your brush around the axis at even intervals. The slider determines the number of instances which will be drawn on the canvas.

	Mirror
	Mirror will reflect the brush across the X axis, the Y axis, or both.

	Translate
	Translate will paint the set number of instances around the cursor at the radius distance.

	Snowflake
	This works as a mirrored symmetry, but is a bit slower than symmetry+toolbar mirror mode.

	Copy Translate
	This allows you to set the position of the copies relative to your own cursor. To set the position of the copies, first toggle Add, and then [image: mouseleft] the canvas to place copies relative to the multibrush origin. Finally, press Add again, and start drawing to see the copy translate in action.

The assistant and smoothing options work the same as in the Freehand Brush Tool, though only on the real brush and not its copies.

 Crop Tool

Crop Tool

The crop tool can be used to crop an image or layer. To get started, choose the Crop tool and then click once to select the entire canvas. Using this method you ensure that you don’t inadvertently grab outside of the visible canvas as part of the crop. You can then use the options below to refine your crop. Press the Enter key to finalize the crop action, or use the Crop button in the tool options docker.

At its most basic, the crop tool allows you to size a rectangle around an area and reduce your image or layer to only that content which is contained within that area. There are several options which give a bit more flexibility and precision.

The two numbers on the left are the exact horizontal position and vertical position of the left and top of the cropping frame respectively. The numbers are the right are from top to bottom: width, height, and aspect ratio. Selecting the check boxes will keep any one of these can be locked to allow you to manipulate the other two without losing the position or ratio of the locked property.

	Center
	Keeps the crop area centered.

	Grow
	Allows the crop area to expand beyond the image boundaries.

	Applies to
	
Changed in version 5.0.

Lets you apply the crop to the whole image or a subset:

	Image
	Crops the whole image, the canvas, all layers and all frames are cropped.

	Canvas
	Crops only the canvas, all layers and frames are left alone.

	Layer
	Crops only the current layer and its animation frames.

	Frame
	Crops only the current animation frame.

When you are ready, hit the Crop button and the crop will apply to your image.

	Decoration
	Help you make a composition by showing you lines that divide up the screen. You can for example show thirds here, so you can crop your image according to the Rule of Thirds [https://en.wikipedia.org/wiki/Rule_of_thirds].

Continuous Crop

If you crop an image, and try to start a new one directly afterwards, Krita will attempt to recall the previous crop, so you can continue it. This is the continuous crop. You can press the Esc key to cancel this and crop anew.

 Move Tool

Move Tool

[image: toolmove]

With this tool, you can move the current layer or selection by dragging the mouse.

	Move current layer
	Anything that is on the selected layer will be moved.

	Move layer with content
	Any content contained on the layer that is resting under the four-headed Move cursor will be moved.

	Move the whole group
	All content on all layers will move. Depending on the number of layers this might result in slow and, sometimes, jerky movements. Use this option sparingly or only when necessary.

	Shortcut move distance (3.0+)
	This allows you to set how much, and in which units, the Left Arrow, Up Arrow, Right Arrow and Down Arrow cursor key actions will move the layer.

	Large Move Scale (3.0+)
	Allows you to multiply the movement of the Shortcut Move Distance when pressing the Shift key before pressing a direction key.

	Show coordinates
	When toggled will show the coordinates of the top-left pixel of the moved layer in a floating window.

	Constrained movement
	If you click, then press the Shift key, then move the layer, movement is constrained to the horizontal and vertical directions. If you press the Shift key, then click, then move, all layers will be moved, with the movement constrained to the horizontal and vertical directions.

[image: ../../_images/Movetool_coordinates.png]

	Position
	Gives the top-left coordinate of the layer, can also be manually edited.

 Transform Tool

Transform Tool

[image: tooltransform]

The Transform tool lets you quickly transform the current selection or layer. Basic transformation options include resize, rotate and skew. In addition, you have the option to apply advanced transforms such as Perspective, Warp, Cage and Liquid. These are all powerful options and will give you complete control over your selections/layers.

When you first invoke the tool, handles will appear at the corners and sides, which you can use to resize your selection or layer. You can perform rotations by moving the mouse above or to the left of the handles and dragging it. You can also click anywhere inside the selection or layer and move it by dragging the mouse.

You can fine-tune the transform tool parameters using tool options docker. The parameters are split between five tabs: Free Transform, Warp, Perspective, Cage and Liquify.

[image: ../../_images/Transform_Tool_Options.png]

Free Transform docker.

Free transform

This allows you to do basic rotation, resizing, flipping, and even perspective skewing if you hold the Ctrl key. Holding the Shift key will maintain your aspect ratio throughout the transform.
When you move the center pivot point, pressing Alt will allow you to limit it to the transformation bounds.

[image: ../../_images/Krita_transforms_free.png]

Free transform in action.

If you look at the bottom, there are quick buttons for flipping horizontally, vertically and rotating 90 degrees left and right. Furthermore, the button to the left of the anchor point widget allows you to choose whether to always transform using the anchor point, or not.

Video of how to use the anchor point for resizing. [https://www.youtube.com/watch?v=grzccBVd0O8]

Perspective

While free transform has some perspective options, the perspective transform allows for maximum control. You can drag the corner points, or even the designated vanishing point.

You can also change the size, shear and position transform while remaining in perspective with the tool-options.

[image: ../../_images/Krita_transforms_perspective.png]

Perspective transform.

Warp

Warp allows you to deform the image by dragging from a grid or choosing the dragging points yourself.

[image: ../../_images/Transform_Tool_Options_Warp.png]

Warp Option.

[image: ../../_images/Krita_transforms_warp.png]

Free transform in action.

There are warp options: Rigid, Affine and Similitude. These change the algorithm used to determine the strength of the deformation. The flexibility determines, how strong the effect of moving these points are.

Anchor Points

You can divide these either by subdivision or drawing custom points.

	Subdivision
	This allows you to subdivide the selected area into a grid.

	Draw
	Draw the anchor points yourself. Locking the points will put you in transform mode. Unlocking the points back into edit mode.

Cage

Create a cage around an image, and when it’s closed, you can use it to deform the image. If you have at least 3 points on the canvas, you can choose to switch between deforming and editing the existing points.

[image: ../../_images/Krita_transforms_cage.png]

Transforming a straight banana to be curved with the cage tool.

Adjust Granularity

New in version 4.2.

This adjusts the precision of the cage transform grid. The lower the value, the higher the quality of the transformation (and consequently, the lower the speed). When the granularity is too high, the result starts to look “blocky”.

	Preview
	Adjusts the granularity of the preview. It is recommended to have this higher than the Real value, as it speeds up adjusting.

	Real
	Adjusts the granularity of the final result.

Hotkeys

Both Cage and Warp use little nodes. These nodes can be selected and deselected together by pressing the Ctrl key before clicking nodes.

Then you can move them by pressing the cursor inside the bounding box. Rotating is done by pressing and dragging the cursor outside the bounding box and scaling the same, only one presses the Ctrl key before doing the motion.

Liquify

[image: ../../_images/Transform_Tool_Options_Liquify.png]
Like our deform brush, the liquify brush allows you to draw the deformations straight on the canvas.

	Move
	Drag the image along the brush stroke.

	Scale
	Grow/Shrink the image under the cursor.

	Rotate
	Twirl the image under the cursor.

	Offset
	Shift the image under the cursor.

	Undo
	Erases the actions of other tools.

[image: ../../_images/Krita_transforms_liquefy.png]

Liquify used to turn an apple into a pear.

In the options for each brush there are:

	Mode
	This is either Wash or Build up. Wash will normalize the effect to be between none, and the amount parameter as maximum. Build up will just add on until it’s impossible.

	Size
	The brush size. The button to the right allows you to let it scale with pressure.

	Amount
	The strength of the brush. The button to the right lets it scale with tablet pressure.

	Flow
	Only applicable with Build up.

	Spacing
	The spacing of the liquify dabs.

	Reverse
	Reverses the action, so grow becomes shrink, rotate results in clockwise becoming counter-clockwise.

[image: ../../_images/Krita_transforms_deformvsliquefy.png]

Liquify on the left and deform brush on the right.

Krita also has a Deform Brush Engine which is much faster than liquify, but has less quality. If you are attempting to make liquify a little faster, note that it speeds up with the less information it needs to process, so working with liquify within a selection or using liquify on a separate layer with little on it will greatly enhance the speed.

Mesh

New in version 4.4.2.

The mesh transform is similar to the warp and the cage transform, except that its interface uses patches comprised of Bezier curve segments. This transform mode is particularly useful for placing images and textures on curved surfaces:

[image: ../../_images/Krita_transforms_mesh.png]

Curving a logo to an apple with the mesh transform, with the control points shown.

This is a very keyboard shortcut heavy transform mode. When you start the transform you will see the overlay, which consists of several nodes that can be dragged around. You can drag on the segments between the nodes to curve them precisely, or drag on patches themselves to freely transform them. Ctrl + Alt + [image: mouseleft] + drag shortcut on nodes and segments will allow you to subdivide the mesh. For more precision, enable the control points in the tool options, so each Bezier segment can be fine-tuned to your content.

To assist in maintaining the curvature of a mesh, this tool has a concept of ‘locked’ transform. This mode is signalled by the lock icon in the cursor, and on by default. When this is enabled, adjusting one segment will also adjust its neighbouring segment in another patch. You can press Shift key while dragging a segment or control point to turn this feature off, allowing for sharp angles in the mesh. After a sharp angle has been created, the locked mode will try to keep this as well.

Shortcuts

	Node or control point move
	[image: mouseleft] + drag any of the round points. The big ones are the ‘nodes’ which determine the corners of a patch, and the small ones are the ‘control points’, which determine the curvature for their associated segment.

	Unlocked node or control point move
	Shift + [image: mouseleft] + drag on a node or control point.

	Locked segment move:
	[image: mouseleft] + drag on a segment. As explained above, this will adjust neighbouring segments as well, to keep the curvature of the node intact.

	Segment move
	Shift + [image: mouseleft] + drag on a segment of the mesh.

	Free patch deform:
	[image: mouseleft] + drag on an empty area inside the mesh. This will allow you to intuitively adjust a segment by just clicking anywhere and dragging. The whole segment will then adjust all its control points around the point of the cursor.

	Split mesh or Move/Delete split:
	
	Ctrl + Alt + [image: mouseleft] + drag on a border segment to split the mesh

	Ctrl + Alt + [image: mouseleft] + drag on a node to change the split

	Ctrl + Alt + [image: mouseleft] + drag away a node to remove the split

	Select multiple nodes
	Ctrl + [image: mouseleft] on a node or control or segment, these can then be moved

	Move selection or mesh
	Shift + [image: mouseleft] + drag on empty area outside the mesh.

	Rotate selection or mesh
	[image: mouseleft] + drag on an empty area outside the mesh, if there is a selection of nodes, it will rotate only them, otherwise the whole mesh will be rotated.

	Scale selection or mesh
	Ctrl + [image: mouseleft] + drag on empty area outside the mesh, if there is a selection of nodes, it will scale only them, otherwise the whole mesh will be scaled.

Tool options

	Mesh Size
	Gives precise controls to change the amount of patches vertically and horizontally. When increasing or decreasing the amount of patches, Krita will try to keep the curvature the same, which can be used to your advantage.

	Show control points
	This will toggle the control points.

Transform Multiple Layers

Krita allows you to transform multiple layers at once.

In Krita versions older than 5.0 this required using the Recursive Transform option while transforming a group layer, whose icon was a little spider. Since 5.0, this option is enabled by default for group layers (To achieve non-recursive transformation you can use the layer lock feature).

Changed in version 5.2: Transforming multiple layers doesn’t require a group anymore, now all layers selected in the layer docker will be transformed at once.

[image: ../../_images/Krita_transforms_recursive.png]

Krita allows you to transforms all the layers in the group, so with this apple, both the lineart as the fill will be transformed.

Continuous Transform

If you apply a transformation, and try to start a new one directly afterwards, Krita will attempt to recall the previous transform, so you can continue it. This is a continuous transform. You can press the Esc key to cancel this and start a new transform, or press Reset in the tool options while no transform is active.

Transformation Masks

These allow you to make non-destructive transforms, check here for more info.

 Fill Tool

Fill Tool

[image: toolfill]

Krita has one of the most powerful and capable Fill functions available. The options found in the Tool Options docker and outlined below will give you a great deal of flexibility working with layers and selections.

To get started, clicking anywhere on screen with the fill-tool will allow that area to be filed with the foreground color.

Tool Options

	Fill Mode
	
	Current Selection
	Activating this will result in the shape filling the whole of the active selection.

	Contiguous Region
	This option is the default and allows filling a region of contiguous pixels obtained from the image at the point where the user clicks.

	Regions of Similar Color
	
New in version 5.2.

This option allows filling all the regions similar in color to the pixel where the user clicks

[image: ../../_images/fill_tool_what_to_fill.png]

a: An image with a selection. The red dot marks where the user clicked to fill. b: The region filled using:guilabel:Current Selection. c: The region filled using Contiguous Pixels, filling all pixels that are both similar and contiguous to the one the user clicked. d: The region filled with Regions of Similar Color, filling pixels similarly colored to the one the user clicked.

	Fill Source
	
	Foreground Color
	Selecting this option will fill the obtained region with the foreground color.

	Background Color
	
New in version 5.1.

Selecting this option will fill the obtained region with the background color.

	Pattern
	Selecting this option will fill the obtained region with the current pattern.

	Scale
	
New in version 4.4.

This allows you to scale the pattern used in the fill.

	Rotation
	
New in version 4.4.

This allows you to rotate the pattern used in the fill.

	Fill Extent
	
	Pixel Selection Modes
	
New in version 5.2.

When filling a contiguous region, the user can choose how the pixels are selected based on color similarity.

	Fill Similar Pixels
	[image: ../../_images/fill_tool_region-filling-flood-fill.svg]The contiguous pixels that are similar to the one the user clicked on are selected.

	Fill All Pixels Until a Boundary
	[image: ../../_images/fill_tool_region-filling-boundary-fill.svg]All the contiguous pixels are selected as long as they are not similar to the user defined boundary color.

	Boundary Color
	Defines the color used as a boundary.

[image: ../../_images/fill_tool_pixel_selection_policies.png]

a: An image with a red dot marking where the user clicked to fill. b: The filled region when selecting only the similar contiguous pixels. c: The filled region all the pixels until the boundary color (here set to the color black).

	Threshold
	Determines when the fill-tool sees another color as a border. In other words, how far the region should extend from the selected pixel in terms of color similarity.

	Spread
	
New in version 5.1.

Set how far the fully opaque portion of the region should extend. 0% will make opaque only the pixels that are exactly equal to the selected pixel. 100% will make opaque all the pixels in the region up to its boundary.

[image: ../../_images/opacity_spread.png]

Left: Original image. The black dot indicates where the fill operation starts. Top-right: a row of images that show the result of filling with a threshold value of 30 and a spread value of 0, 30, 60 and 100 percent from left to right. Bottom-right: a row of images that show the result of filling with a threshold value of 65 and a spread value of 0, 30, 60 and 100 percent from left to right.

	Use Selection as Boundary
	
New in version 4.4.

When checked, this will count the borders of the selection as an extra boundary on top of the pixel difference.

[image: ../../_images/fill_selection_boundary.png]

Left: Original selection with a line. Middle: Filled with ‘use selection as boundary’ off. Right: Filled with ‘use selection as boundary’ on.

	Adjustments
	
	Anti-aliasing
	
New in version 5.1.

This will smooth the jagged edges present in the region. It differs from feathering in that this will smooth in the direction of the edge instead of all directions, and only if the edge is jagged (high contrast).

	Grow Selection
	This value extends (positive values) or contracts (negative values) the region.

	Stop Growing at the Darkest and/or More Opaque Pixels
	
New in version 5.2.

[image: ../../_images/fill_tool_stop-at-boundary.svg]This option is useful when filling inner regions of a lineart. When the lines have smooth borders, some unwanted pixels may remain unfilled between the line’s darkest or more opaque parts and the filled region. To improve that, it is common to grow the region a bit to cover those pixels.

One issue that may arise is that the lines vary in width and the expanded region exceeds some of the thinner ones. If this option is selected, the growing process will stop adaptively if the color of the pixels begins to get lighter or less opaque. This effectively prevents the expanded region from reaching the opposite side of the lines.

[image: ../../_images/fill_tool_stop_growing.png]

Comparison of the filled region with and without the option selected. The filled regions were painted with the multiply blending mode for clarity. a: An image with some lineart that varies in width and a red dot indicating where the user clicked to fill. b: The filled region without being expanded. c: The filled region after being expanded by twelve pixels. Note that the region exceeds the line in some points. d: The filled region after being expanded by twelve pixels, but stopping adaptively at the darkest pixels.

	Feathering Radius
	This value will add a soft border to the region.

	Reference
	
New in version 4.3.

Select which layers to use as a reference for the fill tool. The options are:

	Current Layer
	Only use the currently selected layer.

	All layers
	Use all visible layers.

	Color Labeled Layers
	Use only the layers specified with a certain color label. This is useful for complex images, where you might have multiple lineart layers. Label them with the appropriate color label and use these labels to mark which layers to use as a reference.

	Labels Used
	Select the color labels of the layers that should be used as reference.

	Drag-Fill Mode
	
New in version 5.1.

Select what should happen when one clicks and drags the pointer on the canvas.

	Fill Regions of Any Color
	With this option selected, the tool will fill any region along the path described by the pointer while dragging, regardless of its color.

	Fill Regions of Similar Colors
	With this option selected, the tool will fill the regions along path described by the pointer while dragging that have the same color as the first region filled.

 Enclose and Fill Tool

Enclose and Fill Tool

[image: toolenclosefill]

The Enclose and Fill Tool is a different method of filling large colored areas. Instead of selecting each area you want to fill, or drawing the associated color of each area, this tool allows you to select an area, and it will fill everything inside said area.

[image: ../../_images/enclose_and_fill_basic_usage.png]

Simple usage of the enclose and fill. Draw a rectangle around everything you wish to fill and Krita will try to find all possible areas inside that rectangle that can be filled.

Tool Options

Enclosing Method

What kind of method to use for the enclosing area. Different images call for different methods.

	Rectangle
	Use a rectangle to draw the enclosing area.

	Ellipse
	Use an ellipse, much like the elliptical selection to draw the enclosing area.

	Bezier Curve
	Use a bezier curve to draw the enclosing area.

	Lasso
	Use a freehand selection to draw out the enclosing area.

	Brush
	Use a brush with the current brush size to draw out an enclosing area. The brush size is determined by the size of the active brush, and can be resized with Shift + [image: mouseleft].

What to fill

Besides choosing how to create an enclosing area, it is also possible to choose which found regions will be filled. Krita can differentiate between the color (or lack thereof) of a region as well as the colors it is surrounded by. For some of these options a specific color needs to be selected, and thus a color selection button is shown. The Region Extent options control how precise a given color should match this selected color.

[image: ../../_images/enclose_and_fill_potential_areas.png]

An image illustrating the different areas that can be found by this tool within this image. Each area has a different outline to indicate it’s a separate area. The following examples all show these outlines to demonstrate which areas are selected, but note that they are for demonstration only and would not show in a real situation.

Note

When Reference is set to All Layers only areas of the canvas that show the transparency checkers are considered transparent.

All these options have a toggle for invert, which inverts which regions are filled.

[image: ../../_images/enclose_and_fill_potential_areas_fill_all.png]

Demonstration of which areas will be filled when using All Regions and the given enclosing area. Blue areas are the selected areas.

	All Regions.
	Any regions found will be filled. Most basic option.

The following options have an option for Include Contour Regions, which will also fill everything that follows the chosen conditions, but isn’t completely enclosed by the enclosing area.

[image: ../../_images/enclose_and_fill_potential_areas_fill_area.png]

Topleft: Regions of a Specific Color set to cream white, topright: Transparent Regions, bottom: Regions of a specific color or transparent.

	Regions of a Specific Color.
	Only regions that are a specific color will be filled. If you have a complex image where separate figures have their whole silhouette in a seperate color, this can be used to only affect the silhouette of a single figure.

	Transparent Regions.
	Only regions that are transparent will be filled. Useful for filling a line art.

	Regions of a specific color or transparent.
	Combines the transparent and specific color options.

[image: ../../_images/enclose_and_fill_potential_areas_fill_all_except.png]

Topleft: All regions except those of a specific color set to cream white, topright: All regions except transparent ones, bottomleft: All regions except those of a specific color or transparent, and bottomright: All regions except transparent ones with Include Contour Regions turned on, limited to a small area.

	All regions except those of a specific color.
	Fill all regions except ones with the selected color. If you set the selected color to red and the Threshold to say, 50, then not just red, but also colors close to red, like pink and orange will be avoided.

	All regions except transparent ones.
	Fill all regions except transparent ones. This is useful when you’ve first filled out a silhouette, so only select areas that are within that silhouette.

	All regions except those of a specific color or transparent.
	Fill neither transparent nor the specific color.

[image: ../../_images/enclose_and_fill_potential_areas_fill_surrounded.png]

Topleft: To demonstrate the following features the sample image got some adjustments: The outlines were colored and some red silhouettes of strawberries were added. Topright Regions surrounded by a specific color set to grey, bottomleft: Regions surrounded by transparent, and bottomright: Regions surrounded by a specific color or transparent.

	Regions surrounded by a specific color.
	Fill all regions surrounded by a specific color. This is useful when you have line art that uses different colored outlines for different features.

	Regions surrounded by transparent.
	Fill regions that are surrounded by transparent. If you set the blending mode to Erase, this can be used to clean up tiny dots and other noise in a transparent area without affecting the main drawing.

	Regions surrounded by a specific color or transparent.
	Combines the previous two.

Features shared with the fill tool

Beyond these, a number of features are shared with the fill tool, amongst which Region Extent, Adjustments and Reference. These function much the same as the ones documented on the Fill Tool page, with exception of Region Extent, which affects the color selected for region selection.

 Gradient Tool

Gradient Tool

[image: toolgradient]

The Gradient tool is found in the Tools Panel. Left-Click dragging this tool over the active portion of the canvas will draw out the current gradient. If there is an active selection then, similar to the Fill Tool, the paint action will be confined to the selection’s borders.

Tool Options

	Shape:
	
	Linear
	This will draw a straight gradient.

[image: Linear Gradient.]

Left: None. Middle: Forwards. Right: Alternating.

	Bilinear
	This will draw a straight gradient, mirrored along the axis.

[image: ../../_images/bilinear.png]

Left: None. Middle: Forwards. Right: Alternating.

	Radial
	This will draw the gradient from a center, defined by where you start the stroke.

[image: ../../_images/radial.png]

Left: None. Middle: Forwards. Right: Alternating.

	Square
	This will draw the gradient from a center in a square shape, defined by where you start the stroke.

[image: ../../_images/square.png]

Left: None. Middle: Forwards. Right: Alternating.

	Conical
	This will wrap the gradient around a center, defined by where you start the stroke.

[image: ../../_images/conical.png]

Left: None. Middle: Forwards. Right: Alternating.

	Conical-symmetric
	This will wrap the gradient around a center, defined by where you start the stroke, but will mirror the wrap once.

[image: ../../_images/conical_symmetric.png]

Left: None. Middle: Forwards. Right: Alternating.

	Spiral
	This will draw the gradient spiral from a center, defined by where you start the stroke.

[image: ../../_images/spiral.png]

Left: None. Middle: Forwards. Right: Alternating.

	Reverse Spiral
	This will draw the gradient spiral from a center, defined by where you start the stroke, but direction is flipped perpendicular to the direction of stroke.

[image: ../../_images/reverse_spiral.png]

Left: None. Middle: Forwards. Right: Alternating.

	Shaped
	This will shape the gradient depending on the selection or layer.

[image: ../../_images/shaped.png]

	Repeat:
	
	None
	This will extend the gradient into infinity.

	Forward
	This will repeat the gradient into one direction.

	Alternating
	This will repeat the gradient, alternating the normal direction and the reversed.

	Antialias threshold
	Controls how smooth is the border between repetitions.

	A value equal to 0 means there is no smoothing. The border is aliased.

	A value greater than 0 tells Krita how many pixels to each side of the border should be smoothed.

[image: ../../_images/antialias_threshold.png]

Left: 0. Middle: 0.5. Right: 1.

	Reverse
	Reverses the direction of the gradient.

	Dither
	
New in version 5.0.

8 bits of color depth is not enough depth to make a truly smooth gradient. This option alleviates this by adding blue noise style dithering to gradients in 8 bit.

[image: Example showing gradients with and without dithering.]
In the above example, the topleft is a subtle gradient without dithering. The bottom left is with blue noise dithering. The right two examples are the same as the left, but with a contrast filter applied so the blue noise dithering pattern becomes obvious.

 Color Sampler Tool

Color Sampler Tool

This tool allows you to choose a point from the canvas and make the color of that point the active foreground color. When a painting or drawing tool is selected the Color Sampler tool can also be quickly accessed by pressing the Ctrl key.

[image: ../../_images/Color_Dropper_Tool_Options.png]
There are several options shown in the Tool Options docker when the Color Sampler tool is active:

The first drop-down box allows you to select whether you want to sample from all visible layers or only the active layer. You can choose to have your selection update the current foreground color, to be added into a color palette, or to do both.

Changed in version 5: The tool has been renamed and is now consistently called the Color Sampler Tool. (Beforehand it was non-consistently referred to as either Color Picker or Color Selector)

New in version 4.1: The middle section contains a few properties that change how the Color Sampler picks up color; you can set a Radius, which will average the colors in the area around the cursor, and you can now also set a Blend percentage, which controls how much color is “soaked up” and mixed in with your current color. Read Mixing Colors for information about how the Color Sampler’s blend option can be used as a tool for off-canvas color mixing.

At the very bottom is the Info Box, which displays per-channel data about your most recently picked color. Color data can be shown as 8-bit numbers or percentages.

 Colorize Mask

Colorize Mask

[image: toolcolorizemask]

A tool for quickly coloring line art, the Colorize Mask Editing tool can be found next to the gradient tool on your toolbox.

This feature is technically already in 3.1, but disabled by default because we had not optimized the filling algorithm for production use yet. To enable it, find your krita configuration file, open it in notepad, and add “disableColorizeMaskFeature=false” to the top. Then restart Krita. Its official incarnation is in 4.0.

Usage

This tool works in conjunction with the colorize mask, and the usage is as follows:

For this example, we’ll be using the ghost lady also used to explain masks on the basic concepts page.

[image: ../../_images/Krita_4_0_colorize_mask_usage_01.png]
This image has the line art for the lady separated from the background, and what’s more, the background is made up of two layers: one main and one for the details.

First, select the colorize mask editing tool while having the line art layer selected. [image: mouseleft] the canvas will add a colorize mask to the layer.
You can also [image: mouseright] the line art layer, and then Add ‣ Colorize Mask. The line art will suddenly become really weird, this is the prefiltering which are filters through which we put the line art to make the algorithm easier to use. The tool options overview below shows which options control that.

[image: ../../_images/Krita_4_0_colorize_mask_usage_02.png]
Now, you make strokes with brush colors, press Update in the tool options, or tick the last icon of the colorize mask properties. In the layer docker, you will be able to see a little progress bar appear on the colorize mask indicating how long it takes. The bigger your file, the longer it will take.

[image: ../../_images/Krita_4_0_colorize_mask_usage_03.png]
We want to have the blue transparent. In the tool options of the colorize editing tool you will see a small palette. These are the colors already used. You can remove colors here, or mark a single color as standing for transparent, by selecting it and pressing “transparent”. Updating the mask will still show the blue stroke, but the result will be transparent:

[image: ../../_images/Krita_4_0_colorize_mask_usage_04.png]
Because the colorize mask algorithm is slow, and we only need a part of our layer to be filled to fill the whole ghost lady figure, we can make use of Limit to layer bounds. This will limit Colorize Mask to use the combined size of the line art and the coloring key strokes. Therefore, make sure that the colorizing keystrokes only take up as much as they really need.

[image: ../../_images/Krita_4_0_colorize_mask_usage_05.png]
Now the algorithm will be possibly a lot faster, allowing us to add strokes and press Update in rapid succession:

[image: ../../_images/Krita_4_0_colorize_mask_usage_06.png]
To see the final result, disable Edit Key Strokes or toggle the second to last icon on the colorize mask.

[image: ../../_images/Krita_4_0_colorize_mask_usage_07.png]
If you want to edit the strokes again, re-enable Edit Key Strokes.

Now, the colorize mask, being a mask, can also be added to a group of line art layers. It will then use the composition of the whole group as the line art. This is perfect for our background which has two separate line art layers. It also means that the colorize mask will be disabled when added to a group with pass-through enabled, because those have no final composition. You can recognize a disabled colorize mask because its name is stricken through.

To add a colorize mask to a group, select the group and [image: mouseleft] the canvas with the Colorize Mask editing tool, or [image: mouseright] the layer to Add ‣ Colorize Mask.

[image: ../../_images/Krita_4_0_colorize_mask_usage_08.png]
Now, we add strokes to the background quickly. We do not need to use the Limit to Layer Bounds because the background covers the whole image.

[image: ../../_images/Krita_4_0_colorize_mask_usage_09.png]
For the record, you can use other brushes and tools also work on the colorize mask as long as they can draw. The Colorize Mask Editing tool is just the most convenient because you can get to the algorithm options.

Out final result looks like this:

[image: ../../_images/Krita_4_0_colorize_mask_usage_10.png]
Now we are done, [image: mouseright] the colorize mask and Convert ‣ to Paint Layer. Then, Layer ‣ Split ‣ Split Layer. This will give separate color islands that you can easily edit:

[image: ../../_images/Krita_4_0_colorize_mask_usage_11.png]
This way we can very quickly paint the image. Due to the colorize mask going from the first image to the following took only 30 minutes, and would’ve taken quite a bit longer.

[image: ../../_images/Krita_4_0_colorize_mask_usage_12.png]
The colorize masks are saved to the .kra file, so as long as you don’t save and open to a different file format, nor convert the colorize mask to a paintlayer, you can keep working adjust the results.

Tool Options

	Update
	Run the colorize mask algorithm. The progress bar for updates on a colorize mask shows only in the layer docker.

	Edit key strokes
	Put the mask into edit mode. In edit mode, it will also show the ‘prefiltering’ on the line art, which is for example a blur filter for gap closing.

	Show output
	Show the output of the colorize mask. If Edit key strokes is active, this will be shown semi-transparently, so it will be easy to recognize the difference between the strokes and the output.

[image: ../../_images/Krita_4_0_colorize_mask_show_output_edit_strokes.png]

On the Left: Show Output is on, Edit Key Strokes is off. In the Middle: Show Output and Edit Key Strokes are on. On the Right: Show Output is off and Edit Key Strokes is on.

	Limit to layer bounds
	Limit the colorize mask to the combined layer bounds of the strokes and the line art it is filling. This can speed up the use of the mask on complicated compositions, such as comic pages.

	Edge detection
	Activate this for line art with large solid areas, for example shadows on an object. For the best use, set the value to the thinnest lines on the image. In the image below, note how edge detection affects the big black areas:

[image: ../../_images/Krita_4_0_colorize_mask_edge_detection.png]

From left to right: an example with big black shadows on an object but no edge detection, the same example without the edit key strokes enabled. Then the same example with edge detection enabled and set to 2px, and that same example without edit key strokes enabled.

	Gap close hint
	While the algorithm is pretty good against gaps in contours, this will improve the gap recognition. The higher this value is, the bigger the gaps it will try to close, but a too high value can lead to other errors. Note how the prefiltered line art (that’s the blurry haze) affects the color patches.

[image: ../../_images/Krita_4_0_colorize_mask_gap_close_hint.png]

On the Left: Gap close hint is 0px. In the Middle: Gap close hint is 15px (the lines are 10px). On the Right: Gap close hint is 275px.

	Clean up
	This will attempt to handle messy strokes that overlap the line art where they shouldn’t. At 0 no clean up is done, at 100% the clean-up is most aggressive.

[image: ../../_images/Krita_4_0_colorize_mask_clean_up.png]

	Key strokes
	This palette keeps track of the colors used by the strokes. This is useful so you can switch back to colors easily. You can increase the swatch size by hovering over it with the mouse, and doing Ctrl + [image: mousescroll].

	Transparent
	This button is under the keystrokes palette, you can mark the selected color to be interpreted a ‘transparent’ with this. In the clean-up screenshot above, cyan had been marked as transparent.

Layer properties

The colorize mask layer has four properties. They are all the buttons on the right side of the colorize mask layer:

	Show output
	[image: show-output] The show output icon allows you to toggle whether you’ll see the output from the colorize algorithm.

	Lock
	[image: lock-icon] This icon stops the mask from being edited.

	Edit key strokes
	[image: edit-strokes] This icon shows whether the colorize mask is in edit mode. In edit mode it’ll show the strokes, and the output will be semi-transparent.

	Update
	[image: update-icon] This icon will force the colorize mask to update, even when you’re in a different tool.

Note

Colorize masks cannot be animated.

 Smart Patch Tool

Smart Patch Tool

[image: toolsmartpatch]

The smart patch tool allows you to seamlessly remove elements from the image. It does this by letting you draw the area which has the element you wish to remove, and then it will attempt to use patterns already existing in the image to fill the blank.

You can see it as a smarter version of the clone brush.

[image: ../../_images/Smart-patch.gif]
The smart patch tool has the following tool options:

Accuracy

Accuracy indicates how many samples, and thus how often the algorithm is run. A low accuracy will do few samples, but will also run the algorithm fewer times, making it faster. Higher accuracy will do many samples, making the algorithm run more often and give more precise results, but because it has to do more work, it is slower.

Patch size

Patch size determines how big the size of the pattern to choose is. This will be best explained with some testing, but if the surrounding image has mostly small elements, like branches, a small patch size will give better results, while a big patch size will be better for images with big elements, so they get reused as a whole.

 Assistant Tool

Assistant Tool

[image: toolassistant]

Create, edit, and remove drawing assistants on the canvas. There are a number of different assistants that can be used from this tool. The tool options allow you to add new assistants, and to save/load assistants. To add a new assistant, select a type from the tool options and begin clicking on the canvas. Each assistant is created a bit differently. There are also additional controls on existing assistants that allow you to move and delete them.

The set of assistants on the current canvas can be saved to a “*.paintingassistant” file using the Save button in the tool options. These assistants can then be loaded onto a different canvas using the Open button. This functionality is also useful for creating copies of the same drawing assistant(s) on the current canvas.

Check Painting with Assistants for more information.

Tool Options

New in version 4.0.

	Global Color:
	Global color allows you to set the color and opacity of all assistants at once.

New in version 4.1.

	Custom Color:
	Custom color allows you to set a color and opacity per assistant, allowing for different colors on an assistant. To use this functionality, first ‘select’ an assistant by tapping its move widget. Then go to the tool options docker to see the Custom Color check box. Check that, and then use the opacity and color buttons to pick either for this particular assistant.

New in version 5.0.

Limit assistant to area

[image: ../../_images/Assistants_2_pointperspective_03.png]

In the above image, two extra vanishing points have been added to a 2 point assistant, limiting the area in which the grid is drawn and the brush will snap.

This option adds two extra handles to every assistant, for drawing a rectangle which will limit the assistant. This is very useful for comic pages, which may need multiple assistants per page, and will otherwise become very crowded.

 Reference Images Tool

Reference Images Tool

[image: toolreference]

New in version 4.1.

The reference images tool is a replacement for the reference images docker. You can use it to load images from your disk as reference, which can then be moved around freely on the canvas and placed wherever.

Tool Options

	Add Reference Image
	Load a single image to display on the canvas.

	Paste as Reference Image
	Load an image from the system clipboard and add it as a reference image.

	Load Set
	Load a set of reference images.

	Save Set
	Save a set of reference images.

	Delete all reference images
	Delete all the reference images.

	Keep aspect ratio
	When toggled this will force the image to not get distorted.

	Opacity
	Lower the opacity.

	Saturation
	Desaturate the image. This is useful if you only want to focus on the light/shadow instead of getting distracted by the colors.

	Storage mode
	How is the reference image stored.

	Embed to *.kra
	Store this reference image into the KRA file. This is recommended for small vital files you’d easily lose track of otherwise.

	Link to external file.
	Only link to the reference image, krita will open it from the disk everytime it loads this file. This is recommended for big files, or files that change a lot. This option is only available when reference images are loaded from a local path.

You can move around reference images by selecting them with [image: mouseleft], and dragging them. You can rotate reference images by holding the cursor close to the outside of the corners till the rotate cursor appears, while tilting is done by holding the cursor close to the outside of the middle nodes. Resizing can be done by dragging the nodes. You can delete a single reference image by clicking it and pressing Del. You can select multiple reference images with Shift and perform all of these actions.

To hide all reference images temporarily use View ‣ Show Reference Images.

 Measure Tool

Measure Tool

[image: toolmeasure]

This tool is used to measure distances and angles. Click the [image: mouseleft] to indicate the first endpoint or vertex of the angle, keep the button pressed, drag to the second endpoint and release the button. The results will be shown on the Tool Options docker. You can choose the length units from the drop-down list.

Tool Options

The measure tool-options allow you to change between the units used. Unit conversion varies depending on the DPI setting of a document.

 Rectangular Selection Tool

Rectangular Selection Tool

[image: toolselectrect]

This tool, represented by a rectangle with a dashed border, allows you to make Selections in a rectangular shape. To create a rectangular selection simply [image: mouseleft] and drag on the area of the canvas that you wish to select.

Important

Most of the behavior of the Rectangular Selection Tool is common to all other selection tools, please make sure to read Selections to learn more about this tool.

Hotkeys and Stickykeys

	Ctrl + R selects this tool.

	[image: mouseleft] + Shift constrains the selection to a perfect square. (Make sure to press [image: mouseleft] before Shift key)

	[image: mouseleft] + Ctrl makes the selection resize from the center. (Make sure to press [image: mouseleft] before Ctrl key)

	[image: mouseleft] + Alt allows you to move the selection. (Make sure to press [image: mouseleft] before Alt key)

	Shift + [image: mouseleft] sets the subsequent selection to ‘add’. You can release the Shift key while dragging, but it will still be set to ‘add’. Same for the others.

	Alt + [image: mouseleft] sets the subsequent selection to ‘subtract’.

	Ctrl + [image: mouseleft] sets the subsequent selection to ‘replace’.

	Shift + Alt + [image: mouseleft] sets the subsequent selection to ‘intersect’.

New in version 4.2:

	Hovering your cursor over the dashed line of the selection, or marching ants as it is commonly called, turns the cursor into the move tool icon, which you [image: mouseleft] and drag to move the selection.

	[image: mouseright] will open up a selection quick menu with amongst others the ability to edit the selection.

[image: Menu of rectangular selection]

New in version 5.0:

	[image: mouseleft] + Ctrl + Alt allows you to rotate the rectangle around the marked corner. (Make sure to press [image: mouseleft] before Ctrl + Alt shortcut)

	[image: mouseleft] + Ctrl + Alt + Shift allows you to rotate a constrained perfect square around the marked corner. (Make sure to press [image: mouseleft] before Ctrl + Alt + Shift shortcut)

Hint

To subtract a perfect square, you can do the following: Press Alt + [image: mouseleft] shortcut, then release the Alt key while dragging and press Shift key to constrain.

Tip

You can switch the behavior of the Alt key to use Ctrl key instead by toggling the switch in the General Settings

Tool Options

[image: Rectangular selection options]

	Mode
	This option is explained in the Pixel and Vector Selection Types section.

	Action
	This option is explained in the Pixel and Vector Selection Types section.

	Anti-aliasing
	This toggles whether or not to give selections feathered edges. Some people prefer hard-jagged edges for their selections.

Note

Anti-aliasing is only available on Pixel Selection Mode.

	Width
	Shows you the current width while you are creating the selection. You can manually type the value and use the ‘Lock Width’ for your next selection to have the selected value.

	Lock Width
	Forces the next selection to have the current width.

	Height
	Shows you the current height while you are creating the selection. You can manually type the value and use the ‘Lock Height’ for your next selection to have the selected value.

	Lock Height
	Forces the next selection to have the current height.

	Ratio
	Shows the ratio between height and width of the selection. Similar to Height, and Width, you can manually type the value and use the ‘Lock Ratio’ for your next selection to have the selected value.

	Lock Ratio
	Forces the next selection to have the current ratio.

Hint

If you want your selection to be of specific size:

	Type the width and height.

	Press the Lock Width and Lock Height buttons.

	[image: mouseleft] where you want your selection to be.

New in version 4.1.3:

	Round X
	The horizontal radius of the rectangle corners.

	Round Y
	The vertical radius of the rectangle corners.

	Chain Link
	When linked the aspect ratio between the roundness of X and Y coordinates will be locked. To disconnect the chain just click in the links and it will separate in two parts.

 Elliptical Selection Tool

Elliptical Selection Tool

[image: toolselectellipse]

This tool, represented by an ellipse with a dashed border, allows you to make Selections of a elliptical area. Simply [image: mouseleft] and drag around the section you wish to select.

Important

Most of the behavior of the Elliptical Selection Tool is common to all other selection tools, please make sure to read Selections to learn more about this tool.

Hotkeys and Stickykeys

	J selects this tool.

	[image: mouseleft] + Shift constrains the selection to a perfect circle. (Make sure to press [image: mouseleft] before Shift key)

	[image: mouseleft] + Ctrl makes the selection resize from the center. (Make sure to press [image: mouseleft] before Ctrl key)

	[image: mouseleft] + Alt allows you to move the selection. (Make sure to press [image: mouseleft] before Alt key)

	Shift + [image: mouseleft] sets the subsequent selection to ‘add’. You can release the Shift key while dragging, but it will still be set to ‘add’. Same for the others.

	Alt + [image: mouseleft] sets the subsequent selection to ‘subtract’.

	Ctrl + [image: mouseleft] sets the subsequent selection to ‘replace’.

	Shift + Alt + [image: mouseleft] sets the subsequent selection to ‘intersect’.

New in version 4.2:

	Hovering your cursor over the dashed line of the selection, or marching ants as it is commonly called, turns the cursor into the move tool icon, which you [image: mouseleft] and drag to move the selection.

	[image: mouseright] will open up a selection quick menu with amongst others the ability to edit the selection.

[image: Menu of elliptical selection]

New in version 5.0:

	[image: mouseleft] + Ctrl + Alt allows you to rotate the ellipse around the marked corner of the bounding rectangle. (Make sure to press [image: mouseleft] before Ctrl and Alt keys)

	[image: mouseleft] + Ctrl + Alt + Shift allows you to rotate a constrained perfect circle around the marked corner of the bounding rectangle. (Make sure to press [image: mouseleft] before Ctrl + Alt + Shift shortcut)

Hint

To subtract a perfect circle, you can do the following: Press Alt + [image: mouseleft] shortcut, then release the Alt key while dragging and press Shift key to constrain.

Tip

You can switch the behavior of the Alt key to use the Ctrl key instead by toggling the switch in the General Settings.

Tool Options

[image: Elliptical selection options]

	Mode
	This option is explained in the Pixel and Vector Selection Types section.

	Action
	This option is explained in the Pixel and Vector Selection Types section.

	Anti-aliasing
	This toggles whether or not to give selections feathered edges. Some people prefer hard-jagged edges for their selections.

Note

Anti-aliasing is only available on Pixel Selection Mode.

	Width
	Shows you the current width while you are creating the selection. You can manually type the value and use the ‘Lock Width’ for your next selection to have the selected value.

	Lock Width
	Forces the next selection to have the current width.

	Height
	Shows you the current height while you are creating the selection. You can manually type the value and use the ‘Lock Height’ for your next selection to have the selected value.

	Lock Height
	Forces the next selection to have the current height.

	Ratio
	Shows the ratio between height and width of the selection. Similar to Height, and Width, you can manually type the value and use the ‘Lock Ratio’ for your next selection to have the selected value.

	Lock Ratio
	Forces the next selection to have the current ratio.

Hint

If you want your selection to be of specific size:

	Type the width and height.

	Press the Lock Width and Lock Height buttons.

	[image: mouseleft] where you want your selection to be.

 Freehand Selection Tool

Freehand Selection Tool

[image: toolselectfreehand]

Make Selections by freely drawing the selection outline around the canvas. Click and drag to draw a border around the section you wish to select.

Important

This tool was previously called as the Outline Selection tool. Starting from Krita 4.4.2 release it has been renamed to Freehand Selection Tool.
Most of the behavior of the Freehand Selection Tool is common to all other selection tools, please make sure to read Selections to learn more about this tool.

Hotkeys and Sticky keys

	Shift + [image: mouseleft] sets the subsequent selection to ‘add’. You can release the Shift key while dragging, but it will still be set to ‘add’. Same for the others.

	Alt + [image: mouseleft] sets the subsequent selection to ‘subtract’.

	Ctrl + [image: mouseleft] sets the subsequent selection to ‘replace’.

	Shift + Alt + [image: mouseleft] sets the subsequent selection to ‘intersect’.

	Holding the Ctrl key while drawing the selection temporarily makes this tool behave like the Polygon Selection tool and you can then draw straight line selections by just clicking on the canvas.

New in version 4.2:

	Hovering your cursor over the dashed line of the selection, or marching ants as it is commonly called turns the cursor into the move tool icon, which you [image: mouseleft] and drag to move the selection.

	[image: mouseright] will open up a selection quick menu with amongst others the ability to edit the selection.

New in version 5.1.2: If you already began making a selection and the polygon mode is active (Ctrl key is pressed), [image: mouseright] will undo the last added point.

[image: Menu of Freehand Selection]

Tip

You can switch the behavior of the Alt key to use Ctrl instead by toggling the switch in Tool Settings in the General Settings

Tip

This tool is not bound to any Hotkey, if you want to define one, go to Settings ‣ Configure Krita ‣ Keyboard Shortcuts and search for ‘Freehand Selection Tool’, there you can select the shortcut you want. Check Shortcut Settings for more info.

Tool Options

[image: Freehand Selection options]

	Mode
	This option is explained in the Pixel and Vector Selection Types section.

	Action
	This option is explained in the Pixel and Vector Selection Types section.

	Anti-aliasing
	This toggles whether or not to give selections feathered edges. Some people prefer hard-jagged edges for their selections.

Note

Anti-aliasing is only available on Pixel Selection Mode.

 Polygonal Selection Tool

Polygonal Selection Tool

[image: toolselectpolygon]

This tool, represented by a polygon with a dashed border, allows you to make Selections in a polygonal shape. To make a polygonal selection [image: mouseleft] and place points or nodes of the polygon. To finalize your selection area you can do either [image: mouseleft] on the first created point, or double [image: mouseleft] click to end the polygon.

Important

Most of the behavior of the Polygonal Selection Tool is common to all other selection tools, please make sure to read Selections to learn more about this tool.

Hotkeys and Sticky keys

	Shift + [image: mouseleft] temporarily sets the subsequent selection to ‘add’ mode. Release the Shift key will return to the current permanent mode. Same for the others.

	Alt + [image: mouseleft] temporarily sets the subsequent selection to ‘subtract’ mode.

	Ctrl + [image: mouseleft] temporarily sets the subsequent selection to ‘replace’ mode.

	Shift + Alt + [image: mouseleft] temporarily sets the subsequent selection to ‘intersect’ mode.

New in version 4.2:

	Hovering your cursor over the dashed line of the selection, or marching ants as it is commonly called, turns the cursor into the move tool icon, which you [image: mouseleft] and drag to move the selection.

	[image: mouseright] will open up a selection quick menu with amongst others the ability to edit the selection.

New in version 5.1.2: If you already began making a selection, [image: mouseright] will undo the last added point.

[image: Menu of polygonal selection]

Tip

You can switch the behavior of the Alt key to use Ctrl key instead by toggling the switch in Tool Settings in the General Settings.

Tip

This tool is not bound to any Hotkey, if you want to define one, go to Settings ‣ Configure Krita ‣ Keyboard Shortcuts and search for ‘Polygonal Selection Tool’, there you can select the shortcut you want. Check Shortcut Settings for more info.

Tool Options

[image: Polygonal selection options]

	Mode
	This option is explained in the Pixel and Vector Selection Types section.

	Action
	This option is explained in the Pixel and Vector Selection Types section.

	Anti-aliasing
	This toggles whether or not to give selections feathered edges. Some people prefer hard-jagged edges for their selections.

Note

Anti-aliasing is only available on Pixel Selection Mode.

 Contiguous Selection Tool

Contiguous Selection Tool

[image: toolselectcontiguous]

This tool, represented by a magic wand, allows you to make Selections by selecting a point of color. It will select any contiguous areas of a similar color to the one you selected. You can adjust the “fuzziness” of the tool in the tool options dock. A lower number will select colors closer to the color that you chose in the first place.

Hotkeys and Sticky keys

	Shift + [image: mouseleft] sets the subsequent selection to ‘add’. You can release the Shift key while dragging, but it will still be set to ‘add’. Same for the others.

	Alt + [image: mouseleft] sets the subsequent selection to ‘subtract’.

	Ctrl + [image: mouseleft] sets the subsequent selection to ‘replace’.

	Shift + Alt + [image: mouseleft] sets the subsequent selection to ‘intersect’.

New in version 4.2:

	Hovering over a selection allows you to move it.

	[image: mouseright] will open up a selection quick menu with amongst others the ability to edit the selection.

Note

You can switch the behavior of the Alt key to use the Ctrl key instead by toggling the switch in the General Settings.

Tool Options

	Selection Extent
	
	Threshold
	This controls whether or not the contiguous selection sees another color as a border.

New in version 5.1:

	Spread
	Set how far the fully opaque portion of the selection should extend. See Fill Tool for extra explanation.

	Adjustments
	
	Anti-alias
	This will smooth the jagged edges present in the selection. It differs from feathering in that this will smooth in the direction of the edge instead of all directions, and only if the edge is jagged (high contrast).

	Grow Selection
	This value extends (positive values) or contracts (negative values) the selection.

	Feathering Radius
	This value will add a soft border to the selection.

	Reference
	
New in version 4.3.

Select which layers to use as a reference for the contiguous select tool. The options are:

	Current Layer
	Only use the currently selected layer.

	All layers
	Use all visible layers.

	Color Labeled Layers
	Use only the layers specified with a certain color label. This is useful for complex images, where you might have multiple lineart layers. Label them with the appropriate color label and use these labels to mark which layers to use as a reference.

	Labels Used
	Select the color labels of the layers that should be used as reference.

 Path Selection Tool

Path Selection Tool

[image: toolselectpath]

This tool, represented by an ellipse with a dashed border and a curve control, allows you to make a Selections of an area by drawing a path around it. Click where you want each point of the path to be. Click and drag to curve the line between points. Finally click on the first point you created to close your path.

Hotkeys and Sticky keys

	Shift + [image: mouseleft] sets the subsequent selection to ‘add’. You can release the Shift key while dragging, but it will still be set to ‘add’. Same for the others.

	Alt + [image: mouseleft] sets the subsequent selection to ‘subtract’.

	Ctrl + [image: mouseleft] sets the subsequent selection to ‘replace’.

	Shift + Alt + [image: mouseleft] sets the subsequent selection to ‘intersect’.

New in version 4.2:

	Hovering over a selection allows you to move it.

	When not actively making a selection, [image: mouseright] will open up a selection quick menu with amongst others the ability to edit the selection. If you already began making a selection, [image: mouseright] will undo the last added point.

Note

You can switch the behavior of the Alt key to use the Ctrl key instead by toggling the switch in the General Settings.

Tool Options

New in version 4.1.3:

	Autosmooth Curve
	Toggling this will have nodes initialize with smooth curves instead of angles. Untoggle this if you want to create sharp angles for a node. This will not affect curve sharpness from dragging after clicking.

	Anti-aliasing
	This toggles whether or not to give selections feathered edges. Some people prefer hard-jagged edges for their selections.

New in version 4.2:

	Autosmooth Curve
	Toggling this will have nodes initialize with smooth curves instead of angles. Untoggle this if you want to create sharp angles for a node. This will not affect curve sharpness from dragging after clicking.

	Angle Snapping Delta
	The angle to snap to.

	Activate Angle Snap
	Angle snap will make it easier to have the next line be at a specific angle of the current. The angle is determined by the Angle Snapping Delta.

 Similar Color Selection Tool

Similar Color Selection Tool

[image: toolselectsimilar]

This tool, represented by a dropper over an area with a dashed border, allows you to make Selections by selecting a point of color. It will select any areas of a similar color to the one you selected. You can adjust the “fuzziness” of the tool in the tool options dock. A lower number will select colors closer to the color that you chose in the first place.

Important

Most of the behavior of the Similar Color Selection Tool is common to all other selection tools, please make sure to read Selections to learn more about this tool.

Hotkeys and Sticky keys

	Shift + [image: mouseleft] sets the subsequent selection to ‘add’. You can release the Shift key while dragging, but it will still be set to ‘add’. Same for the others.

	Alt + [image: mouseleft] sets the subsequent selection to ‘subtract’.

	Ctrl + [image: mouseleft] sets the subsequent selection to ‘replace’.

	Shift + Alt + [image: mouseleft] sets the subsequent selection to ‘intersect’.

New in version 4.2:

	Hovering your cursor over the dashed line of the selection, or marching ants as it is commonly called, turns the cursor into the move tool icon, which you [image: mouseleft] and drag to move the selection.

	[image: mouseright] will open up a selection quick menu with amongst others the ability to edit the selection.

[image: Menu of similar color selection]

Tip

You can switch the behavior of the Alt key to use Ctrl instead by toggling the switch in Tool Settings in the General Settings

Tip

This tool is not bound to any Hotkey, if you want to define one, go to Settings ‣ Configure Krita ‣ Keyboard Shortcuts and search for ‘Similar Color Selection Tool’, there you can select the shortcut you want. Check Shortcut Settings for more info.

Tool Options

[image: Similar Color selection options]

	Action
	This option is explained in the Pixel and Vector Selection Types section.

	Selection Extent
	
	Threshold
	This controls the range of the color hue used to create the selection. A lower number will select colors closer to the color that you chose in the first place. And a higher number will expand the hue range and select colors even if they are not so similar to the original color.

	Adjustments
	
New in version 5.1:

	Anti-alias
	This will smooth the jagged edges present in the region. It differs from feathering in that this will smooth in the direction of the edge instead of all directions, and only if the edge is jagged (high contrast).

	Grow Selection
	This value extends (positive values) or contracts (negative values) the region.

	Feathering Radius
	This value will add a soft border to the region.

	Reference
	
New in version 5.0.

Select which layers to use as a reference for the contiguous select tool. The options are:

	Current Layer
	Only use the currently selected layer.

	All layers
	Use all visible layers.

	Color Labeled Layers
	Use only the layers specified with a certain color label. This is useful for complex images, where you might have multiple lineart layers. Label them with the appropriate color label and use these labels to mark which layers to use as a reference.

	Labels Used
	Select the color labels of the layers that should be used as reference.

 Magnetic Selection Tool

Magnetic Selection Tool

[image: toolselectmagnetic]

This tool, represented by a magnet over a selection border, allows you to make freeform Selections, but unlike the Polygonal Selection Tool or the Freehand Selection Tool, it will try to magnetically snap to sharp contrasts in your image, simplifying the creation of selection drastically.

There are two ways to make a magnetic selection:

[image: ../../_images/magnetic_selection_mode_1.gif]

Animation showing the first mode of creating a magnetic selection.

The first is to use [image: mouseleft] and place points or nodes of the magnetic selection. To finalize your selection area you can do either [image: mouseleft] on the first created point to complete the loop and click on it again to create a selection, or press Enter to end the magnetic selection or click on the Complete button present in Tool Options.

[image: ../../_images/magnetic_selection_mode_2.gif]

Animation showing the second (interactive) mode of creating a magnetic selection.

The second, interactive mode, is to [image: mouseleft] + drag over a portion of an image.

[image: ../../_images/magnetic_selection_mode_mixed.gif]

The first and second mode can be mixed.

You can edit previous points by [image: mouseleft] dragging them. You can remove points by dragging it out of the canvas area. After a path is closed. Points can be undone with Shift + Z. A halfway done magnetic selection can be canceled with Esc or clicking on the Discard button in the Tool Options.

Important

Most of the behavior of the Magnetic Selection Tool is common to all other selection tools, please make sure to read Selections to learn more about this tool.

Hotkeys and Sticky keys

	Shift + [image: mouseleft] sets the subsequent selection to ‘add’. You can release the Shift key while dragging, but it will still be set to ‘add’. Same for the others.

	Alt + [image: mouseleft] sets the subsequent selection to ‘subtract’.

	Ctrl + [image: mouseleft] sets the subsequent selection to ‘replace’.

	Shift + Alt + [image: mouseleft] sets the subsequent selection to ‘intersect’.

New in version 4.2:

	Hovering your cursor over the dashed line of the selection, or marching ants as it is commonly called, turns the cursor into the move tool icon, which you [image: mouseleft] and drag to move the selection.

	[image: mouseright] will open up a selection quick menu with amongst others the ability to edit the selection.

[image: Menu of magnetic selection]

Tip

You can switch the behavior of the Alt key to use Ctrl instead by toggling the switch in Tool Settings in the General Settings.

Tip

This tool is not bound to any Hotkey, if you want to define one, go to Settings ‣ Configure Krita ‣ Keyboard Shortcuts and search for ‘Magnetic Selection Tool’, there you can select the shortcut you want. Check Shortcut Settings for more info.

Tool Options

	Mode
	This option is explained in the Pixel and Vector Selection Types section.

	Action
	This option is explained in the Pixel and Vector Selection Types section.

	Anti-aliasing
	This toggles whether or not to give selections feathered edges. Some people prefer hard-jagged edges for their selections.

	Filter Radius:
	Determine the radius of the edge detection kernel. This determines how aggressively the tool will interpret contrasts. Low values mean only the sharpest of contrast will be a seen as an edge. High values will pick up on subtle contrasts. The range of which is from 2.5 to 100.

	Threshold:
	From 0 to 255, how sharp your edge is, 0 is least while 255 is the most. Used in the interactive mode only.

	Search Radius:
	The area in which the tool will search for a sharp contrast within an image. More pixels means less precision is needed when placing the points, but this will require Krita to do more work, and thus slows down the tool.

	Anchor Gap:
	When using [image: mouseleft] + drag to place points automatically, this value determines the average gap between 2 anchors. Low values give high precision by placing many nodes, but this is also harder to edit afterwards. The pixels are in screen dimensions and not image dimensions, meaning it is affected by zoom.

[image: ../../_images/magnetic_selection_anchor_gap.png]

To the left: 20 px anchor gap, to the right: 40px anchor gap.

Note

Anti-aliasing is only available on Pixel Selection Mode.

 Zoom Tool

Zoom Tool

[image: toolzoom]

The zoom tool allows you to zoom your canvas in and out discretely. It can be found at the bottom of the toolbox, and you just activate it by selecting the tool, and doing [image: mouseleft] on the canvas will zoom in, while Ctrl + [image: mouseleft] will zoom out.

You can reverse this behavior in the Tool Options.

There’s a number of hotkeys associated with this tool, which makes it easier to access from the other tools:

	Ctrl + Space + [image: mouseleft] + drag on the canvas will zoom in or out fluently.

	Ctrl + [image: mousemiddle] + drag on the canvas will zoom in or out fluently.

	Ctrl + Alt + Space + [image: mouseleft] + drag on the canvas will zoom in or out with discrete steps.

	Ctrl + Alt + [image: mousemiddle] + drag on the canvas will zoom in or out with discrete steps.

	+ will zoom in with discrete steps.

	- will zoom out with discrete steps.

	1 will set the zoom to 100%.

	2 will set the zoom so that the document fits fully into the canvas area.

	3 will set the zoom so that the document width fits fully into the canvas area.

For more information on such hotkeys, check Navigation.

 Pan Tool

Pan Tool

[image: toolpan]

The pan tool allows you to pan your canvas around freely. It can be found at the bottom of the toolbox, and you just it by selecting the tool, and doing [image: mouseleft] + drag over the canvas.

There are two hotkeys associated with this tool, which makes it easier to access from the other tools:

	Space + [image: mouseleft] + drag over the canvas.

	[image: mousemiddle] + drag over the canvas.

For more information on such hotkeys, check Navigation.

 Welcome Screen

Welcome Screen

When you open Krita, starting from version 4.1.3, you will be greeted by a welcome screen.
This screen makes it easy for you to get started with Krita, as it provides a collection
of shortcuts for the most common tasks that you will probably be doing when you open Krita.

[image: ../_images/welcome_screen.png]
The screen is divided into 4 sections:

	The Start section there are links to create new document as well to open
an existing document.

	The Recent Documents section has a list of recently opened documents from
your previous sessions in Krita.

	The Community section provides some links to get help, Supporting
development of Krita, Source code of Krita and to links to interact with our
user community.

	The News section, which is disabled by default, when enabled provides you
with latest news feeds fetched from Krita website, this will help you stay up
to date with the release news and other events happening in our community.

Other than the above sections the welcome screen also acts as a drop area for
opening any document. You just have to drag and drop a Krita document or any supported
image files on the empty area around the sections to open it in Krita.

 Tutorials and How-tos

Tutorials and How-tos

Learn through developer and user generated tutorials to see Krita in action.

Contents:

	Clipping Masks and Alpha Inheritance

	Common Workflows
	Speed Painting and Conceptualizing

	Colorizing Line Art

	Painting

	Preparing Tiles and Textures

	Creating Pixel Art

	An Example Setup for Using Krita with an Eye Tracker
	Requirements

	Starting Krita

	Layout

	Summary

	Flat Coloring
	Understanding Layers

	Preparing your line art

	The Multiply Blending Mode

	Using Selections

	Using Masks

	Using Color to Alpha

	Fill Tool

	Selections

	Geometric tools

	Colorize Mask

	Conclusion

	Inking
	Pose

	Stroke smoothing

	Bezier curves and other tools

	Presets

	Preparing sketches for inking

	Super-thin lines

	Krita Brush Tips
	Animated Brushes

	Brush Tips: Bokeh

	Heightmap Bristle Brush Tips

	Brush Tips: Caustics

	Painting fur

	Gradient Map Brush Tips

	Brush-tips:Hair

	Brush-tips:Outline

	Brush-tips:Rainbow Brush

	Brush-tips:Sculpt-paint-brush

	Making An Azalea With The Transformation Masks
	Let’s get to drawing!

	Clone Layers

	Enter Transform Masks!

	Saving For The Web
	JPG

	PNG

	GIF

	Introduction to SeExpr
	What is SeExpr?

	Background

	Writing a script

	Managing your script using widgets

	Creating your first preset

	Changing existing presets

	Bundling your presets

 Clipping Masks and Alpha Inheritance

Clipping Masks and Alpha Inheritance

Krita doesn’t have clipping mask functionality in the manner that Photoshop and programs that mimic Photoshop’s functionality have. That’s because in Krita, unlike such software, a group layer is not an arbitrary collection of layers.
Rather, in Krita, group layers are composited separately from the rest of the stack, and then the result is added into the stack. In other words, in Krita group layers are in effect distinct images inside your image.

[image: Animation showing that groups are composed before the rest of composition takes place.]
The exception is when using pass-through mode, meaning that alpha inheritance won’t work right when turning on pass-through on the layer.

[image: An image showing the way layers composite in Krita.]
When we turn on alpha inheritance, the alpha-inherited layer keeps the same transparency as the layers below.

[image: An image showing how the alpha inheritance works and affects layers.]
Combined with group layers this can be quite powerful. A situation where this is particularly useful is the following:

[image: An image with line art and a layer for each flat of color.]
Here we have an image with line art and a layer for each flat of colors. We want to add complicated multi-layered shading to this, while keeping the neatness of the existing color flats.
To get a clipping mask working, you first need to put layers into a group. You can do this by making a group layer and drag-and-dropping the layers into it, or by selecting the layers you want grouped and pressing the Ctrl + G shortcut. Here we do that with the iris and the eye-white layers.

[image: An image showing how the alpha inheritance works and affects layers.]
We add a layer for the highlight above the other two layers, and add some white scribbles.

[image: Clipping mask step 3.]
[image: Clipping mask step 4.]
In the above, we have our layer with a white scribble on the left, and on the right, the same layer, but with alpha inheritance active, limiting it to the combined area of the iris and eye-white layers.

[image: Clipping mask step 5.]
Now there’s an easier way to set up alpha inheritance. If you select a layer or set of layers and press the Ctrl + Shift + G shortcut, you create a quick clipping group. That is, you group the layers, and a ‘mask layer’ set with alpha inheritance is added on top.

[image: Clipping mask step 6.]
[image: Clipping mask step 7.]
The fact that alpha inheritance can use the composited transparency from a combination of layers means that you can have a layer with the erase-blending mode in between, and have that affect the area that the layer above is clipped to.
Above, the lower image is exactly the same as the upper one, except with the erase-layer hidden. Filters can also affect the alpha inheritance:

[image: Filter layers and alpha inheritance.]
Above, the blur filter layer gives different results when in different places, due to different parts being blurred.

 Common Workflows

Common Workflows

Krita’s main goal is to help artists create a digital painting from scratch. Krita is used by comic artists, matte painters, texture artists, and illustrators around the world. This section explains some common workflow that artists use in Krita. When you open a new document in Krita for the first time, you can start painting instantly. The brush tool is selected by default and you just have to paint on the canvas. However, let us look at what artists do in Krita. Below are some of the common workflows used in Krita:

Speed Painting and Conceptualizing

Some artists work only on the digital medium, sketching and visualizing concepts in Krita from scratch. As the name suggests a technique of painting done within a matter of hours to quickly visualize the basic scene, character, look and feel of the environment or to denote the general mood and overall concept is called a speed painting. Finishing and finer details are not the main goals of this type of painting, but the representation of form value and layout is the main goal.

Some artists set a time limit to complete the painting while some paint casually. Speed painting then can be taken forward by adding finer details and polish to create a final piece. Generally, artists first block in the composition by adding patches and blobs of flat colors, defining the silhouette, etc. Krita has some efficient brushes for this situation, for example, the brushes under Block Tag like Block fuzzy, Block basic, layout_block, etc.

After the composition and a basic layout has been laid out the artists add as many details as possible in the given limited time, this requires a decent knowledge of forms, value perspective and proportions of the objects. Below is an example of speed paint done by David Revoy [https://www.davidrevoy.com/] in an hours time.

[image: Speedpaint of Pepper & Carrot by deevad (David Revoy).]
Artwork by David Revoy, license : CC-BY [https://creativecommons.org/licenses/by/3.0/]

You can view the recorded speed painting demo for the above image on Youtube [https://www.youtube.com/watch?v=93lMLEuxSLk].

Colorizing Line Art

Often an artist, for example a comic book colorist, will need to take a pencil sketch or other line art of some sort and use Krita to paint underneath it. This can be either an image created digitally or something that was done outside the computer and has been scanned.

Preparing the line art

If your images have a white or other single-tone background, you can use either of the following methods to prepare the art for coloring:

Place the line art at the top of the layer stack and set its layer blending mode to Multiply.

If you want to clean the line art a bit you can press the Ctrl + L shortcut or go to Filters ‣ Adjust ‣ Levels.

[image: Level filter dialog.]
You can clean the unwanted grays by moving the white triangle in the input levels section to left and darken the black by moving the black triangle to right.

If you draw in blue pencils and then ink your line art you may need to remove the blue lines first to do that go to Filters ‣ Adjust ‣ Color adjustment curves or press the Ctrl + M shortcut.

[image: Remove blue lines from image step 1.]
Now select Red from the drop-down, click on the top right node on the graph and slide it all the way down. Or you can click on the top right node and enter 0 in the input field. Repeat this step for Green too.

[image: Removing blue lines from scan step 2.]
Now the whole drawing will have a blue overlay, zoom in and check if the blue pencil lines are still visible slightly. If you still see them, then go to Blue Channel in the color adjustment and shift the top right node towards left a bit, Or enter a value around 190 (one that removes the remaining rough lines) in the input box.

[image: Remove blue lines from scans step 3.]
Now apply the color adjustment filter, yes we still have lots of blue on the artwork. Be patient and move on to the next step. Go to Filters ‣ Adjust ‣ Desaturate or press the Ctrl + Shift + U shortcut. Now select Max from the list.

[image: Remove blue lines from scans step 4.]

Hint

It is good to use non-photo-blue pencils to create the blue lines as those are easy to remove. If you are drawing digitally in blue lines use #A4DDED color as this is closer to non-photo-blue color.

You can learn more about doing a sketch from blue sketch to digital painting here in a tutorial by David Revoy [https://www.davidrevoy.com/article239/clean-blue-sketch-traditional-line-art-to-color-it-digital-with-in-krita].

After you have a clean black and white line art you may need to erase the white color and keep only black line art, to achieve that go to Filters ‣ Colors ‣ Color to Alpha… menu item. Use the dialog box to turn all the white areas of the image transparent. The Color Selector is set to White by default. If you have imported scanned art and need to select another color for the paper color then you would do it here.

[image: Color to alpha dialog box.]
This will convert the white color in your line art to alpha i.e. it will make the white transparent leaving only the line art. Your line art can be in grayscale color space, this is a unique feature in Krita which allows you to keep a layer in a color-space independent from the image.

Laying in Flat Colors

There are many ways to color a line art in Krita, but generally, these three are common among the artists.

	Paint blocks of color directly with block brushes.

	Fill with Flood Fill Tool.

	Use a Colorize Mask.

Blocking with brush

The first is the more traditional method of taking a shape brush or using the geometric tools to lay in color. This would be similar to using an analog marker or brush on paper. There are various block brushes in Krita, you can select Block Tag from the drop-down in the brush presets docker and use the brushes listed there.

Add a layer underneath your line art layer and start painting with the brush. If you want to correct any area you can press the E key and convert the same brush into an eraser. You can also use a layer each for different colors for more flexibility.

Filling with Flood Fill tool

The second method is to use the Flood fill tool to fill large parts of your line art quickly. This method generally requires closed gaps in the line art. To begin with this method place your line art on a separate layer. Then activate the flood fill tool and set the Grow selection to 2px, uncheck Limit to current layer if previously checked.

[image: Flood fill in krita.]
Choose a color from color selector and just click on the area you want to fill the color. As we have expanded the fill with grow selection the color will be filled slightly underneath the line art thus giving us a clean fill.

Colorize Mask

The third method is to take advantage of the built-in Colorize Mask. This is a powerful tool that can dramatically improve your workflow and cut you down on your production time. To begin coloring with the Colorize Mask, select your line art layer and click the Colorize Mask Editing Tool icon in the toolbar.

[image: Colorize Mask Editing Tool in the toolbar.]
With the Colorize Mask Editing Tool enabled, click on the canvas—this will add a Colorize Mask layer to your document and make your lineart look a little blurry. You can now lay down solid brush strokes to indicate which areas should be colored in what colors:

[image: Colorize Mask with brush strokes]
Whenever you press the Update button in the Tool Options, you will see which colors will fill which areas. You can continue to edit your brush strokes until you are happy with the result. To get a clean look of your painting, disable the “Edit key strokes” checkbox:

[image: Colorize Mask result]
Once you are done, you can convert the Colorize Mask layer into a paint layer in the Layers docker. Have a look at the Colorize Mask manual to learn more about this tool.

Changing Line Art Color

To change the color of your line art, you can use the Alpha Lock feature. In the layer docker, click on the rightmost icon of your line art layer. It’s the icon that looks like a little checker board:

[image: Alpha lock button]
When Alpha Lock is enabled, you can only change the color of the pixels, not their opacity—meaning that everything you paint will only change the colors of your existing lines, not add new lines.

If you want to change the color of your line art to one solid color, you can now use the bucket fill tool and it will only apply to your existing lines. Or if you want to apply several different colors to specific areas of your line art, you can quickly paint over your line art with a broad brush:

[image: Changing Line Art Color]

Painting

Starting from chaos

Here, you start by making a mess through random shapes and texture, then taking inspirations from the resulting chaos you can form various concepts. It is kind of like making things from clouds or finding recognizable shapes of things in abstract and random textures. Many concept artists work with this technique.

You can use brushes like the shape brush, or the spray brush to paint a lot of different shapes, and from the resulting noise, you let your brain pick out shapes and compositions.

[image: Starting a painting from chaotic sketch.]
You then refine these shapes to look more like shapes you think they look, and paint them over with a normal paintbrush. This method is best done in a painting environment.

Starting from a value based underground

This method finds its origins in old oil-painting practice: You first make an under-painting and then paint over it with color, having the dark underground shine through.

With Krita you can use blending modes for this purpose. Choosing the color blending mode on a layer on top allows you to change the colors of the image without changing the relative luminosity. This is useful, because humans are much more sensitive to tonal differences than the difference in saturation and hue. This’ll allow you to work in grayscale before going into color for the polishing phase.

You can find more about this technique here [https://www.davidrevoy.com/article185/tutorial-getting-started-with-krita-1-3-bw-portrait].

Preparing Tiles and Textures

Many artists use Krita to create textures for 3d assets used for games animation, etc. Krita has many texture templates for you to choose and get started with creating textures. These templates have common sizes, bit depth and color profiles that are used for texturing workflow.

Krita also has a real-time seamless tile mode to help texture artist prepare tiles and texture easily and check if it is seamless on the fly. The tiled mode is called wrap-around mode, to activate this mode got to View ‣ Wrap Around Mode. Now when you paint the canvas is tiled in real-time allowing you to create seamless pattern and texture, it is also easy to prepare interlocking patterns and motifs in this mode.

Creating Pixel Art

Krita can also be used to create a high definition pixel painting. The pixel art look can be achieved by using Index color filter layer and overlaying dithering patterns. The general layer stack arrangement is as shown below.

[image: Layer stack setup for pixel art.]
The index color filter maps specific user-selected colors to the grayscale value of the artwork. You can see the example below, the strip below the black and white gradient has an index color applied to it so that the black and white gradient gets the color selected to different values.

[image: Color mapping in index color to grayscale.]
You can choose the required colors and ramps in the index color filter dialog as shown below.

[image: Index color filter dialog.]
Dithering can be used to enhance the look of the art and to ease the banding occurred by the index color filter. Krita has a variety of dithering patterns by default, these can be found in pattern docker. You can use these patterns as fill layer, then set the blend mode to overlay and adjust the opacity according to your liking. Generally, an opacity range of 10% - 25% is ideal.

Paint the artwork in grayscale and add an index color filter layer at the top then add the dithering pattern fill layer below the index color filter but above the artwork layer, as shown in the layer stack arrangement above. You can paint or adjust the artwork at any stage as we have added the index color filter as a filter layer.

You can add different groups for different colors and add different dithering patterns for each group.

Below is an example painted with this layer arrangement.

[image: Pixel art done in Krita.]

 An Example Setup for Using Krita with an Eye Tracker

An Example Setup for Using Krita with an Eye Tracker

Attention

This is not a reference document. It is based on the experiences
of only one user. The information might not be as applicable when using
different eye tracker devices or different control software.

Eye tracker devices are becoming more affordable and they are finding their way
into more computer setups. Although these devices are used by various types
of users, we will mainly focus on users who have physical disabilities and
can only use their eyes to interact with the computer.

If you don’t already have experience with such a case, here are a few things
you’ll need to know before you start:

	The eye tracker needs to be properly calibrated such that the pointer will be
very close to the point where the user is looking at. This might be difficult
to achieve, especially if the positioning of the eye tracker with respect to
the user can not be fixed between different sessions.

	The lack of accuracy in control makes it nearly impossible to hit small areas
on the screen such as small buttons or menu items. Corners and edges
of the screen might be difficult to reach too. You also don’t want to put
interface elements close to one another since it increases the chances of
selecting the wrong element accidentally.

	Mouse operations like single click, double click, right click, drag and drop,
etc. all demand extra effort in the form of switching modes in the program
that controls the device. You will want to keep these switches to a minimum
so that the work will not be interrupted frequently.

	Switching the mode doesn’t automatically start the operation. You need
an extra action for that. In our case, this action is “dwelling”.
For example, to start a program, you switch to the left double click mode and
then dwell on the icon for the application to activate the double click.
Adjusting the dwell time is an important tradeoff: shorter dwell times allow
for faster work but are also more error-prone.

Requirements

Besides the obvious requirement of having an eye tracker device, you will
also need a control program that will let you interact with the device. When
you obtain the device, such a program will most probably be provided to you
but that program might not be sufficient for using the device with Krita.

One of the basic functionalities of these programs is to emulate mouse clicks.
In our case, the program provides a hovering menu which includes large buttons
for switching modes between left/right mouse buttons and single/double clicks.
After selecting the mode, the hovering menu can be collapsed so that it will
leave more screen space for the application.

In order to make them easier to configure and use, some programs include only
basic modes like single clicks. This is sufficient for many popular
applications like e-mail agents and browsers, but for Krita you need
the drag and drop mode to be able to draw. If the provided control software
doesn’t support this mode (usually called “mouse emulation”), you can contact
the manufacturer of the device for assistance, or look for open source options.

Starting Krita

Basically, setting the control program to left double click mode and
dwelling on the Krita icon on the desktop would be enough to start up Krita
but there are some issues with this:

	On startup, Krita asks you to choose a template. It’s likely that you don’t
want to go through this setting every time and just want to start
with a blank template.

	Later, saving the document will require interacting with the file save
dialog which is not very friendly for this type of use.

A workaround for these issues could be creating and saving a blank template
and running a script that will copy this template under a new name and send it
to Krita. Here’s an example script for Windows which uses a timestamp suffix
to make sure that each file will have a different name (replace USERNAME
with the actual user name):

@echo off
for /f "tokens=2 delims==" %%a in ('wmic OS Get localdatetime /value') do set "dt=%%a"
set "YY=%dt:~2,2%" & set "YYYY=%dt:~0,4%" & set "MM=%dt:~4,2%" & set "DD=%dt:~6,2%"
set "HH=%dt:~8,2%" & set "Min=%dt:~10,2%" & set "Sec=%dt:~12,2%"
set "datestamp=%YYYY%%MM%%DD%" & set "timestamp=%HH%%Min%%Sec%"
set "fullstamp=%YYYY%-%MM%-%DD%_%HH%-%Min%-%Sec%"
set filename=USERNAME_%fullstamp%.kra
copy "C:\Users\USERNAME\Pictures\blank.kra" "%filename%"
start "C:\Program Files\Krita (x64)\bin\krita.exe" "%filename%"

Double clicking on this script will create a new Krita file in the same folder
as the script file. Since the file already has a name, the file save dialog
will be avoided. Combined with autosaving, this can be an efficient way
to save your work.

Tip

Storing these files directly on a cloud storage service will be even safer.

You might also deal with some timing issues when starting Krita:

	After the icon for Krita or for the script is double clicked and Krita starts
loading, lingering on the icon will start a second instance.

	Similarly, after double clicking, if another window is accidentally brought
to the foreground, Krita might start up partially visible behind that window.

To prevent these problems, it will help if the users train themselves
to look at some harmless spot (like an empty space on the desktop)
until Krita is loaded.

Layout

Since the interface elements need to be large, you have to use the screen area
economically. Running in full-screen mode and getting rid of unused menus
and toolbars are the first steps that you can take. Here’s the screenshot
of our layout:

[image: Screenshot of Krita when used with an eye tracker.]
You will want to put everything you need somewhere you can easily access.
For our drawings, the essential items are brushes and colors. So we’ve decided
to place permanent dockers for these.

Krita features many brushes but the docker has to contain a limited number
of those so that the brush icons can be large enough. We recommend that
you create a custom brush preset to your own liking.

There are various tools for selecting color but most of them are not easily
usable since they require quite a high level of mouse control. The Python
Palette Docker is the simplest to use where you select from a set of predefined
colors, similar to brush presets. Again, similarly to brush selection,
it will help to create a custom set of favorite colors.

Once you are happy with your layout, another feature that will help you is
to lock the dockers. It’s possible to accidentally close or move dockers.
For example, in drag and drop mode you can accidentally grab a docker and
drag it across the screen. To prevent this, put the following setting
in the kritarc file:

LockAllDockerPanels=true

(Check the Krita FAQ for how to find the configuration kritarc file on your system.)

If you’re using a hovering mouse control menu like we do, you also have
to figure out where to place it when it’s collapsed. Put it somewhere where
it will be easily accessible but where it will not interfere with Krita.
On the screenshot you can see it at the left edge of the screen.

Summary

In summary, we work as explained below.

To start Krita:

	On the desktop, pull up the hovering mouse menu and select left double
click mode.

	Double click on the new drawing creation script. Look away at some
harmless spot until Krita loads.

Drawing with Krita:

	Switch to left single click mode.

	Select a brush and/or color using the dockers.

	Switch to drag and drop mode. You’re ready to draw.

	Go to the point where you want to start a stroke and dwell until
dragging starts (this emulates pressing and holding your finger
on the mouse button).

	Draw.

	When you want to finish the current stroke, dwell at the ending point
until you get out of dragging (this emulates lifting your finger
from the mouse button).

	Repeat the whole process.

Finishing:

	Switch to left single click mode.

	Click on the button for closing the window.

	When warned about unsaved changes, click the button for saving the file.

 Flat Coloring

Flat Coloring

So you’ve got a cool black on white drawing, and now you want to color it! The thing we’ll aim for in this tutorial is to get your line art colored in with flat colors. So no shading just yet. We’ll be going through some techniques for preparing the line art, and we’ll be using the layer docker to put each color on a separate layer, so we can easily access each color when we add shading.

Note

This tutorial is adapted from this tutorial [http://theratutorial.tumblr.com/post/66584924501/flat-colouring-in-the-kingdom-of-2d-layers-are] by the original author.

Understanding Layers

To fill line art comfortably, it’s best to take advantage of the layerstack. The layer stack is pretty awesome, and it’s one of those features that make digital art super-convenient.

In traditional art, it is not uncommon to first draw the full background before drawing the subject. Or to first draw a line art and then color it in. Computers have a similar way of working.

In programming, if you tell a computer to draw a red circle, and then afterwards tell it to draw a smaller yellow circle, you will see the small yellow circle overlap the red circle. Switch the commands around, and you will not see the yellow circle at all: it was drawn before the red circle and thus ‘behind’ it.

This is referred to as the “drawing order”. So like the traditional artist, the computer will first draw the images that are behind everything, and layer the subject and foreground on top of it. The layer docker is a way for you to control the drawing order of multiple images, so for example, you can have your line art drawn later than your colors, meaning that the lines will be drawn over the colors, making it easier to make it neat!

Other things that a layer stack can do are blending the colors of different layers differently with blending modes, using a filter in the layer stack, or using a mask that allows you to make parts transparent.

Tip

Programmers talk about transparency as ‘’Alpha’’, which is because the ‘a’ symbol is used to present transparency in the algorithms for painting one color on top of another. Usually when you see the word ‘’Alpha’’ in a graphics program, just think of it as affecting the transparency.

Preparing your line art

Put the new layer underneath the layer containing the line art (drag and drop or use the up/down arrows for that), and draw on it.

[image: Layer structure for flatting in krita.]
…And notice nothing happening. This is because the white isn’t transparent. You wouldn’t really want it to either, how else would you make convincing highlights? So what we first need to do to color in our drawing is prepare our line art. There’s several methods of doing so, each with varying qualities.

The Multiply Blending Mode

So, typically, to get a black and white line art usable for coloring, you can set the blending mode of the line art layer to Multiply. You do this by selecting the layer and going to the drop-down that says Normal and setting that to Multiply.

[image: Blend mode setup of line art flat coloring.]
And then you should be able to see your colors!

Multiply is not a perfect solution however. For example, if through some image editing magic I make the line art blue, it results into this:

[image: Effects of multiply blend mode.]
This is because multiply literally multiplies the colors. So it uses maths!

What it first does is take the values of the RGB channels, then divides them by the max (because we’re in 8bit, this is 255), a process we call normalising. Then it multiplies the normalized values. Finally, it takes the result and multiplies it with 255 again to get the result values.

	
	Pink

	Pink (normalized)

	Blue

	Blue (normalized)

	Normalized, multiplied

	Result

	Red

	222

	0.8705

	92

	0.3607

	0.3139

	80

	Green

	144

	0.5647

	176

	0.6902

	0.3897

	99

	Blue

	123

	0.4823

	215

	0.8431

	0.4066

	103

This isn’t completely undesirable, and a lot of artists use this effect to add a little richness to their colors.

Advantages

Easy, can work to your benefit even with colored lines by softening the look of the lines while keeping nice contrast.

Disadvantages

Not actually transparent. Is a little funny with colored lines.

Using Selections

The second method is one where we’ll make it actually transparent. In other programs this would be done via the channel docker, but Krita doesn’t do custom channels, instead it uses Selection Masks to store custom selections.

	Duplicate your line art layer.

	Convert the duplicate to a selection mask. [image: mouseright] the layer, then Convert ‣ to Selection Mask.

[image: ../_images/Krita_filling_lineart_selection_1.png]

	Invert the selection mask. Select ‣ Invert Selection.

	Make a new layer, and do Edit ‣ Fill with Foreground Color.

[image: ../_images/Krita_filling_lineart_selection_2.png]

And you should now have the line art on a separate layer.

Advantages

Actual transparency.

Disadvantages

Doesn’t work when the line art is colored.

Using Masks

This is a simpler variation of the above.

	Make a filled layer underneath the line art layer.

[image: ../_images/Krita_filling_lineart_mask_1.png]

	Convert the line art layer to a transparency mask [image: mouseright] the layer, then Convert ‣ to Transparency Mask.

[image: ../_images/Krita_filling_lineart_mask_2.png]

	Invert the transparency mask by going to Filter ‣ Adjust ‣ Invert.

[image: ../_images/Krita_filling_lineart_mask_3.png]

Advantages

Actual transparency. You can also very easily doodle a pattern on the filled layer where the mask is on without affecting the transparency.

Disadvantages

Doesn’t work when the line art is colored already. We can still get faster.

Using Color to Alpha

By far the fastest way to get transparent line art.

	Select the line art layer and apply the Filter: Color to Alpha dialog under Filters ‣ Colors ‣ Color to Alpha… menu item. The default values should be sufficient for line art.

[image: ../_images/Krita_filling_lineart_color_to_alpha.png]

Advantages

Actual transparency. Works with colored line art as well, because it removes the white specifically.

Disadvantages

You’ll have to lock the layer transparency or separate out the alpha via the right-click menu if you want to easily color it.

Coloring the image

Much like preparing the line art, there are many different ways of coloring a layer.

You could for example fill in everything by hand, but while that is very precise it also takes a lot of work. Let’s take a look at the other options, shall we?

Fill Tool

[image: Fill-tool icon.]In most cases the fill-tool can’t deal with the anti-aliasing (the soft edge in your line art to make it more smooth when zoomed out) In Krita you have the grow-shrink option. Setting that to say… 2 expands the color two pixels.

Threshold decides when the fill-tool should consider a different color pixel to be a border. And the feathering adds an extra soft border to the fill.

Now, if you click on a gapless-part of the image with your preferred color… (Remember to set the opacity to 1.0!)

Depending on your line art, you can do flats pretty quickly. But setting the threshold low can result in little artifacts around where lines meet:

[image: Colors filled with fill tool.]
However, setting the threshold high can end with the fill not recognizing some of the lighter lines. Besides these little artifacts can be removed with the brush easily.

Advantages

Pretty darn quick depending on the available settings.

Disadvantages

Again, not great with gaps or details. And it works best with aliased line art.

Selections

Selections work using the selection tools.

[image: Selecting with selection tools for filling color.]
For example with the Path Selection Tool you can easily select a curved area, and the with Shift + [image: mouseleft] (not [image: mouseleft] + Shift, there’s a difference!) you can easily add to an existing selection.

[image: Selection mask in Krita.]
You can also edit the selection if you have Select ‣ Show Global Selection Mask turned on. Then you can select the global selection mask, and paint on it. (Above with the alternative selection mode, activated in the lower-left corner of the stats bar)

When done, select the color you want to fill it with and press the Shift + Backspace shortcut.

[image: Filling color in selection.]
You can save selections in selection masks by [image: mouseright] a layer, and then going to Add ‣ Local Selection. You first need to deactivate a selection by pressing the circle before adding a new selection.

This can serve as an alternative way to split out different parts of the image, which is good for more painterly pieces:

[image: Result of coloring made with the help of selection tools.]

Advantages

A bit more precise than filling.

Disadvantages

Previewing your color isn’t as easy.

Geometric tools

So you have a tool for making rectangles or circles. And in the case of Krita, a tool for bezier curves.
Select the path tool ([image: path tool]), and set the tool options to fill=foreground and outline=none. Make sure that your opacity is set to 1.00 (fully opaque).

By clicking and holding, you can influence how curvy a line draw with the path tool is going to be. Letting go of the mouse button confirms the action, and then you’re free to draw the next point.

[image: Filling color in line art using path tool.]
You can also erase with a geometric tool. Just press the E key or the eraser button.

[image: Erasing with path tool.]

Advantages

Quicker than using the brush or selections. Also decent with line art that contains gaps.

Disadvantages

Fiddly details aren’t easy to fill in with this. So I recommend skipping those and filling them in later with a brush.

Colorize Mask

So it works like this:

	Select the colorize mask tool.

	Tick the layer you’re using.

	Paint the colors you want to use on the colorize mask.

	Click update to see the results:

[image: Coloring with colorize mask.]
When you are satisfied, [image: mouseright] the colorize mask, and go to Convert ‣ Paint Layer. This will turn the colorize mask to a generic paint layer. Then, you can fix the last issues by making the line art semi-transparent and painting the flaws away with a pixel art brush.

[image: Result from the colorize mask.]
Then, when you are done, split the layers via Layer ‣ Split ‣ Split Layer. There are a few options you can choose, but the following should be fine:

[image: Slitting colors into islands.]
Finally, press Ok and you should get the following. Each color patch it on a different layer, named by the palette in the menu and alpha locked, so you can start painting right away!

[image: Resulting color islands from split layers.]

Advantages

Works with anti-aliased line art. Really quick to get the base work done. Can auto-close gaps.

Disadvantages

No anti-aliasing of its own. You have to choose between getting details right or the gaps auto-closed.

Conclusion

I hope this has given you a good idea of how to fill in flats using the various techniques, as well as getting a hand of different Krita features. Remember that a good flat filled line art is better than a badly shaded one, so keep practicing to get the best out of these techniques!

 Inking

Inking

The first thing to realize about inking is that unlike anatomy, perspective, composition or color theory, you cannot compensate for lack of practice with study or reasoning. This is because all the magic in drawing lines happens from your shoulder to your fingers, very little of it happens in your head, and your lines improve with practice.

On the other hand, this can be a blessing. You don’t need to worry about whether you are smart enough, or are creative enough to be a good inker. Just dedicated. Doubtlessly, inking is the Hufflepuff of drawing disciplines.

That said, there are a few tips to make life easy:

Pose

Notice how I mentioned up there that the magic happens between your shoulders and fingers? A bit weird, not? But perhaps, you have heard of people talking about adopting a different pose for drawing.

You can in fact, make different strokes depending on which muscles and joints you use to make the movement: The Fingers, the wrist and lower-arm muscles, the elbow and upper-arm muscles or the shoulder and back muscles.

[image: Finger movement.]
[image: Wrist movement.]
Generally, the lower down the arm the easier it is to make precise strokes, but also the less durable the joints are for long term use. We tend to start off using our fingers and wrist a lot during drawing, because it’s easier to be precise this way. But it’s difficult to make long strokes, and furthermore, your fingers and wrist get tired far quicker.

[image: Arm movement.]
[image: Stroke shoulder movement.]
Your shoulders and elbows on the other hand are actually quite good at handling stress, and if you use your whole hand you will be able to make long strokes far more easily. People who do calligraphy need shoulder based strokes to make those lovely flourishes (personally, I can recommend improving your handwriting as a way to improve inking), and train their arms so they can do both big and small strokes with the full arm.

To control pressure in this state effectively, you should press your pinky against the tablet surface as you make your stroke. This will allow you to precisely judge how far the pen is removed from the tablet surface while leaving the position up to your shoulders. The pressure should then be put by your elbow.

So, there are not any secret rules to inking, but if there is one, it would be the following: The longer your stroke, the more of your arms you need to use to make the stroke.

Stroke smoothing

So, if the above is the secret to drawing long strokes, that would be why people having been inking lovely drawings for years without any smoothing? Then, surely, it is decadence to use something like stroke smoothing, a short-cut for the lazy?

[image: Rigger brush demonstration.]

Example of how a rigger brush can smooth the original movement (here in red)

Not really. To both, actually. Inkers have had a real-life tool that made it easier to ink, it’s called a rigger-brush, which is a brush with very long hairs. Due to this length it sorta smooths out shakiness, and thus a favoured brush when inking at three in the morning.

With some tablet brands, the position events being sent aren’t very precise, which is why we having basic smoothing to apply the tiniest bit of smoothing on tablet strokes.

On the other hand, doing too much smoothing during the whole drawing can make your strokes very mechanical in the worst way. Having no jitter or tiny bumps removes certain humanity from your drawings, and it can make it impossible to represent fabric properly.

Therefore, it’s wise to train your inking hand, yet not to be too hard on yourself and refuse to use smoothing at all, as we all get tired, cold or have a bad day once in a while. Stabilizer set to 50 or so should provide a little comfort while keeping the little irregularities.

Bezier curves and other tools

So, you may have heard of a French curve. If not, it’s a piece of plastic representing a stencil. These curves are used to make perfectly smooth curves on the basis of a sketch.

In digital painting, we don’t have the luxury of being able to use two hands, so you can’t hold a ruler with one hand and adjust it while inking with the other. For this purpose, we have instead Bezier curves, which can be made with the Bezier Curve Tool.

You can even make these on a vector layer, so they can be modified on the fly.

The downside of these is that they cannot have line-variation, making them a bit robotic.

You can also make small bezier curves with the Assistant Tool, amongst the other tools there.

Then, in the freehand brush tool options, you can tick Snap to Assistants and start a line that snaps to this assistant.

Presets

So here are some things to consider with the brush-presets that you use:

Anti-aliasing versus jagged pixels

A starting inker might be inclined to always want to use anti-aliased brushes, after all, they look so smooth on the screen. However, while these look good on screen, they might become fuzzy when printing them. Therefore, Krita comes with two default types. Anti-aliased brushes like ink_brush_25 and slightly aliased brushes like ink_tilt, with the latter giving better print results. If you are trying to prepare for both, it might be an idea to consider making the inking page 600dpi and the color page 300dpi, so that the inking page has a higher resolution and the ‘jaggies’ aren’t as visible. You can turn any pixel brush into an aliased brush, by going the F5 key and ticking Sharpness.

Texture

Do you make smooth ‘wet’ strokes? Or do you make textured ones? For the longest time, smooth strokes were preferred, as that would be less of a headache when entering the coloring phase. Within Krita there are several methods to color these easily, the colorize mask being the prime example, so textured becomes a viable option even for the lazy amongst us.

[image: Type of strokes.]

Left: No texture, Center: Textured, Right: Predefined Brush tip.

Pressure curve

Of course, the nicest lines are made with pressure sensitivity, so they dynamically change from thick to thin. However, different types of curves on the pressure give different results. The typical example is a slightly concave line to create a brush that more easily makes thin lines.

[image: Pressure curve for Ink Gpen preset brush.]

Ink_Gpen_25 is a good example of a brush with a concave pressure curve. This curve makes it easier to make thin lines.

[image: Convex inking brush.]

Conversely, here’s a convex brush. The strokes are much rounder.

[image: Ink fill circle preset brush.]

Fill_circle combines both into an s-curve, this allows for very dynamic brush strokes.

[image: Inverse convex to speed parameter.]

Pressure isn’t the only thing you can do interesting things with, adding an inverse convex curve to speed can add a nice touch to your strokes.

Preparing sketches for inking

So, you have a sketch and you wish to start inking it. Assuming you’ve scanned it in, or drew it, you can try the following things to make it easier to ink.

Opacity down to 10%

Put a white (just press the Backspace key) layer underneath the sketch. Turn down the opacity of the sketch to a really low number and put a layer above it for inking.

Make the sketch colored

Put a layer filled with a color you like between the inking and sketch layer. Then set that layer to ‘screen’ or ‘addition’, this will turn all the black lines into the color! If you have a transparent background, or put this layer into a group, be sure to tick the alpha-inherit symbol!

Make the sketch colored, alternative version

Or, [image: mouseright] on the layer, go to layer properties, and untick ‘blue’. This works easier with a single layer sketch, while the above works best with multi-layer sketches.

Super-thin lines

If you are interested in super-thin lines, it might be better to make your ink at double or even triple the size you usually work at, and, only use an aliased pixel brush. Then, when the ink is finished, use the fill tool to fill in flats on a separate layer, split the layer via Layer ‣ Split ‣ Layer Split, and then resize to the original size.

[image: Aliased resize.]
This might be a little of an odd way of working, but it does make drawing thin lines trivial, and it’s cheaper to buy RAM so you can make HUGE images than to spent hours on trying to color the thin lines precisely, especially as colorize mask will not be able to deal with thin anti-aliased lines very well.

Tip

David Revoy made a set of his own inking tips for Krita and explains them in this youtube video [https://www.youtube.com/watch?v=xvQ5l0edsq4].

 Krita Brush Tips

Krita Brush Tips

Krita Brush-tips is an archive of brush-modification tutorials done by the krita-foundation.tumblr.com account based on user requests.

Topics:

	Animated Brushes

	Brush Tips: Bokeh

	Heightmap Bristle Brush Tips

	Brush Tips: Caustics

	Painting fur

	Gradient Map Brush Tips

	Brush-tips:Hair

	Brush-tips:Outline

	Brush-tips:Rainbow Brush

	Brush-tips:Sculpt-paint-brush

 Animated Brushes

Animated Brushes

Animated brushes are officially called ‘image hoses’, and they’re quite fun. They are basically brush tips with multiple image files.

The typical way to make them is to first draw the ‘frames’ on a small canvas, per layer:

[image: Krita Animated brush tip layer setup.]
You can use the Alt + [image: mouseleft] shortcut on the layer thumbnails to isolate layers without hiding them.

[image: Animated brush tips isolated layers.]
When done you should have a mess like this.

Go into the brush settings (F5 key), and go to predefined brush-tips, and click stamp. You will get this window.

[image: Predefined brush tips dialog.]
And then use style animated and selection mode set to random.

Krita uses Gimp’s image hose format which allows for random selection of the images, angle based selection, pressure based selection, and incremental selection.

When you create a brushtip, Krita will automatically switch to it for the current brush, but you will always be able to find it in the predefined brushes tab.

[image: Result of an animated brush.]
And now you can use it to paint trees! (for example)

You can also use animated brush tips to emulate bristle brush tips that go from very fine bristles to a fully opaque stamp based on pressure, like a dry paintbrush might do. Or make incremental patterns like the ones you see on porcelain.

[image: Incremental brush tip example.]

 Brush Tips: Bokeh

Brush Tips: Bokeh

Question

How do you do bokeh effects?

First, blur your image with the Lens Blur to roughly 50 pixels.

[image: Krita bokeh brush setup background.]
Take smudge_textured, add scattering, turn off tablet input.

[image: Krita bokeh brush tips scatter settings.]
Change the brush-tip to ‘Bokeh’ and check ‘overlay’ (you will want to play with the spacing as well).

[image: Choosing the brush tip for the bokeh effect.]
Then make a new layer over your drawing, set that to ‘lighter color’ (it’s under lighter category) and painter over it with your brush.

[image: Paint the bokeh circles on the background.]
Overlay mode on the smudge brush allows you to sample all the layers, and the ‘lighter color’ blending mode makes sure that the Bokeh circles only show up when they are a lighter color than the original pixels underneath. You can further modify this brush by adding a ‘fuzzy’ sensor to the spacing and size options, changing the brush blending mode to ‘addition’, or by choosing a different brush-tip.

 Heightmap Bristle Brush Tips

Heightmap Bristle Brush Tips

When looking at oil paintings, especially the impressionistic ones, it is hard not to be in awe of the effect the visible brush strokes have on the painting. While a digital painting program is a fundamentally different medium from the oil paint one, we can utilize some tricks to get visible brush strokes.

The simplest way to get a visible brush stroke is to select a predefined brush. If you select one with several separate dots, and lower the spacing to 0.02, you can get a sort of brush stroke effect. But we can do better, for example, how about a brush which gives more coverage, the harder you press?

[image: Image showing a simple bristle-like stroke.]

Using the sharpness option.

We can achieve that effect with the sharpness option. Consider the following brush tip. We’ve used the gradient tool to draw two concentric foreground-to-transparent gradients side by side on a white-filled layer. Then we used the elliptical selection tool with Edit ‣ Copy Merged to cut out an ellipse shape, and then used the clipboard option in the predefined brush chooser to create a new brush.

[image: Simple brush with many gradients as a stroke.]

By default, this isn’t a very interesting brush. But when selecting the Sharpness option available in the pixel brush engine, it gives a totally different result:

[image: Image as above but then with sharpness option enabled.]

The darker areas of the brush will be drawn first, and the lightest areas of the brush only at very high pressure. By adding more soft dots to the whole, we can get an even more interesting brush:

[image: Image as above but then with a complexer main image.]

In effect, we are creating a kind of heightmap here. With the darkest dots representing the longest hairs, and the lightest pixels the shortest. With some effort, you can represent a ton of different brushes this way:

[image: A collection of potential bristle brushes with a little image of the kind of brush that is being simulated.]

By putting the darkest spot into different locations, we can get a variety of strokes.

But we can go even further. For example, how about making this a lightness brush? This can be done by…

	Opening the brush in Krita.

	Inverting via Filter ‣ Adjust ‣ Invert

	Duplicating the layer.

	Then using Filter ‣ Map ‣ Phongbump Map on the topmost layer.

	Then select the lowest layer. [image: mouseright] for the context menu, then select convert ‣ to transparency mask.

	Finally, to soften the result, you can merge the layer and apply a bit of motion blur. Especially when using together with rotation set to drawing angle or tilt, some plain horizontal motion blur will reduce stray pixel artifacts.

Then select all, copy, and use the clipboard function in the predefined brushes menu, and make sure to untick Create Mask From Color. What we’re effectively doing here is ensuring that the transparency is being used for the sharpness, while having the color be using for the lightness map.

Now select the brush and set the Brush mode to Lightness Map, and draw with a color that isn’t black for the best effect.

[image: Image showing various lightness map strokes.]

A variety of brushes are made with the lightness method. You can adjust the brush by changing the neutral tone, brightness and contrast in the brush settings, or by adjusting these beforehand while making the brush. A good lightness brush has both a bit of darkness and brightness.

Tip

For Step 4 you can also use the edge detection filter (with modes set to ‘top edge’ or ‘bottom edge’) or the emboss filters.

We can also do similar things for the gradient brush tip:

[image: Image showing various gradient strokes.]

The above effect is all achieved with the same brush tip set to Gradient Map. By increasing the contrast or changing the neutral tone, the center point of the gradient is adjusted, giving different options in the same brush.

However, this sharpness option is not available for the color smudge brush, so what to do there?

Animated pressure brush

You can make brush tips that are animated.

If we take our example brush, and duplicate that layer 16 times or so.

Now, for each layer, start at the top, going to the bottom, you will want to apply the Filter ‣ Adjust ‣ Threshold, with different values. Starting from 255, and then each time, decrease the value by 16. So, the topmost layer should be at 255, next layer 240, the layer after that 224 and so forth. Eventually, you should have each layer have less coverage than the one above that. Now, go to the predefined brushes tab, and select Stamp. There select Animated for Style and Pressure for Selection Mode.

If everything went right, you now have a brush-tip that can be used with the color smudge brush. For a brush that uses the gradient map, or the lightness mode, a similar principle applies, except you first [image: mouseright] for the context menu, then select Split Alpha ‣ Alpha into Mask, and then only apply the threshold to the transparency mask. A softer result can be made by using the Filter ‣ Adjust ‣ Levels or Filter ‣ Adjust ‣ Curves to isolate the pixels for the given amount of pressure.

 Brush Tips: Caustics

Brush Tips: Caustics

Question

Could you do a tutorial on how to recreate the look of light refracting in water?

Sure, caustics, it’s not like it’s the most complicated effect known to CG graphics… Okay, so the first thing is that light effects never work in isolation: you need to be spot on with colors and other effects to make it work. So we first need to recreate the surroundings a bit.

[image: Background gradient for creating caustic effects.]
We set up something simple with gradients. Some radial, some linear. The eraser mode works with gradients as well, so use that to your advantage!

We create a simple smudge brush by taking smudge_soft and adding scattering to it, as well as an s-curve on the smudge length.

[image: Brush Settings.]
And then we build up a quick base:

[image: Building a base for the caustic effects from the brush.]
Note how the smudge brush here is used not just to mix areas, but also to create definition of borders by lowering the scatter. (If you reverse the pressure curve on the scatter, this’ll be easily done by increasing the pressure on the stylus)

Now for the real magic. Caustics are a bit hairy, which means it’s a good candidate for the sketch brush engine.

[image: Settings for the brush to create the caustic lines.]
Take sketch_ink_big, and add pressure to the Line width while setting Density under the Brush size to 100%. This makes it extra hairy.

[image: Set color blending mode the color dodge.]
Set the brush blending mode to Color Dodge, and select the color of our caustics. Color dodge will cause a move towards white by applying special dodge color maths to our brush dabs instead of the Normal averaging color maths.

Outside of pressure for making varying strokes, glowiness for the light and extra density, we also want to have the size of the line decrease the further away it is…

[image: Setup the perspective assistant.]
Then, use the assistant editor tool to add a perspective grid. It doesn’t need to be perfectly in perspective, because we’ll only use it for the perspective sensor.

[image: Select the perspective parameter in the brush settings.]
This will cause the brush to give smaller lines the further it registers on the perspective assistant. (It only works per single perspective assistant, making it not very good for chaining, but for our purpose this is good.)

Then you start slowly building up your lines. (Make sure to make a copy of the layer. The color dodge blending doesn’t work well on a separate layer, so do it on one that also has the ground on it.)

[image: Painting the caustics.]
Make sure to try and follow the shapes you made. (I failed at this) The great thing about the sketch brush is that it causes those little ‘melt-togethers’ where two lines cross. This is only per stroke, so make a lot of long ongoing strokes with this brush to make use of it.

[image: Adding a little gradient.]
Then take the gradient tool, and set the blending mode to color and the paint tool to a light blue, so we can get in the bluish atmospheric effect.

[image: Adding some atmospheric effect.]
Then use the airbrush_pressure with the line tool to make some light-shafts of different sizes on a separate layer. (Don’t forget you can use the eraser mode for subtle erasing with the line tool as well)

[image: Add some light shafts.]
Set the blending mode to color dodge and lower the opacity.

[image: Change the blend mode to color dodge of the layer.]
Finally, polish the piece with the airbrush tool and some local color picking.

[image: Final polish.]

Final Result

 Painting fur

Painting fur

Question

What brushes are best for fur textures?

[image: Some example of furs and hair.]
So typically, you see the same logic applied on fur as on regular Brush-tips:Hair.

However, you can make a brush a little easier by using the Gradient, Mix and HSV options in the pixel and color smudge brushes. Basically, what we want to do is have a stroke start dark and then become lighter as we draw with it, to simulate how hair-tips catch more light and look lighter due to being thinner at the ends, while at the base they are frequently more dark.

Note

This tutorial contains outdated screenshots, but you should be able to follow along if you ignore a bit different look of the brush editor. Originally it also used brush preset and brush tip from the older resources set (ink_brush_25 and A - 2 Dirty Brush), but you should be able to get similar results with brush preset b) Basic-5 Size and brush tip sparkle or other similar brush preset (based on Pixel Engine) and similar brush tip (multiple dots).

[image: Brush setting dialog for fur brush.]
Take the b) Basic-5 Size and choose under Brush Tip ‣ Predefined “sparkle”. Set the spacing to Auto and right-click the spacing bar to type in a value between 0.25 and 0.4. Also turn on the Enable Pen Settings on flow. Replicate the pressure curve above on the size option. We don’t want the hairs to collapse to a point, hence why the curve starts so high.

[image: Brush setting dialog for fur.]
Then activate value and reproduce this curve with the Distance or Fade sensor. Like how the pressure sensor changes a value (like size) with the amount of pressure you put on the stylus, the distance sensor measures how many pixels your stroke is, and can change an option depending on that. For the HSV sensors: If the curve goes beneath the middle, it’ll become remove from that adjustment, and above the vertical middle it’ll add to that adjustment. So in this case, for the first 100px the brush dab will go from a darkened version of the active paint color, to the active paint color, and then for 100px+ it’ll go from the active color to a lightened version. The curve is an inverse S-curve, because we want to give a lot of room to the mid-tones.

[image: Brush setting dialog showing color gradation.]
We do the same thing for saturation, so that the darkened color is also slightly desaturated. Notice how the curve is close to the middle: This means its effect is much less strong than the value adjustment. The result should look somewhat like the fifth one from the left on the first row of this:

[image: Result of the brush that we made.]
The others are done with the smudge brush engine, but a similar setup, though using color rate on distance instead. Do note that it’s very hard to shade realistic fur, so keep a good eye on your form shadow. You can also use this with grass, feathers and other vegetation:

[image: Using the fur brush to make grass and hair.]
For example, if you use the mix option in the pixel brush, it’ll mix between the fore and background color. You can even attach a gradient to the color smudge brush and the pixel brush. For color smudge, this is just the Gradient option, and it’ll use the active gradient. For the pixel brush, set the color-source to Gradient and use the mix option.

[image: Fur brush with the color source to gradient and mix option.]
You can also combine this with the lighter color blending mode and wraparound mode to make making grass-textures really easy!

 Gradient Map Brush Tips

Gradient Map Brush Tips

Used in Rosemåling and single-stroke flower paintings, the technique of loading two separate colors can be emulated in Krita with gradient-mapped brush tips.

Gradient mapped tips work much in the same way as the gradient map filter does: The grey-values of each pixel in the brush is mapped to the gradient color. As gradients can have some of their colors be assigned to be the fore or background color, you can effectively make dual-loaded brush tips this way.

[image: Graphic demonstrating how gradients map to grayscale values.]
If we imagine a continuous color gradient mapping to a grayscale gradient, we can imagine how grayscale colors can be transformed to the colors of the gradient. This is called gradient mapping, because you are mapping a grayscale to a gradient.

Making such a tip is actually quite easy:

	Make a tip that’s black on one side and white on the other

	Select ‣ Select All

	Edit ‣ Copy Merged

	f5 to call up the brush settings. There, go to the Brush tip ‣ Predefined tab, and select Clipboard.

	In the popup, give it any name you want, and then make sure to untick Create Mask From Color (as that would make the lighter colors transparent). Press ok.

	Then select the new brush tip. Set Brush mode to Gradient Map, and adjust other brush settings like Spacing.

	Draw with your brush. Switching the active gradient in the toolbar allows you to use different colors. The Fore to Background gradient is especially useful here, as it always uses the currently selected fore and background color.

[image: A selection of different brush tips and their gradient map results.]

Different brush tips lead to different kinds of strokes. The last stroke in the above examples was done using the Lightness Map brush mode, which only uses the current foreground color.

With Rotation to mapped to Drawing angle, you can easily create effects like Rosemåling, while you’ll need a tilt-enabled tablet for single stroke brushes.

[image: An example of Rosemåling, the drawing of curly decorative plant motives with gradiated strokes using the gradient map tips.]

[image: Example showing both gradient map on the brush tip and on the pattern.]

The texture option also has the ability to map its greys to a texture. Combining both these gradient map functions together with the strength parameter to switch between either, and you can make cool results like the above.

 Brush-tips:Hair

Brush-tips:Hair

[image: Some examples of hair brush.]
Usually, most digital styles tend to focus on simple brushes, like the round brushes, and their usage in hair is no different. So, the typical example would be the one on the left, where we use fill_round to draw a silhouette and build up to lighter values.

The reason I use fill_round here is because the pressure curve on the size is s-shaped. My tablet has a spring-loaded nib which also causes and s-shaped curve hard-ware wise. This means that it becomes really easy to draw thin lines and big lines. Having a trained inking hand helps a lot with this as well, and it’s something you build up over time.

[image: Curve setting in brush editor.]
We then gloss the shadow parties with the basic_tip_default. So you can get really far with basic brushes and basic painting skills and indeed I am almost convinced tysontan, who draws our mascot, doesn’t use anything but the basic_tip_default sometimes.

[image: Brush-tip dialog.]
However, if you want an easy hair brush, just take the fill_round, go to the brush-tip, pick predefined and select A2-sparkle-1 as the brush tip. You can fiddle with the spacing below the selection of predefined brushtip to space the brush, but I believe the default should be fine enough to get result.

 Brush-tips:Outline

Brush-tips:Outline

Question

How to make an outline for a single brush stroke using Krita?

Not really a brush, but what you can do is add a layer style to a layer, by [image: mouseright] a layer and selecting layer style. Then input the following settings:

[image: Image demonstrating the layer style hack for this effect.]
Then, set the main layer to multiply (or add a Color to Alpha filter mask), and paint with white:

[image: Image demonstrating the layer style hack for this effect.]
(The white thing is the pop-up that you see as you hover over the layer.)

Merge into a empty clear layer after ward to fix all the effects.

 Brush-tips:Rainbow Brush

Brush-tips:Rainbow Brush

Question

Hello, there is a way to paint with rainbow on Krita?

Yes there is.

First, select the fill_circle:

[image: Selecting fill circle for brush tip.]
Then, press the F5 key to open the brush editor, and toggle Hue.

[image: Toggle hue in the brush parameter.]
This should allow you to change the color depending on the pressure.

Caution

The brightness of the rainbow is relative to the color of the currently selected color, so make sure to select bright saturated colors for a bright rainbow!

Uncheck Pressure and check Distance to make the rainbow paint itself over distance. The slider below can be [image: mouseright] to change the value with keyboard input.

[image: Select distance parameter for the hue.]
When you are satisfied, give the brush a new name and save it.

 Brush-tips:Sculpt-paint-brush

Brush-tips:Sculpt-paint-brush

Question

How do I make a brush like the one in Sinix’s paint-like-a-sculptor video?

It’s actually quite easy, but most easy to do since Krita 3.0 due a few bugfixes.

First, select Basic_Wet from the default presets, and go into the brush editor with the F5 key.

[image: Brush setting dialog to get started.]
Then, the trick is to go into Opacity, untoggle Pressure from the sensors, toggle Fade and then reverse the curve as shown above. Make sure that the curve ends a little above the bottom-right, so that you are always painting something. Otherwise, the smudge won’t work.

This’ll make the color rate decrease and turn it into a smudge brush as the stroke continues:

[image: Remove pressure from opacity parameter and add fade.]
The Fade sensor will base the stroke length on brush size. The Distance sensor will base it on actual pixels, and the Time on actual seconds.

Then, select Brushtip ‣ Predefined and select the default A_Angular_Church_HR brushtip.

[image: Select the Angular church brush tip.]
This makes for a nice textured square brush.

Of course, this’ll make the stroke distance longer to get to smudging, so we go back to the Opacity.

[image: Opacity parameter in the brush setting.]
Just adjust the fade-length by [image: mouseright] on the slider bar. You can then input a number. In the screenshot, I have 500, but the sweet spot seems to be somewhere between 150 and 200.

Now, you’ll notice that on the start of a stroke, it might be a little faded, so go into Color Rate and turn off the Enable Pen Settings there.

[image: Switch off sensors for color rate.]
Then, finally, we’ll make the brush rotate.

[image: Brush rotation is enabled.]
Tick the Rotation parameter, and select it. There, untick Pressure and tick Drawing Angle.

Then, for better angling, tick Lock and set the Angle Offset to 90 degrees by [image: mouseright] the slider bar and typing in 90.

Now, give your brush a new name, doodle on the brush-square, Save to presets and paint!

[image: Result from the brush we made.]

 Making An Azalea With The Transformation Masks

Making An Azalea With The Transformation Masks

[image: Making azalea with transform masks.]

Note

This page was ported from the original post on the main page to KDE UserBase wiki.

Okay, so I’ve wanted to do a tutorial for transform masks for a while now, and this is sorta ending up to be a flower-drawing tutorial. Do note that this tutorial requires you to use Krita 2.9.4 at MINIMUM. It has a certain speed-up that allows you to work with transform masks reliably!

I like drawing flowers because they are a bit of an unappreciated subject, yet allow for a lot of practice in terms of rendering. Also, you can explore cool tricks in Krita with them.

Today’s flower is the Azalea flower. These flowers are usually pink to red and appear in clusters, the clusters allow me to exercise with transform masks!

I got an image from Wikipedia for reference, mostly because it’s public domain, and as an artist I find it important to respect other artists. You can copy it and, if you already have a canvas, Edit ‣ Paste into New Image or New ‣ Create from Clipboard.

Then, if you didn’t have a new canvas make one. I made an A5 300dpi canvas. This is not very big, but we’re only practicing. I also have the background color set to a yellow-grayish color (#CAC5B3), partly because it reminds me of paper, and partly because bright screen white can strain the eyes and make it difficult to focus on values and colors while painting. Also, due to the lack of strain on the eyes, you’ll find yourself soothed a bit. Other artists use #c0c0c0, or even more different values.

So, if you go to Window ‣ Tile, you will find that now your reference image and your working canvas are side by side. The reason I am using this instead of the docker is because I am lazy and don’t feel like saving the wikipedia image. We’re not going to touch the image much.

Let’s get to drawing!

[image: Starting with the trunk and reference image.]
First we make a bunch of branches. I picked a slightly darker color here than usual, because I know that I’ll be painting over these branches with the lighter colors later on. Look at the reference how branches are formed.

[image: Making the outline of the flowers.]
Then we make an approximation of a single flower on a layer. We make a few of these, all on separate layers. We also do not sample the red from the image with the color sampler tool, but we guess at it. This is good practice, so we can learn to analyze a color as well as how to use our color selector. If we’d only sample colors from the image, it would be difficult to understand the relationship between them, so it’s best to attempt matching them by eye.

[image: Coloring the details and filling the flowers.]
I chose to make the flower shape opaque quickly by using the behind blending mode. This’ll mean Krita is painting the new pixels behind the old ones. Very useful for quickly filling up shapes, just don’t forget to go back to normal once you’re done.

[image: Finished setup for making azalea.]
Now, we’ll put the flowers in the upper left corner, and group them. You can group by making a group layer, and selecting the flower layers in your docker with the Ctrl + [image: mouseleft] shortcut and dragging them into the group. The reason why we’re putting them in the upper left corner is because we’ll be selecting them a lot, and Krita allows you to select layers with the R + [image: mouseleft] shortcut on the canvas quickly. Just hold the R key and [image: mouseleft] the pixels belonging to the layer you want, and Krita will select the layer in the Layer docker.

Clone Layers

Now, we will make clusters. What we’ll be doing is that we select a given flower and then make a new clone layer. A clone layer is a layer that is literally a clone of the original. They can’t be edited themselves, but edit the original and the clone layer will follow suit. Clone Layers, and File layers, are our greatest friends when it comes to transform masks, and you’ll see why in a moment.

[image: Create clone layers of the flowers.]
You’ll quickly notice that our flowers are not good enough for a cluster: we need far more angles on the profile for example. If only there was a way to transform them… but we can’t do that with clone layers. Or can we?

Enter Transform Masks!

Transform Masks are a really powerful feature introduced in 2.9. They are in fact so powerful, that when you first use them, you can’t even begin to grasp where to use them.

Transform masks allow us to do a transform operation onto a layer, any given layer, and have it be completely dynamic! This includes our clone layer flowers!

How to use them:

[image: mouseright] the layer you want to do the transform on, and add a Transform mask.

A transform mask should now have been added. You can recognize them by the little ‘scissor’ icon.

[image: Adding transform masks to the cloned layers.]
Now, with the transform mask selected, select the [image: tooltransform], and rotate our clone layer. Apply the transform. You know you’re successful when you can hide the transform mask, and the layer goes back to its original state!

You can even go and edit your transform! Just activate the [image: tooltransform] again while on a transform mask, and you will see the original transform so you can edit it. If you go to a different transform operation however, you will reset the transform completely, so watch out.

[image: Adding more clusters.]
We’ll be only using affine transformations in this tutorial (which are the regular and perspective transform), but this can also be done with warp, cage and liquify, which’ll have a bit of a delay (3 seconds to be precise). This is to prevent your computer from being over-occupied with these more complex transforms, so you can keep on painting.

We continue on making our clusters till we have a nice arrangement.

[image: Making leaves.]
Now do the same thing for the leaves.

[image: Painting originals.]
Now, if you select the original paint layers and draw on them, you can see that all clone masks are immediately updated!

Above you can see there’s been a new view added so we can focus on painting the flower and at the same time see how it’ll look. You can make a new view by going Window ‣ New View and selecting the name of your current canvas (save first!). Views can be rotated and mirrored differently.

Now continue painting the original flowers and leaves, and we’ll move over to adding extra shadow to make it seem more lifelike!

[image: Using the alpha inheritance.]
We’re now going to use Alpha Inheritance. Alpha inheritance is an ill-understood concept, because a lot of programs use clipping masks instead, which clip the layer’s alpha using only the alpha of the first next layer.

Alpha inheritance, however, uses all layers in a stack, so all the layers in the group that haven’t got alpha inheritance active themselves, or all the layers in the stack when the layer isn’t in a group. Because most people have an opaque layer at the bottom of their layer stack, alpha inheritance doesn’t seem to do much.

But for us, alpha inheritance is useful, because we can use all clone-layers in a cluster (if you grouped them), transformed or not, for clipping. Just draw a light blue square over all the flowers in a given cluster.

[image: Clipping the cluster with alpha inheritance.]
Then press the last icon in the layer stack, the alpha-inherit button, to activate alpha-inheritance.

[image: Activate alpha inheritance.]
Set the layer to multiply then, so it’ll look like everything’s darker blue.

[image: Multiplying the clipped shape.]
Then, with multiply and alpha inheritance on, use an eraser to remove the areas where there should be no shadow.

[image: Remove extra areas with the eraser.]
For the highlights use exactly the same method, AND exactly the same color, but instead set the layer to Divide (you can find this amongst the Arithmetic blending modes). Using Divide has exactly the opposite effect as using multiply with the same color. The benefit of this is that you can easily set up a complementary harmony in your shadows and highlights using these two.

[image: Add shadows and highlights with alpha inheritance technique.]
Do this with all clusters and leaves, and maybe on the whole plant (you will first need to stick it into a group layer given the background is opaque) and you’re done!

Transform masks can be used on paint layers, vector layers, group layers, clone layers and even file layers. I hope this tutorial has given you a nice idea on how to use them, and hope to see much more use of the transform masks in the future!

You can get the file I made here [https://share.kde.org/public.php?service=files&t=48c601aaf17271d7ca516c44cbe8590e] to examine it further! (Caution: It will freeze up Krita if your version is below 2.9.4. The speed-ups in 2.9.4 are due to this file.)

 Saving For The Web

Saving For The Web

Krita’s default saving format is the *.kra format. This format saves everything Krita can manipulate about an image: Layers, Filters, Assistants, Masks, Color spaces, etc. However, that’s a lot of data, so *.kra files are pretty big. This doesn’t make them very good for uploading to the internet. Imagine how many people’s data-plans hit the limit if they only could look at *.kra files! So instead, we optimise our images for the web.

There are a few steps involved:

	Save as a .kra. This is your working file and serves as a backup if you make any mistakes.

	Flatten all layers. This turns all your layers into a single one. Just go to Layer ‣ Flatten Image or press the Ctrl + Shift + E shortcut. Flattening can take a while, so if you have a big image, don’t be scared if Krita freezes for a few seconds. It’ll become responsive soon enough.

	Convert the color space to 8bit sRGB (if it isn’t yet). This is important to lower the filesize, and PNG for example can’t take higher than 16bit. Image ‣ Convert Image Color Space… and set the options to RGB, 8bit and sRGB-elle-v2-srgbtrc.icc respectively. If you are coming from a linear space, uncheck little CMS optimisations

	Resize! Go to Image ‣ Scale Image To New Size… or use the Ctrl + Alt + I shortcut. This calls up the resize menu. A good rule of thumb for resizing is that you try to get both sizes to be less than 1200 pixels. (This being the size of HD formats). You can easily get there by setting the Resolution under Print Size to 72 dots per inch. Then press OK to have everything resized.

	Sharpen the image a little. This is especially necessary for social media. Social media websites often scale and convert your image in such a way that it gets a little blurry, because they optimize towards photos and not paintings. To have your images stay sharp, it is worth it to run a sharpen filter beforehand. Because the sharpen filter is quite powerful, you are best off adding a sharpen filter mask on top of the stack and lowering its opacity till you feel the sharpness is appropriate.

	Save as a web-safe image format. There’s three that are especially recommended:

JPG

Use this for images with a lot of different colors, like paintings.

PNG

Use this for images with few colors or which are black and white, like comics and pixel-art. Select Save as indexed PNG, if possible to optimise even more.

GIF

Only use this for animation (will be supported this year) or images with a super low color count, because they will get indexed.

Saving with Transparency

[image: ../_images/Save_with_transparency.png]
Saving with transparency is only possible with GIF and PNG. First, make sure you see the transparency checkers (this can be done by simply hiding the bottom layers, changing the projection color in Image ‣ Image Background Color and Transparency…, or by using Filters ‣ Colors ‣ Color to Alpha…). Then, save as PNG and tick Store alpha channel (transparency)

Save your image, upload, and show it off!

 Introduction to SeExpr

Introduction to SeExpr

New in version 4.4: This document will introduce you to the SeExpr expression language.

What is SeExpr?

SeExpr is an embeddable expression language, designed by Disney Animation,
that allows host applications to render dynamically generated content.
Pixar calls it in its documentation [https://renderman.pixar.com/resources/RenderMan_20/PxrSeExpr.html] a “scriptable pattern generator and
combiner”.

SeExpr is available within Krita as a Fill Layer.

See also

	SeExpr Quick Reference

	SeExpr

	SeExpr Scripts

	“Procedural texture generator (example and wishes)” on Krita Artists [https://krita-artists.org/t/procedural-texture-generator-example-and-wishes/7638]

	Inigo Quilez’s articles [https://iquilezles.org/www/index.htm]

	The Book of Shaders [https://thebookofshaders.com/]

Background

To understand what SeExpr is about, we need to differentiate between two types
of graphics, raster and procedural.

The vast majority of the computer-generated stuff you see every day belong to
the first type– images like photos, your favorite anime screenshots, memes,
are all a multitude of tiny little dots of color, or pixels, arranged into a
grid.

Raster graphics have two drawbacks. First, once you create them, their
resolution is fixed. You cannot zoom in and magically get any more detail.
And if you need to change them, either you go back to the source and sample it
again (which is sometimes impossible), or edit it with a raster graphics
program, like Krita.

One of the biggest problems, however, is that we are always limited by the
space our programs can use; either secondary storage, like SD cards, or
RAM. Unless compressed, image memory needs are quadratic in the size of the
image [https://blender.stackexchange.com/questions/112505/why-is-my-half-resolution-render-taking-a-quarter-of-the-time-of-the-full-one].
For a quick example, the Create New Document dialog of Krita tells
you three bits of information: its size in pixels, the size of the pixel
itself, and the total memory needed.

[image: ../_images/Krita_newfile.png]
Here’s a summary for square textures. Note that the memory needed
is for one layer only:

	Size

	Memory needed

	256

	256 KB

	512

	1 MB

	1024

	4 MB

	2048

	16 MB

	4096

	64 MB

An alternative is to use Vector Graphics. Vector graphics, for instance
SVGs, employ mathematic formulae like splines and Bézier curves to describe a
shape. As they are mathematically defined, they can be resized to suit your
needs without losing resolution.

SeExpr belongs to a different class, procedural graphics. Similar to vector
graphics, procedural graphics only need a few KBs of secondary storage for
their definition. But they are not defined by mathematical formulae; you
actually code how the color is calculated at each point of the texture.
And, because it is not limited in its precision, you can render complex
patterns in your layers at completely arbitrary resolution.

Writing a script

In this tutorial, we’ll show you how to write a script in SeExpr, render it to
a layer, and then save it as a preset.

We’ll start by going to the Layers, and adding a new Fill Layer.
Then select the SeExpr generator from the list. You’ll be greeted by this
window:

[image: ../_images/SeExpr_editor.png]

The SeExpr generator dialog is divided into two tabs. For now, we’ll stay on
Options.

Note

Fill Layers describes these tabs in more detail.

Let’s start by painting a layer in light blue.

First, SeExpr scripts must define an output variable, let’s call it $color.
As SeExpr thinks of colors in the RGB color space,
color variables are defined by a triplet of numbers known as a vector.
We’ll start by defining the $color variable and giving it a value.

Go to the text box, and clear it if it has any text.
Then, define and set $color to something like [0.5, 0.5, 1]
(half lit red, half lit green, fully lit blue):

$color = [0.5, 0.5, 1];

SeExpr needs to know which variable holds the final color value. This
is done by writing at the end, on its own line, the name of the variable:

$color

The script should now look like this:

$color = [0.5, 0.5, 1];
$color

Click OK, and you’ll render your first script!

[image: ../_images/SeExpr_first_render.png]

Warning

To be absolutely precise, SeExpr has no color management.
It always renders textures as 32-bit float,
gamma corrected,
sRGB images. Krita transforms them into your document’s color space
using the sRGB-elle-V2-srgbtrc.icc profile.

See Color Managed Workflow for what this means.

Managing your script using widgets

There is also another way to define and edit your variables.
Open the fill layer’s properties by right-clicking on Fill Layer 1,
and selecting Layer Properties….

[image: ../_images/SeExpr_prop_1.png]
Notice the middle box? Once it detects a syntactically correct script,
SeExpr enables a whole chunk of knobs to manage individual variables.
In our example above, you can change $color’s in three ways:

	enter the red, green, or blue channel’s value in the input fields

	move the little colored sliders to change the respective channel

	click on the preview square to the left of the boxes, to select a completely new color.

The last button on the middle box is always Add new variable.
Click it and this dialog will open:

[image: ../_images/SeExpr_add_variable.png]
This dialog shows you all the types of variables that SeExpr accepts:

	Curve and Color curve
	They are the SeExpr version of Stop Gradients: they interpolate a ramp given by a set of values.

Curves represent 1D gradients, returning a single float at each evaluation point.

Color curves represent RGB gradients, returning a Color at each point.

	Integers and Floats
	Numbers.

	Vector
	A triplet of floats.

	Color
	A vector representing an RGB color.

	Swatch
	A list of Colors.

	String
	Usually single words.

For instance, you could replicate $color in the Vector tab:

[image: ../_images/SeExpr_add_variable_vector.png]

Creating your first preset

Once your script is ready, you can reuse it by making a preset.

You can create one through the top bar of the Options tab:

[image: ../_images/SeExpr_editor.png]

Select Save New SeExpr Preset… and the following dialog will
open:

[image: ../_images/SeExpr_save.png]

You can edit the name of the preset in the top line edit box, and set a thumbnail for easy identification.

Hint

The dialog will append “Copy” to the preset’s name if it is a copy of an existing one. You can change it at will.

The dialog provides the following choices for setting a thumbnail:

	Load Existing Thumbnail
	If the preset already has a thumbnail (for instance, if you created it from an existing preset), this button will load and apply it.

	Load Image
	Applies an image from the filesystem as a thumbnail.

	Render Script to Thumbnail
	Renders your script to a 256x256 texture, and applies the latter as a thumbnail.

	Clear Thumbnail
	Deletes the thumbnail. Note that, if the preset is a copy of an existing one, this can be reverted by clicking Load Existing Thumbnail.

Changing existing presets

If you change a preset’s script, you will notice two new buttons in the top bar of the Options tab:

[image: ../_images/SeExpr_overwrite_preset.png]

The reload button will restore the preset to its original properties, while clicking on Overwrite Preset will save your changes.

Additionally, you can edit the preset’s name by clicking on the rename button,
entering the new name, and clicking on Save:

[image: ../_images/SeExpr_rename_preset.png]

Bundling your presets

Sharing your scripts is easy! SeExpr script presets are just like any other
resource in Krita. Follow the instructions in Resource Management to
create your own bundles.

 Krita FAQ

Krita FAQ

This page contains common problems people have with Krita. Note that we assume that you are using the latest version of Krita. Please verify that to make sure.

Contents

	Krita FAQ

	General

	What is Krita?

	Is it possible to use Krita in my own language, not English?

	I have a problem, how to get support for Krita?

	Does Krita have layer clip or clipping mask?

	Where are the configuration files stored?

	Resetting Krita configuration

	Why does Krita’s configuration reset on its own?

	Where are my resources stored?

	Krita tells me it can’t find some files and then closes, what should I do?

	What Graphics Cards does Krita support?

	I can’t edit text from PSD files created by Photoshop

	How much memory does my image take?

	Why do I get a checkerboard pattern when I use the eraser?

	Can krita work with 8 bit (indexed) images?

	Where can I find older versions of Krita?

	On Windows, the Krita User Interface is too big on my screen

	Windows: In full-screen mode, why is there a thin gap at the bottom of the window?

	Windows: OBS can’t record the Krita OpenGL canvas

	Windows: Can I use Krita with Sandboxie?

	Windows: Krita cannot save

	Windows: Krita cannot open my file anymore

	How to recover my files?

	Krita crashes on Windows 7 on start-up

	Krita freezes randomly on my Windows system

	Windows: How can I produce a backtrace?

	Windows: Krita’s window is semi-transparent

	Why are there ampersand (&) characters in some docker titles?

	Tablets

	What tablets does Krita support?

	What if your tablet is not recognized by Krita?

	How to fix a tablet offset on multiple screen setup on Windows

	Microsoft Surface Pro and N-Trig

	Tablet Pro and the Surface Pro

	Weird stuff happens on Windows, like ripples, rings, squiggles or poltergeists

	Touch doesn’t seem to work on Windows

	Toolbox

	Toolbox missing

	Tool icons size is too big

	Krita can’t get maximized

	Resources

	Is there a way to restore a default brush that I have mistakenly overwritten with new settings to default?

	How do I set favorite presets?

	Can Krita load Photoshop Brushes?

	Krita is slow

	Slow start-up

	Slow Brushes

	Slowdown after I’ve been working for a while

	Animation

	Why is my animation black in my video player

	Tools

	Shortcuts

	Some shortcuts become useless after drawing for a while

	License, rights and the Krita Foundation

	Who owns Krita?

	Who and what is Kiki?

	Why is Krita Free?

	Why isn’t Krita on Steam and in the Windows Store Free?

	Can I use Krita commercially?

	Can I get Krita for iPad or for Android?

	Who translates Krita

	Reference

General

General questions

What is Krita?

This is our vision for the development of Krita:

Krita is a free and open source cross-platform application that offers an end-to-end solution for creating digital art files from scratch. Krita is optimized for frequent, prolonged and focused use.
Explicitly supported fields of painting are illustrations, concept art, matte painting, textures, comics and animations.
Developed together with users, Krita is an application that supports their actual needs and workflow. Krita supports open standards and interoperates with other applications.

Is it possible to use Krita in my own language, not English?

Krita should automatically use the system language. If that is not the case, please follow these steps:

	With Settings ‣ Switch Application Language… menu item will appear a small window.

	Click Primary language and select your language.

	Click OK to close the window.

	Restart krita, and it will be displayed in your selected language!

If this doesn’t work, you might have to add a fall-back language as well. This is a bug, but we haven’t found the solution yet.

I have a problem, how to get support for Krita?

	Ask your question on Krita Artists [https://krita-artists.org/].

	Remember – most probably the person you’re interacting with is a volunteer, and even if not, it’s not someone actually paid for doing user support. Treat them nicely and respect their time! They will for sure reciprocate that.

	Create a new thread or post for your issue and state the issue in the title. Even if you don’t know how to describe it exactly, for example you title the post “Krita’s text tool is acting weird”, it is much better than simple “Help!”.

	Describe your issue. You can add screenshots and videos, but even if you do that, write a few words what the video shows and what the issue is.

	State all relevant details: most importantly your operating system (Windows, macOS, Linux…), which version of Krita you use (go to Help ‣ About Krita to find out) and what kind of tablet you have (if your issue is related to a tablet driver).

	Answer all questions your supporter asks, even if you don’t think they’re relevant. They probably have a reason to ask about that.

	If you don’t know the answer, or you don’t know how to get the information your supporter asks for, don’t hesitate to ask for clarification.

	If you mentioned an issue, please help with testing if you’re asked to do that – that will speed up the process of finding the cause and preparing a fix.

Does Krita have layer clip or clipping mask?

Krita has no clipping mask, but it has a clipping feature called
inherit alpha. Let’s see this page and learn how to do
clipping in Krita!

Where are the configuration files stored?

These are stored at the following places for the following operating
systems:

	Linux
	$HOME/.config/kritarc

	Windows
	%LOCALAPPDATA%\kritarc

	macOS
	$HOME/Library/Preferences/kritarc

The kritarc file is the configuration file. Krita does not store settings in the Windows registry.

Resetting Krita configuration

You can reset the Krita configuration in one of the following ways:

	
New in version 4.3: You can reset the configurations from the GUI. Click on Settings ‣ Reset Krita Configurations, and a pop-up to confirm the action will appear. Even if you choose to reset the configurations, a backup kritarc file is created named kritarc.backup. If you rename this back to kritarc, you will use the configurations before the reset. The backup file can be accessed here:

	Linux
	$HOME/.config/kritarc.backup

	Windows
	%LOCALAPPDATA%\kritarc.backup

	macOS
	$HOME/Library/Preferences/kritarc.backup

	Press and hold Shift + Alt + Ctrl while starting Krita. This should show a pop-up asking if you want to reset the configuration. Press yes to reset it.

	For Krita 3.0 and later: Delete/rename the kritarc file, found here:

	Linux
	$HOME/.config/kritarc

	Windows
	%LOCALAPPDATA%\kritarc

	macOS
	$HOME/Library/Preferences/kritarc

There can be two other files you might want to remove: kritaopenglrc and kritadisplayrc.

If the configuration was causing a crash, don’t delete the mentioned file, but instead rename and
send it to us in order for us to figure what caused the crash.

If you have installed Krita through the Windows store, the kritarc file will be in another location

%LOCALAPPDATA%\Packages\49800Krita_RANDOM STRING\LocalCache\Local\kritarc

The random string depends on your installation.

Windows users have a habit of uninstalling and reinstalling applications to solve problems. Unless the problem is that the installation was corrupted by a virus scanner or drive failure, that will NOT work. Uninstalling Krita then reinstalling replaces the bytes on your drive with exactly the same bytes that were there before. It doesn’t reset anything, least of all Krita’s settings.

Why does Krita’s configuration reset on its own?

There are two possible reasons:

	You don’t save your settings.

This is most probable if you are on Windows and you have either a display with a small resolution (below full HD) or if you have full HD resolution with UI scaling in Windows settings (which is 150% by default). In those cases it might happen that you don’t see the OK button in the Configure Krita dialog. You can use Alt + O instead. (You can go to Configure Krita… ‣ General ‣ Window and make sure that Enable HiDPI checkbox is unchecked to disable scaling for Krita and get a smaller UI).

	You close your computer using the power button.

If you are on Windows and you use power button instead of a standard procedure to close or restart your computer, it might happen that Krita’s configuration file gets corrupted. To solve this, just use the correct way of closing your system: either Start ‣ Restart or Start ‣ Shutdown.

Where are my resources stored?

See Resource Management.

Krita tells me it can’t find some files and then closes, what should I do?

Causes for this could be the following:

	It might be that your download got corrupted and is missing files (common with bad Wi-Fi and bad internet connection in general), in that case, try to find a better internet connection before trying to download again. Krita should be around 80 to 100 MB in size when downloading.

	It might be that something went wrong during installation. Check whether your hard drive is full and reinstall Krita with at least 120 MB of empty space. If not, and the problem still occurs, there might be something odd going on with your device, and it’s recommended to find a computer expert to diagnose what is the problem.

	Some unzip programs don’t unpack our ZIP files correctly. The native ones on Windows, macOS and most Linux distributions should be just fine, and we recommend using them.

	You manually, using a file manager deleted or moved resources around, and thus Krita cannot find them anymore.

What Graphics Cards does Krita support?

Krita can use OpenGL to accelerate painting and canvas zooming, rotation and panning. Nvidia and recent Intel GPUs give the best results. Make sure your OpenGL drivers support OpenGL 3.2 as the minimum. AMD/ATI GPU’s are known to be troublesome, especially with the proprietary drivers on Linux. However, it works perfectly with the Radeon free driver on Linux for supported AMD GPU. Try to get a graphics card that can support OpenGL 3.2 or above for the best results, some examples:

	Intel
	Intel 3rd Generation HD Graphics, IvyBridge or Bay-Trail microarchitecture, released in 2012. Commonly available products: Celeron J1x00, N2x00, Celeron (G)1xx0, Pentium J2x00, N3500, Pentium (G)2xx0, Core i3/5/7-3xx0.

	AMD/ATI
	Radeon HD 2000 family, TeraScale 1 microarchitecture, Released in 2007. Commonly available products: Radeon HD 2400 PRO, Radeon HD 2600 PRO, etc.

	Nvidia
	GeForce 8 family, Tesla microarchitecture, released in 2006. Commonly available products: GeForce 8400 GS, GeForce 8800 GTS, 9800 GTX, GTS 250, etc.

For Krita 3.3 or later: Krita on Windows can use Direct3D 11 for graphics acceleration (through ANGLE). This is enabled automatically on systems with an Intel GPU.

I can’t edit text from PSD files created by Photoshop

There is no text support for PSD file yet. The text will appear rasterized and converted into a paint layer.

How much memory does my image take?

For simple images, it’s easy to calculate: you multiply width * height * channels * size of the channels (so, for a 1000×1000 16-bit integer RGBA image: 1000 × 1000 × 4 × 2). You multiply this by the number of layers plus two (one for the image, one for the display). If you add masks, filter layers or clone layers, it gets more complicated.

Why do I get a checkerboard pattern when I use the eraser?

You’re probably used to Gimp or Photoshop. The default background or first layer in these applications doesn’t have an alpha channel by default. Thus, on their background layer, the eraser paints in the background color.

In Krita, all layers have an alpha channel, if you want to paint in the background color, you should simply do it in a layer above the first one (Layer 1), that would prevent you from erasing the white background color, making the checkerboard visible. You get the same effect in, say, Gimp, if you create new image, add an alpha channel and then use the eraser tool. Most Krita users will actually start a sketch in Krita by adding a new blank layer first before doing anything else. (The Ins key is a useful shortcut here). That doesn’t use extra memory, since a blank layer or a layer with a default color just takes one pixel worth of memory.

Can krita work with 8 bit (indexed) images?

No. Krita has been designed from the ground up to use real colors, not indexed palettes. There are no plans to support indexed color images, although Krita can export to some indexed color image formats, such as GIF. However, it does not offer detailed control over pixel values.

Where can I find older versions of Krita?

All the older versions of Krita that are still available can be found here:

	Very old builds [https://download.kde.org/Attic/krita/].

On Windows, the Krita User Interface is too big on my screen

If you’re using Windows, you can set the display scaling to 150% or 200%. Krita comes with HiDPI enabled by default, so if you do that, the Krita UI might be too big for your screen. You can turn it off using the following steps:

	On the menu, select Settings ‣ Configure Krita…

	On General page, switch to Window tab.

	Uncheck Enable Hi-DPI support (or check if you wish to enable it)

	
New in version 5.0: If you are using a fractional (not multiples of 100%) display scaling, you can instead try keeping Enable Hi-DPI support enabled and also enable (Hi-DPI) Enable fractional scale factor.

	Press OK, if the settings screen is too big, Alt + O will trigger the OK button too.

	Restart Krita

You can also change the toolbox icon size by right-clicking on the toolbox and selecting a size.

Windows: In full-screen mode, why is there a thin gap at the bottom of the window?

When Canvas Graphics Acceleration is set to OpenGL, you may see a thin gap at the bottom of the window which you can see through. This is done deliberately to work around a bug causing menus and dropdowns to be unusable. If you find it distracting, you can consider changing the Renderer to Direct3D 11 which doesn’t require this workaround.

Windows: OBS can’t record the Krita OpenGL canvas

The possible workarounds for this is to do either of the following:

	Turn off OpenGL in Settings ‣ Configure Krita… ‣ Display.

	Or don’t use the hardware accelerated mode (game recording mode) in
OBS, thus capturing the whole desktop instead of attempting to capture
only Krita.

You might also be able to work around the problem by using the ANGLE renderer instead of native OpenGL.

Windows: Can I use Krita with Sandboxie?

No, this is not recommended. Sandboxie causes stuttering and freezes due to the way it intercepts calls for resources on disk.

Windows: Krita cannot save

If the message is “File not found. Check the file name and try again.”, you probably have Controlled Folder Access enabled.

	Select Start ‣ Settings.

	Choose Update & security ‣ Windows Defender.

	Select Open Windows Defender Security Center.

	Select Virus & threat protection, and then choose Virus & threat protection settings.

	Under Controlled folder access, turn it on or off.

You can also whitelist Krita, following these instructions [https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/customize-controlled-folders#allow-specific-apps-to-make-changes-to-controlled-folders].

Windows: Krita cannot open my file anymore

Your file got corrupted. There are several things that might cause this:

	Windows was shutdown improperly, like by holding the power button. This prevents your hard drive from finishing up the things it is doing and file away your files incorrectly. Please always try to shut down your computer via the proper shutdown procedure, and if you are in a situation where this is not possible (like frequent blackouts), make daily backups! This may lead to the file being filled with zeroes, so it cannot be recovered from.

Changed in version 4.2.8: Krita version 4.2.8 introduced special safety measure for Windows that should help to avoid this situation. But in any case, unless something makes it impossible, always make sure to shut down your system using the standard approach. On Windows that means going to Start menu and selecting “Shutdown”.

	Badly programmed security software may attempt to rewrite KRA files, or prevent Krita from writing to the folder you wish to save to. These cases can be checked by trying to save in that location, and then, without shutting down Krita, checking in the folder to see if the file saved. Files lost due this cannot be recovered.

	Cloud services like Dropbox and OneDrive have been known to prevent Krita from saving. We’ve implemented fixes for this, but much like the above point it is worth checking that this isn’t the cause of the issue. Files lost due this cannot be recovered.

	Occasionally the ZIP files that KRA files consist of will have the last few bytes missing. We’re doing everything in our power to prevent this kind of corruption, but it might be a file system issue. This particular bug can be fixed by renaming the extension (in windows you will need to enable the file extensions, which this FAQ will not cover) to ZIP, and then using a ZIP repairing utility to fix the ZIP file. Then rename it back to KRA.

	If Krita doesn’t give an error message, but rather crashes, your file is too big, and Krita is not so much crashing as that the operating system is shutting it down. Try shutting down some other programs like web browsers or streaming services to free up working memory. You should be able to open the file in question. At this point the recommended course of action is to try and reduce the file size in some manner, such as merging layers, splitting up an animation or scaling the image down.

How to recover my files?

	Check whether you have any backup file or autosave left: Saving, AutoSave and Backup Files.

	
	Check whether you can open the file as ZIP archive.
	
	Rename the extension of the file from .kra to .zip.

	Try to open (your system should automatically select an archive opener tool).

	There is file called mergedimage.png inside that represents all layers merged that you can use for reference in case you can’t restore anything else.

	
	Check whether ZIP repairer tool helps.
	
	Copy the file, so you have a backup just in case.

	Rename the extension of the file from .kra to .zip.

	Use ZIP repairer tool on the .zip file.

On Linux:
mv file.kra file_copy.zip
zip -F file_copy.zip --out file_new1.zip
unzip file_new1.zip
if it still doesn't work:
zip -FF file_copy.zip --out file_new2.zip
unzip file_new2.zip
if it still doesn't work, try to run it again on *file_new2.zip* file, or try on *file_new1.zip* file

On Windows:
Copy the file, rename the extension.
Use any graphical ZIP repairer on the new file. (Follow the instructions for that specific program).

	Try to open in Krita.

	If it cannot be opened in Krita, try the trick from 2.: open the archive and find mergedimage.png file.

	Open your file in Notepad or any other text editor. If the content of the file is only a repeated NULL symbol, it means the file is most probably unrecoverable using the standard method. If it’s of a very high importance for you, you can try to recover the previous save using methods that checks the hard drive directly.

Krita crashes on Windows 7 on start-up

Starting with Krita 4.2.0, Krita uses version 5.12 of the Qt toolkit. This needs to have access to Direct3D 11 or OpenGL ES 2.0 or higher. You might need to install drivers appropriate to your GPU (Nvidia, AMD/ATI, Intel). This also makes it hard to run Krita in a virtual environment: in Virtual Box you need to install the guest addition in safe mode, and enable the experimental Direct3D support.

Krita freezes randomly on my Windows system

Are you using a dictionary app (e.g. Youdao Dictionary for Chinese users)? Some dictionary apps can read words from other app’s windows and show popup translations in real time. However, it has been reported that such apps tend to cause Krita to freeze randomly. If you are using one of those, make sure to QUIT them (no notification icon) when using Krita. Some of those apps keep running in the background even after being closed. In such case, you will have to uninstall them.

Windows: How can I produce a backtrace?

See also

Dr. Mingw debugger

If you experience a crash on Windows, and can reproduce the crash, the bug report will be much more valuable if you can create a backtrace. A backtrace is somewhat akin to an airplane’s black box, in that they tell what set of instructions your computer was running when it was crashing (where the crash happened), making it very useful to figure out why the crash happened.

The Dr. Mingw debugger is bundled with Krita. Please visit the page Dr. Mingw debugger for instructions on getting a backtrace with it.

Windows: Krita’s window is semi-transparent

Chances are you are using an NVIDIA GPU. Due to a bug in NVIDIA’s driver that we haven’t been able to work around yet, sometimes Krita’s window will be transparent or semi-transparent. The solution is to enable the Angle renderer in Krita’s Settings dialog. Open the Settings menu (Press Alt-N if the menubar is not visible and your system is in English), then open the Configure Krita dialog. In the dialog window select the Display page and select the Angle renderer in the Preferred Renderer drop down. Restart Krita.

Why are there ampersand (&) characters in some docker titles?

This is a bug in one of the third party libraries Krita uses (and consequently
has no direct influence over), where letters that should actually be underlined
(they point out keyboard shortcuts that can be used when the
Settings ‣ Docker menu is open) are instead prepended with an
ampersand (&).

This bug only occurs with specific system configurations (it’s related to the “Fusion” style)
and/or in Krita packages obtained from third parties (e.g. in some Linux distributions).

If you are on Linux the best way to resolve this is to use an official package from krita.org [https://krita.org], such as the
AppImage, Snap/Flatpak or PPA releases that are officially provided on the download page [https://krita.org/download/krita-desktop/].

Tablets

What tablets does Krita support?

Krita isn’t much fun without a pressure sensitive tablet. If the tablet has been properly configured, Krita should work out of the box.

On Windows, you need to either install the WinTab drivers for your tablet, or enable the Windows 8+ Pointer Input option in Krita’s settings.

You can find a community curated list of tablets supported by krita here.

If you’re looking for information about tablets like the iPad or Android tablets, look here.

What if your tablet is not recognized by Krita?

First, check if you have installed drivers and the like. The Drawing Tablets page has some explanations and descriptions of common issues. If none of those work, we would like to have a bug report at bugs.kde.org, with a tablet log. Here’s how you make a tablet log:

	You need to have something to output the log to. On 4.2 you can use the Log Viewer docker for this. Just open the log viewer, and enable logging.

Changed in version 4.2: The log viewer got added to Krita in 4.2, so for older versions of Krita, you will need to either run Krita in the terminal if you have Linux or macOS, or for Windows install DebugView [https://docs.microsoft.com/en-us/sysinternals/downloads/debugview] from the official Microsoft site, start DebugView and then start Krita.

When using a terminal, make sure to enable unlimited scrollback.

	Press the Ctrl + Shift + T shortcut, you will see a message box telling the logging has started.

	Try to reproduce your problem, you will be able to see the log being created in the log viewer as you draw.

	Save the output from the log viewer into a TXT file, and attach it to the bug report.

On Linux, it is also useful to have the following information:

	lsmod

	xinput

	xinput list-props (ID can be fetched from the item 2)

However, in 100% of the cases where Windows users have reported that their tablet didn’t work over the past five years, the problem has been either a buggy driver or a broken driver installation, but not a bug in Krita.

How to fix a tablet offset on multiple screen setup on Windows

If you see that your tablet pointer has an offset when working with Krita canvas, it might be highly likely that Krita got an incorrect screen resolution from the system. That problem happens mostly when an external monitor is present and when either a monitor or a tablet was connected after the system booted.

You can configure this by going to the Tablet Settings.

Microsoft Surface Pro and N-Trig

Krita 3.3.0 and later supports the Windows Pointer API (Windows Ink) natively. Your Surface Pro or other N-Trig enabled pen tablet should work out of the box with Krita after you enable Windows Ink in Settings ‣ Configure Krita… ‣ Tablet.

Tablet Pro and the Surface Pro

Unlike Wacom’s Companion, the Surface line of tablets doesn’t have working hardware buttons. Tablet Pro is a (non-free) utility that puts virtual buttons on screen. Krita 3.1 and above will have predefined shortcut profiles to work with Tablet Pro.

https://tabletpro.com/

See https://www.youtube.com/watch?v=WKXZgYqC3tI for instructions.

Weird stuff happens on Windows, like ripples, rings, squiggles or poltergeists

Windows comes with a lot of settings to make it work with a pen. All these settings can be annoying. This tool can help you set the settings correctly when you’re using a tablet:

https://github.com/saveenr/Fix_My_Pen/releases

Touch doesn’t seem to work on Windows

You might have to disable and enable the touch driver: go to the device manager. (Click the Start button and type device manager). Choose HID (User interface devices or something like that). Choose Intel® Precise Touch Device. Right-click, Disable it. Right-click, Enable it.

Toolbox

Toolbox missing

You can reset the Workspace by pressing the right most button on the toolbar, the Workspace switcher, and click on a desired Workspace from the list.

Or you can right-click on any docker title bar or open space in any toolbar, and select Toolbox. It’s the first option.

Also, you can check the Settings menu, it has got a lot of interesting stuff, then go to the Dockers menu and select Toolbox.

Tool icons size is too big

Right-click the toolbox to set the size.

Krita can’t get maximized

This happens when your dockers are placed in such a way that the window cannot be made less high. Rearrange your Workspace.

Resources

Is there a way to restore a default brush that I have mistakenly overwritten with new settings to default?

See Returning a resource to the previous version.

How do I set favorite presets?

Right-click a brush in the brush docker and assign it a tag. Then right-click on canvas to call popup palette, click the second right-most icon on the bottom-right of the palette, now you can pick the tag which contains the brush you assigned to it.

Can Krita load Photoshop Brushes?

Yes, but there are limitations. You can load ABR files by using the Import button in the Predefined brush tab in the brush editor. Since Adobe hasn’t disclosed the file format specification, we depend on reverse-engineering to figure out what to load, and currently that’s limited to basic features.

Krita is slow

There is a myriad of reasons why this might be. Below is a short checklist.

	Something else is hogging the CPU or the memory: Spotify and other Electron apps have been known to do this.

	You are running Windows, and have 3rdparty security software like Sandboxie or Total Defender installed

	You are working on images that are too big for your hardware (dimensions, channel depth or number of layers)

	You do not have canvas acceleration enabled

	You have (NVIDIA) Vertical Sync enabled

	On macOS, with some macs, you might need to disable canvas acceleration in Krita’s settings.

Please also check this page [https://phabricator.kde.org/T7199].

Slow start-up

You probably have too many resources installed. Deactivate some bundles under the Settings ‣ Manage Resource Libraries… menu item.

If you’re using Windows with the portable ZIP file, Windows will scan all files every time you start Krita. That takes ages. Either use the installer or tell Microsoft Security Essentials to make an exception for Krita.

Slow Brushes

	Check if you accidentally turned on the stabilizer in the tool options docker.

	Try another scaling mode like trilinear. Settings ‣ Configure Krita… ‣ Display.

	Try a lower channel depth than 16-bit.

	For NVIDIA, try a 16-bit floating point color space.

	For older AMD CPU’s (Krita 2.9.10 and above), turn off the vector optimizations that are broken on AMD CPUs. Settings ‣ Configure Krita… ‣ Performance. This isn’t needed if you’ve got an AMD Threadripper™ CPU.

	It’s a fairly memory-hungry program, so 2 GB of RAM is the minimum, and 4 GB is the preferable minimum.

	Check that nothing else is hogging your CPU.

	Check that Instant Preview is enabled if you’re using bigger brushes (but for very small brushes, make sure is disabled).

	Set brush precision to 3 or auto.

	Use a larger value for brush spacing.

	If all of these fail, record a video and post a link and description on the Krita Artists Forum [https://krita-artists.org] in appropriate category.

	Check whether OpenGL is enabled, and if it isn’t, enable it. If it is enabled, and you are on Windows, try the Angle renderer. Or disable it.

Slowdown after I’ve been working for a while

Once you have the slowdown, click on the image-dimensions in the status bar. It will tell you how much RAM Krita is using, if it has hit the limit, or whether it has started swapping. Swapping can slow down a program a lot, so either work on smaller images or turn up the maximum amount of RAM in Settings ‣ Configure Krita… ‣ Performance ‣ Advanced Tab.

Animation

Why is my animation black in my video player

You did not render the animation using the “baseline” option, and you are using the default Windows Media Player. Re-render using the baseline option or use a better video player application, like VLC. Check this useful diagram [https://www.deviantart.com/tiarevlyn/art/T-Krita-4-1-7-rendering-issues-manual-783473428].

Tools

Shortcuts

Some shortcuts become useless after drawing for a while

Have you loaded any Keyboard or Canvas Shortcut Schemes (e.g. Photoshop/SAI compatible schemes) other than the Default one? If that’s the case, make sure you have loaded the same scheme for both Keyboard and Canvas Shortcuts (e.g. Photoshop Compatible for both Keyboard and Canvas shortcuts). If the schemes on both sides are not matching, you might run into shortcut conflicts, like: middle-click zooming/panning/rotation of canvas become unresponsive, even the brush becomes unable to paint sometimes.

License, rights and the Krita Foundation

Who owns Krita?

The Stichting Krita Foundation owns the Krita trademark. The copyright on the source code is owned by everyone who has worked on the source code.

Who and what is Kiki?

Kiki is a cyber squirrel. She’s our mascot and has been designed by Tyson Tan. We choose a squirrel when we discovered that ‘krita’ is the Albanian word for Squirrel.

Why is Krita Free?

Krita is developed as free software [https://www.gnu.org/] within the KDE community. We believe that good tools should be available for all artists. You can also buy Krita on the Windows Store if you want to support Krita’s development or want to have automatic updates to newer versions.

Why isn’t Krita on Steam and in the Windows Store Free?

Krita on Steam and in the Windows Store is still Free and Open Source software; the binaries are exactly the ones you can also download from krita.org. We’ve put a price tag on downloading Krita from either store to support Krita’s development. Nobody is getting rich out of it, but the income from Steam and the Windows Store currently pays for the full-time involvement with Krita of four developers. See Krita Available from the Windows Store [https://krita.org/en/item/krita-available-from-the-windows-store/] for more information.

Can I use Krita commercially?

Yes. What you create with Krita is your sole property. You own your work and can license your art however you want. Krita’s GPL license applies to Krita’s source code. Krita can be used commercially by artists for any purpose, by studios to make concept art, textures, or VFX, by game artists to work on commercial games, by scientists for research, and by students in educational institutions.

You can also make videos or stream your desktop with Krita’s interface visible (which can be used to make art tutorials or time lapses).

If you modify Krita itself, and distribute the result, you have to share your modifications with us. Krita’s GNU GPL license guarantees you this freedom. Nobody is ever permitted to take it away.

Can I get Krita for iPad or for Android?

Not for iOS or iPadOS at this point in time: there are problems in any case with putting an application licensed under the GNU Public License V3 in the iOS App Store [https://www.fsf.org/news/2010-05-app-store-compliance]. Krita for Android is currently in beta in the Google Play Store [https://play.google.com/store/apps/details?id=org.krita] F-Droid is coming.

Who translates Krita

Krita is a KDE application [https://www.kde.org/] — and proud of it! That means that Krita’s translations are done by KDE localization teams [https://l10n.kde.org/]. If you want to help out, join the team for your language! There is another way you can help out making Krita look good in any language, and that is join the development team and fix issues within the code that make Krita harder to translate.

Please refer to https://community.kde.org/Get_Involved/translation for more general instructions on getting involved in KDE localization.

Reference

https://answers.launchpad.net/krita-ru/+faqs

 Contributors Manual

Contributors Manual

Everything you need to know to help out with Krita!

Contents:

	The Krita Community
	Internet Relay Chat

	Mailing List

	GitLab (KDE Invent)

	Phabricator

	Krita Artists

	Bugzilla: the Bug Tracker

	Sprints

	Mark-up conventions for the Krita Manual
	Meta data

	Headings

	Linking

	Images

	In-text Markup

	Substitution References

	Lists

	Tables

	Admonishments and asides

	Code Snippets

	Other preformatted text

	Glossaries, Terms and Index

	Quotes

	Text for Non-English Translations Only

	Notes for Translators

	Krita Manual Contribution Guide
	For first timers

	General philosophy

	Protocol

	Other

	Images for the Manual
	Tools for making screenshots

	The appropriate file format for the job

	Optimising Images in quality and size

	Editing the metadata of a file

	Introduction to User Support
	Tablet Support

	Animation

	Onion skin issues

	Crash

	Other possible questions with quick solutions

	Advices for supporters

	How to share a file

	Technical Pages
	Automated Krita builds on CI matrix

	Brush GUI Design with Lager

	Building Krita from Source

	CMake Settings for Developers

	Enable static analyzer

	How to patch Qt

	Introduction to Hacking Krita

	The Krita Palette format KPL

	Krita SVG Extensions

	Modern C++ usage guidelines for the Krita codebase

	Developing Features

	Optimize Image Processing with XSIMD

	Optimizing tips and tools for Krita

	Google Summer of Code

	Advanced Merge Request Guide

	Python Developer Tools

	Introduction to Quality Assurance

	Making a release

	Reporting Bugs

	Strokes queue

	Strokes public API

	Internals of the freehand tool

	Scheduled Undo/Redo

	Processings framework

	Testing Strategy

	Triaging Bugs

	Unittests in Krita

 The Krita Community

The Krita Community

Get in touch! Apart from the website at https://www.krita.org, the Krita project has several main communication channels:

	Internet Relay Chat (IRC)

	The mailing list

	GitLab (KDE Invent)

	Phabricator

	Krita Artists community forum

While Krita developers and users are present on social media such as Twitter, Mastodon, Reddit, Google+, Tumblr or Facebook, those are not the place where we discuss new features, bugs, development or where we make plans for the future.

There are also the:

	bug tracker

	development sprints

You’ll find that there are a number of people are almost always around: the core team.

	Halla (irc: halla): project maintainer, lead developer. Works full-time on Krita. Manages the Krita Foundation, triages bugs, does social media and admin stuff.

	Dmitry (irc: dmitryK|log): lead developer. Works full-time on Krita.

	Wolthera (irc: Wolthera_laptop): developer, writes the manual and tutorials, triages bugs, helps people out. Works full-time on Krita.

	Ivan Yossi (irc: ivanyossi|log): developer. Works full-time on Krita.

	Agata Cacko (irc: tiar): developer, user supporter. Works full-time on Krita. Also on reddit as u/-tiar- .

	Scott Petrovic (irc: scottyp): UX designer, developer, webmaster.

	David Revoy (irc: deevad): expert user, creates Pepper & Carrot, maintains the preset bundle.

	Alvin Wong (irc: windragon): windows guru.

	Ben Cooksley (irc: bcooksley): KDE system administrator.

Krita’s team spans the globe, but most development happens in Europe and Russia.

Krita is part of the larger KDE community. The KDE® Community is a free software community dedicated to creating an open and user-friendly computing experience, offering an advanced graphical desktop, a wide variety of applications for communication, work, education and entertainment and a platform to easily build new applications upon. The KDE contributors guide is relevant for Krita contributors, too, and can be found here [https://archive.flossmanuals.net/kde-guide/].

The Krita Foundation was created to support development of Krita. The Krita Foundation has sponsored Dmitry’s work on Krita since 2013.

Internet Relay Chat

IRC is the main communication channel. There are IRC clients for every operating system out there, as well as a web client on the krita website.

	Joining IRC: connect to Libera.Chat, select a unique nickname and join the #krita and ##krita-chat channels. #krita is for on-topic talk, ##krita-chat for off-topic chat.

	Don’t ask to ask: if you’ve got a question, just ask it.

	Don’t panic if several discussions happen at the same time. That’s normal in a busy channel.

	Talk to an individual by typing their nick and a colon.

	Almost every Monday, at 16:00 CET or CEST, we have a meeting where we discuss what happened in the past week, what we’re doing, and everything that’s relevant for the project. The meeting notes are kept in google docs.

	Activity is highest in CET or CEST daytime and evenings. US daytime and evenings are most quiet.

	IRC is not logged. If you close the channel, you will be gone, and you will not be able to read what happened when you join the channel again. If you ask a question, you have to stay around!

	It is really irritating for other users and disrupting to conversations if you keep connecting and disconnecting.

Mailing List

The mailing list is used for announcements and sparingly for discussions. Everyone who wants to work on Krita one way or another should be subscribed to the mailing list.

Mailing List Archives [https://mail.kde.org/mailman/listinfo/kimageshop]

The mailing list is called “kimageshop”, because that is the name under which the Krita project was started. Legal issues (surprise!) led to two renames, once to Krayon, then to Krita.

GitLab (KDE Invent)

GitLab serves the following purposes for the Krita team:

	Reviewing volunteers’ submissions through Merge Requests (MR) on Graphics/Krita [https://invent.kde.org/graphics/krita/merge_requests] for the code and Documentation/Krita.org Documentation Website [https://invent.kde.org/documentation/docs-krita-org/merge_requests] for the content of the Krita Manual.

	Host the code git repository: https://invent.kde.org/graphics/krita.git . Note that while there are mirrors of our git repository on Github and Phabricator, we do not use them for Krita development.

	Host the Krita Manual content repository: https://invent.kde.org/documentation/docs-krita-org

Do not make new issues on GitLab or use it to make bug reports.

Do put all your code submissions (merge requests) on GitLab. Do not attach patches to bugs in the bug tracker.

Phabricator

Phabricator serves the following purposes for the Krita team:

	Track what we are working on: https://phabricator.kde.org/maniphest/ This includes development tasks, designing new features and UX design, as well as tasks related to the website.

Do not report bugs as tasks on Phabricator. Phabricator is where we organize our work.

Krita Artists

Krita Artists [https://krita-artists.org] is a forum built for users and artists. Most of the developers have accounts on the forum too.

Bugzilla: the Bug Tracker

Krita shares the bug tracker with the rest of the KDE community. Krita bugs are found under the Krita product. There are two kinds of reports in the bug tracker: bugs and wishes. See the chapters on Bug Reporting and Bug Triaging on how to handle bugs. Wishes are feature requests. Do not report feature requests in bugzilla unless a developer has asked you to. See the chapter on Feature Requests for what is needed to create a good feature request.

Sprints

Sometimes, core Krita developers and users come together, most often in Deventer, the Netherlands, to work together on our code design, UX design, the website or whatever needs real, face-to-face contact. Travel to sprints is usually funded by KDE e.V., while accommodation is funded by the Krita Foundation.

 Mark-up conventions for the Krita Manual

Mark-up conventions for the Krita Manual

This details the style conventions for using restructured text for the Krita Manual.

It’s recommended to look over the official specification [http://docutils.sourceforge.net/rst.html] for reStructuredText, and given it lives on sourceforge, to save a copy to your harddrive (sourceforge has, at this time of writing, some issues with server uptime):

	User Manual:
	
	Primer [http://docutils.sourceforge.net/docs/user/rst/quickstart.html]

	Quick Ref [http://docutils.sourceforge.net/docs/user/rst/quickref.html]

	Text Cheatsheet [http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt]

	Reference Documentation:
	
	Introduction [http://docutils.sourceforge.net/docs/ref/rst/introduction.html]

	Markup [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]

	Directives [http://docutils.sourceforge.net/docs/ref/rst/directives.html]

	Roles [http://docutils.sourceforge.net/docs/ref/rst/roles.html]

	Sphinx specific docs:
	
	Sphinx’ page on restructured text [https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html] – This is useful for the specific sphinx directives and roles it uses to generate for example table of contents.

There are differences between the official reStructuredText and the sphinx docs multiple ways to do things. This document specifies the suggested conventions to go with.

Contents

	Mark-up conventions for the Krita Manual

	Meta data

	Headings

	Linking

	Footnotes and further reading

	Images

	In-text Markup

	Substitution References

	Lists

	Ordinated lists

	Unordered lists

	Definition Lists

	Tables

	Admonishments and asides

	Code Snippets

	Other preformatted text

	Glossaries, Terms and Index

	Quotes

	Text for Non-English Translations Only

	Notes for Translators

Meta data

Each page should start with the following three things:

	
	A meta description
	This is a general description of the page. It will be converted to an html meta tag which will be used by search engines:

.. meta::
 :description:
 Description.

	
	A list of authors and a license.
	This is just to keep track of who edited the page and to give credit. It should be in a comment so that it will not end up being easily readable by machines. The license of the whole manual is GDL 1.3 and should also be mentioned here:

.. metadata-placeholder

 :authors: - Author 1
 - Author 2
 :license: GNU free documentation license 1.3 or later.

	
	Indexing terms.
	These are comma-separated terms under which the page will be indexed in Index. The generated index is quite useful for both PDF as well as people who are not sure what the exact name is of the term they are looking for. They are defined as follows:

.. index:: Keyword, Keyword with Spaces, ! Main Definition Keyword

	
	A label.
	This is so we can easily link to the page using :ref:`label_name`. Try to make this a nice variable name:

.. _label_name:

After the label you will need to add a heading, as :ref:`label_name` will refer to the heading to fill out its link-text.

Headings

Headings will be done in the following order:

############
Part/Section
############

For pages that have a lot of subpages.

=========
Heading 1
=========

Start most manual pages with this.

Heading 2

Heading 3
~~~~~~~~~

Heading 4
^^^^^^^^^

Heading 5
'''''''''

Heading 6
"""""""""





These conventions were more or less decided by Pandoc [https://pandoc.org/]’s mediawiki to reStructuredText conversion. If you need more than 4 headings, ask yourself first if the page hasn’t gotten too complicated and needs splitting up.

Sometimes you need to link to a subsection of a page, add a label above the heading in that case.

Headers should not end with punctuation, as the header will be used as the link name when linking to a label.



Linking

Linking is done with :ref:`label_name`. When you need an alternative link text, you use :ref:`actual text shown <label_name>`.

Linking to external pages is done with `url`_ and `link name <url>`_, which’ll become link name.

Pandoc [https://pandoc.org/] likes to turn these into `link name`__ and then add .. __ :url at the end of the document. This is a so-called ‘anonymous hyperlink’, meaning that depending on the order of the links appearing in the text the order of the links at the end of the text are associated with one another. If this sounds confusing and difficult, it is because it is. That is also the exact reason why we’d like to avoid links like these.


Footnotes and further reading

Footnotes can be made in 3 ways, the most common one is with autonumbering, as per reference:

[1] is a reference to footnote 1, and [2] is a reference to
footnote 2.



[1]
This is footnote 1.



[2]
This is footnote 2.



[3]
This is footnote 3.



[3] is a reference to footnote 3.

Here is a citation reference: [CIT2002] .



[CIT2002]
This is the citation.  It’s just like a footnote,
except the label is textual.





Citation can also be referenced with `citation <CIT2002>`_.

We don’t actually use footnotes in the manual due to the fact that it is a little bit too academical for our readers. However, we do collect documents and links that give a little bit more information on a topic at the end of a page. Sphinx has the .. seealso:: directive for linking to external links, while reStructuredText suggests to use .. rubic:: Footnotes for specifically collecting footnotes as that plays nice with LaTeX.




Images

Use the image directive for images without captions:

.. image:: /images/sample.png
   :width: 800
   :align: center
   :alt: an image.





And figure directives for images with captions:

.. figure:: /images/sample.png
   :figwidth: 800
   :align: center
   :alt: an image.

   A caption --  notice how the first letter is aligned with the :figwidth: option.





The latter gives:



[image: an image.]

A caption –  notice how the first letter of the caption in the directive is aligned with the :figwidth: option.






Images should go into the /images folder. By using /images instead of images, sphinx will know the filepath isn’t relative.



In-text Markup

You can make text emphasized and strong with a single asterisk and double respectively:

*emphasize*
**strong**





You cannot do both *emphasized and strong*, so take a pick.

You can subscript text and superscript text by using :sub:`text` and :sup:`text`.

However, use these super-sparingly! It is preferred to use the existing semantic markup in sphinx in any case, because that makes it easier for translators to make decisions about the nature of the text:

:menuselection:`Settings --> Configure Krita...`
:guilabel:`File`
:kbd:`Ctrl + Z`
:program:`Krita`





Avoid randomly bolding words. It does not make the text easier or friendlier to read.



Substitution References

You can create a sort of shorthand for a piece of text or an image by doing:

.. |shorthand| replace:: something or the other.





which means that if you use |shorthand|, in the text, it’ll be replaced with ‘something or the other’. This is useful for images and text that needs to be formatted in a complicated way, like in the case of “LaTeX”.

The krita documentation has |mouseleft|, |mousemiddle|, |mousescroll| and |mouseright|, which’ll turn into [image: mouseleft], [image: mousemiddle], [image: mousescroll] and [image: mouseright] respectively. These are defined in the sphinx conf.py, and are appended to each rst file.

For links, if you reuse the same link over and over, you can write something like the following at the end of the file:

.. _bugzilla: https://bugs.kde.org/
.. _Krita Manual: https://docs.krita.org/





Then, when typing a link, you can just use `bugzilla`_ to link to bugzilla with “bugzilla” used as the text of the link. `Krita Manual`_ will in turn link to docs.krita.org with the text “Krita Manual”.



Lists


Ordinated lists


	Apple


	Pear


	Banana




Or…


	Table


	Chair


	Wardrobe.





	Augustus


	Nero


	Caligula


	Trajan




They can be defined as follows:

1. Apple
2. Pear
3. Banana

#. Apple
#. Pear
#. Banana

A. Table
B. Chair
C. Wardrobe

A. Table
#. Chair
#. Wardrobe

I. Augustus
#. Nero
#. Caligula
#. Trajan







Unordered lists


	red


	yellow


	
	green
	
	seagreen


	verdigris


	teal


	viridian


	
	emerald
	
	dark emerald


	
	light emerald
	
	very light emerald.


























	blue




Defined as such:

- red
- yellow
- green
    - seagreen
    - verdigris
    - teal
    - viridian
    - emerald
        - dark emerald
        - light emerald
            - very light emerald.
- blue







Definition Lists

A favourite! Definition lists are especially useful when dealing with enumerating all the options in a docker and trying to add a simple explanation behind them.


	Definition
	Explanation.



	Another option
	Explanation.



	To make them.
	You can make them like this:

Definition
    Explanation.
Another option
    Explanation.












Tables



	Purpose

	Table type





	listing shortcuts

	Simple table



	lots of colspans

	Grid table



	Simple but long

	List Table






Done as follows:

================== ============
Purpose            Table type
================== ============
listing shortcuts  Simple table
lots of colspans   Grid table
Simple but long    List Table
================== ============

+-----------------+------------+
|Purpose          |Table Type  |
+=================+============+
|listing shortcuts|Simple table|
+-----------------+------------+
|lots of colspans |Grid table  |
+-----------------+------------+
|Simple but long  |List table  |
+-----------------+------------+

.. list-table::
   :header-rows: 1

   - * Purpose
     * Table Type
   - * listing shortcuts
     * simple table
   - * lots of colspans
     * grid table
   - * simple but long
     * list table





Full grid tables are best for when you need all features like complex column and row spans, but they’re tricky to make. For that reason, small tables are best off being done with the simple syntax, while really long tables are best done with a list directive because that is just much easier to write and maintain.



Admonishments and asides


Note

Admonishments are sort of like a separate section that the reader needs to pay attention to.



Admonishments that can be used are the following (in order of seriousness):


Hint

Hints are useful to give a little bit more information on a topic than is useful in the main text. Like, “These packages are named differently in openSuse versus Debian”.




Tip

Extra information on how to do something, like, “You can make a template of your favourite document setup”, or “Use m to mirror the canvas and see errors more easily in your drawing”.




Important

Something that is important to note, but is not necessarily negative.




Warning

This is in general when something is negative.




Attention

General attention grabber. Use this when the subject is more important than warning, but not as important that is could get a dataloss.




Caution

This is for things that could cause dataloss, like forgetting to save, or that Python currently has no undo functionality.




Danger

This should be for things that are dangerous for the computer in general, this includes things that can cause out of memory style freezes.




Error

This one is probably not relevant for a manual. Sphinx can create these manually given some situations, but our configuration does not do so by default.




Generic admonition that can have any text

Text.



You can make it like this:

.. admonition:: Generic admonition that can have any text

    Text.





Sphinx also adds:

.. seealso::

    Which is useful to collect external links and references.






Horizontal Rulers

Horizontal rulers are usually used when the topic switches rather directly. This is very common in more narrative based writing, such as history or fiction. The Krita manual is more instruction and reference style writing, that is to say, we don’t usually tell a long story to indicate how different elements come together, but rather long stories are there to motivate why certain steps are taken in a certain manner. Topic changes then usually happen because we go into a new section, rather than switching to a related section. It is therefore better to use headings or the .. Topic:: directive. Headings also make it easier to read.




That said, horizontal rulers can be made with ----.

The rubric directive

The rubric directive is a heading directive that at first glance looks like “topic”, but where the topic is over several paragraphs, rubric itself only deals with the header, like so:

.. rubric:: The rubric directive





So, when to use these?

Only use them when you think the subject is too minor to have a proper heading.


	Topic
	When the text is separated from the flow, so it goes into a different subject than the text itself is naturally going to.



	Rubric
	When the text isn’t separated from the flow, but it does not need a header either.



	Admonishments
	Only when they fit semantically. This is especially necessary for the danger and warning admonishments, as seeing them too often can make users blind to them.







Code Snippets

Inline code snippets are done with ``backticks``.

Multi-line code snippets are done by ending the previous section with ::, which’ll look like this:

This is a paragraph, and we define a preformated snippet like so::

    Be sure to add a white space and a tab afterwards before starting the snippet.





You can also use the .. code:: directive. If you add the language name after it, it’ll do the appropriate syntax highlighting:

.. code:: python

    # Python comment
    def my_function():
        alist = []
        alist.append(1)
        string = "hello world"





Becomes

# Python comment
def my_function():
    alist = []
    alist.append(1)
    string = "hello world"





some more…

// C++ comment
int myFunction(int i) {
    i += 1;

    // Check if more than 12
    if (i>12) {
        i = 0;
    }
    return i;
}





/* CSS comment */
body {
    margin: 0 auto;
    /* is 800 still sensible? */
    max-width:800px;
    font-size:16px;
    color:#333;
    background-color: #eee;
    padding:1em;
    font-family:serif;
    line-height: 1.4;
}





<p>this <span style="font-style:italic">is</span> <!-- a HTML comment --> a paragraph.</p>







Other preformatted text


One can

preformat

text by

prepending

each line

with a pipe

symbol



Like so:

| One can
| preformat
| text by
| prepending
| each line
| with a pipe
| symbol





This is generally not used in the manual, and should only be used where it is
absolutely required to represent content that needs exact formatting, but never
merely for aesthetic reasons.



Glossaries, Terms and Index

These are sphinx features.

Index is used in the top section, right now only single index entries are used.

Glossaries are used for some of the menu entry sections, but not all of them.



Quotes

Quotes are done like this:

I am not sure why you'd need quotes in a user manual...

-- Wolthera





This becomes a blockquote.


I am not sure why you’d need quotes in a user manual…

—Wolthera




We do actually use quotes in some places. Try to add a link to the name to define where it came from.



Text for Non-English Translations Only

You can use the following to include text that only makes sense for non-English
translations of the manual, for example to provide non-English readers with
the English names of an item for reference:

.. only:: non_english

    This content is hidden for the English version, but translatable and
    shows up in non-English versions.







Notes for Translators

If you are translating the manual for a language that does not usually use
whitespaces around words (e.g. Chinese and Japanese), you can use an escaped
whitespace to separate markup and words. This is particularly useful for page
links, like this:

床前\ `明月 <https://krita.org/>`_\ 光





Note that when translating from a PO file, you should escape the backslash with
another backslash:

床前\\ `明月 <https://krita.org/>`_\\ 光





The above produces “床前明月 [https://krita.org/]光”, instead of
“床前 明月 [https://krita.org/] 光”.





            

          

      

      

    

  

  
    
    


    Krita Manual Contribution Guide
    

    
 
  

    
      
          
            
  
Krita Manual Contribution Guide

Welcome to the Krita Manual Contribution Guide!

If you’re interested in contributing to Krita’s documentation, you’re in the right place.

Krita is (free) open source software, which effectively makes us a community project with dozens of volunteers pitching in to make it better. This, of course, requires we keep track of manuals and how-to’s for new volunteers to come in and help us. The various places we’ve done this have been rather spread out, so the contributors’ manual is an attempt to consolidate all the information. It is therefore very technical in places.

This documentation will include:


	A reference manual for Krita
	This one is probably what everyone is expecting when they look up Krita’s documentation. Dry, basic, ‘what does this button do’ type of information.



	General concept tutorials.
	We’ve found over the past two years that for certain types of users, a reference manual, even with some examples, just isn’t enough. The manual should also provide fast and concise explanations for things, and provide a basic workflow for preparing an image for the web.

We also have found that certain concepts, such as color management and layer handling are far more advanced in Krita than the average artist is used to. Krita is free and many of its users will not have formal training in digital artwork. So there is no pre-existing artist-focused knowledge on how to use color management or filter layers.

In addition there are systems that are unique to Krita, for example the brush system, the transform masks, the alpha inheritance and the perspective assistants. Finally, there are users who aren’t familiar with even standard painting workflows, and are not flexible enough to understand how to port a tutorial for SAI or Photoshop to Krita.



	A list of known tutorials and video tutorials
	Apparently, one of the great things about Krita’s team is how we connect with artists and acknowledge that they’re doing cool stuff. The same should count for tutorials, especially because there are ways of using Krita and ways of approaching painting that are unique and we should encourage people to share their knowledge.



	Contributors’ Manual
	What you’re reading right now!



	krita.org tutorials
	There have been a bunch of tutorials on the krita.org and the krita-foundation.tumblr.com, the former focusing on explaining how to use a new feature and the later stimulated by user request.



	FAQ
	This one is already online and a merger of the different FAQs that we had. It’s currently being translated and we hope to keep this one the primary one to update.






For first timers

Unlike Mediawiki, Sphinx works more like how we write code for Krita.

First things first, you will want to talk to us! For this you can join us in the chatroom “#krita” via matrix. A introduction about Matrix is given here [https://community.kde.org/Matrix]. Create a matrix on webchat.kde.org account and join the #krita:kde.org channel. Or more importantly, make an account at identity.kde.org [https://identity.kde.org/]. The account you make at identity can be used to both access invent.kde.org as well as the phabricator [https://phabricator.kde.org], where we organise Krita development.

Sphinx works by writing simple text files with reStructuredText mark up, and then it takes those text files and turns them into the manual. We keep track of changes in the manual by putting them into a version control system called Git.


Making changes

Because we use Git, there’s only a few people who can put things into the version control system, so if you want to make changes you will need to put it up for review.


Creating merge requests using Edit mode


Note

This method is only suitable if you have no push access to KDE repositories. Otherwise it would commit your changes directly to the repository, which is against the current guidelines.



Recommended for users without a technical knowledge.

Not recommended when you want to change more than one file at once. (See Creating merge requests using WebIDE or Creating merge requests using command line if you want to change more files, or simply edit only one per merge request).

If you have a lot of changes you want to contribute, we recommend trying to follow these instructions.


	Get a KDE identity.


	Login to KDE_gitlab [https://invent.kde.org/].


	Go to the repository [https://invent.kde.org/documentation/docs-krita-org/tree/master] and press fork.


	You should be redirected to the fork of your repository now. Typically it’s located at invent.kde.org/YOUR_KDE_LOGIN_NAME/docs-krita-org.


	Come back to the official repository. Make sure you’re browsing Documentation > Krita.org Documentation, not your own fork. Otherwise this method won’t work correctly.






	Gitlab has an option to Edit files in the gitlab itself. To access this, go to Repository ‣ Files.


	At the top of the page you should see a dropbox with master as a chosen item.


	Find the file you want to edit, open it and then click Edit.


	Make your changes. (Note: in this mode you can edit only one file at a time).


	Go to the smaller textbox below and write a nice message in the commit message section with the changes you’ve made. When done, press Commit changes. This will make a merge request for you, just fill in all of the fields as explained here: Guidelines for new merge requests.


The downside is that right now there’s no way to tell if you made errors with the mark up using this method. Please check your changes with the Online Sphinx Editor [https://livesphinx.herokuapp.com/] (just copy and paste the entire file you’re editing).









Attention

Edit and WebIDE are two different things! Make sure you select Edit.






[image: ../_images/screenshot_editmode.png]


Creating merge requests using WebIDE

Recommended for users with a bit of knowledge about Git that want to edit multiple files at once.

Not recommended when you don’t know what a branch is (see Creating merge requests using Edit mode instead).


	Follow the instructions above to login to KDE_gitlab [https://invent.kde.org/] and create your fork.


	Go to your fork (make sure the url contains your username).


	Make sure you’re on the master branch.


	Click WebIDE. This should take you to a page that has a list of files on the left side and a big empty space for file contents on the right side.


	Open the files you want to edit and make the changes.


	Click Commit…. Double-click on all files in the Unstaged changes category to move them to Staged changes.


	Click Commit… again - it will expand a commit message textbox. Write commit message that explains what changes have you made and why.


	Make sure the settings are correct: you need to select Create a new branch (the name of the branch should be: [username]/[very short description of your changes]). If you finished your changes, make sure that Start a new merge request is checked. Otherwise you’ll need to make a new merge request manually later.


	Click Stage & Commit.


	Fill all of the fields correctly: see Guidelines for new merge requests.


	To create a new merge request manually, go to Krita Manual official repository (make sure the url doesn’t contain your username now) and click Create a new merge request (bright green button at the left). Select your fork and select the branch that you’ve created in WebIDE.





Note

If you don’t have a push access to the official repository, gitlab won’t allow you to save your changes if you were editing the official repository by mistake (and Create a merge request won’t help with that: you still need to commit your changes to your branch, but if you don’t have push access, you can’t do it). It will just show the message: An error occurred whilst committing your changes. Please try again.

In this case, simply copy contents of all of the files you changed, go to your fork and paste them in the fork WebIDE.





Creating merge requests using command line

Recommended for users that know how Git works and how to use command line.

Not recommended when you don’t know what a branch is (see Creating merge requests using Edit mode instead).


	Follow the instructions above to login to KDE_gitlab [https://invent.kde.org/] and create your fork.


	Clone the repository locally with git clone. The repository page has the urls you can perform git clone from, and you can then push to your fork. The advantage of this is that you can use all the tools on your computer to edit these text files as well as build the manual locally to check for errors. (You need to do this step only once).


# for ssh access
git clone git@invent.kde.org:<username>/docs-krita-org.git
git remote add upstream git@invent.kde.org:documentation/docs-krita-org.git

# for https access
git clone https://invent.kde.org/<username>/docs-krita-org.git
git remote add upstream https://invent.kde.org/documentation/docs-krita-org.git










	Remember to always pull changes from the official repository before making new changes:


git pull upstream master










	Make sure you create a new branch for your changes, since september 2019, all changes should be branched from master.


git checkout master

# and then:
git checkout -b "<username>/<description of the new feature>"










	After you make your changes, commit them and push to your fork. For a detailed description of how to use Git in terminal in case of this workflow, go to Forking on Gitlab.


# install the python3-sphinx package for your system. For example for Ubuntu:
sudo apt install python3-sphinx
# build the manual (reports potential errors, allows to inspect changes in the browser)
make html
# make sure everything is correct
git status
git diff
# add all of the files
git add .
# commit your changes
git commit
# submit your changes to your fork
git push










	Finally, go to the website of the original repository, and then to Merge Requests. Select your fork and the correct branch and create a new merge request. For instruction on how to fill the fields, see Guidelines for new merge requests.






Guidelines for new merge requests


	Your commit messages should conform to standards explained here: How to Write a Git Commit Message [https://chris.beams.io/posts/git-commit/]


	Title and Description should explain what changes did you make and why did you make them, just like a commit message, so follow the guidelines from the link above in this case, too.


	Target should point to master.


	If you’re sure the merge request will demand some changes later, start the title of your merge request with [WIP].


	Make sure you checked Allow commits from members who can merge to the target branch. – it is often needed for technical reasons that merge request is rebased on master, which technically changes the merge request, but it doesn’t change the actual content of it. Rebase can be done by you or by the reviewer – if you don’t want to be bothered later too much, better check this checkbox so the reviewer can do it themselves with only a few clicks.


	You can safely check Delete source branch when merge request is accepted in most cases.


	Unless your reviewers tell you otherwise, check Squash commits when merge request is accepted. The first line of the commit message will come from the Title of your merge request and the rest of it will be taken from the Description of the merge request.


	When you finish creating your merge request, go to IRC (see Internet Relay Chat) and ask someone with push access to add the Needs Review label on your merge request.


	You might get feedback on your merge request if it has mistakes. Just fix the mistakes in your branch in one of the following ways.



	If you want to use Edit mode, just go to Changes section of the merge request and click on the pencil icon (with a tooltip that says Edit) to use the Edit mode again.


	If you want to use WebIDE mode, go to your fork, select the branch your changes are on and go to the WebIDE.


	If you edit files on your computer and work with terminal, make sure you’re on the correct branch and push your changes - gitlab will update your merge request automatically.




After making changes, make sure you ask someone to change the label to Needs Review again.








For more detailed information, check out Forking on Gitlab in the technical section.


Note

At the time of writing this guide setting labels on merge requests is only possible by contributors with write access to the official repository. (If you don’t know what that means, you’re most probably not one of them). Because of that, when you create or change your merge request you need to get on IRC (see The Krita Community) and ask someone to label it for you.





Building the manual in the command line

For those that first want to try out some changes before embarking on a merge
request right away (and already know how to use git and the command line) this
is described as part of step 5. in Creating merge requests using command line.





General philosophy

This is for determining what is an appropriate writing style. A writing style, whether we consider its practical or aesthetic qualities, is usually underpinned by a goal or general philosophy. What do we want to achieve with the manual, and for whom is the manual meant?


Demographics and target audience(s)

We cannot talk about a demographic in the sense that we know all Krita users are 55 year old men. Krita is used by a hugely different amount of people, and we are actually kind of proud that we have such a varied userbase.

Despite that, we know a couple of things about our users:


	They are artists. This is explicitly the type of users that we target.



	Therefore, we know they prefer pretty pictures.


	They are visual.


	They are trying to achieve pretty pictures.











Therefore, the implicit goal of each page would be to get the feature used for pretty pictures.

Other than that, we’ve observed the following groups:


	High-school and college students trying out drawing software for illustrations. These usually have some previous experience with drawing software, like Paint Tool SAI or Photoshop, but need to be introduced to possibilities in Krita. This group’s strength is that they share a lot of information with each other like tips and tricks and tutorials.


	Professionals, people who earn their money with digital drawing software. The strength of this group is that they have a lot of know-how and are willing to donate to improve the program. These come in two types:



	Non technical professionals. These are people who do not really grasp the more mathematical bits of a piece of software, but have developed solid workflows over the years and work with software using their finely honed instincts. These tend to be illustrators, painters and people working with print.


	Technical professionals. These are people who use Krita as part of a pipeline, and care about the precise maths and pixel pushing. These tend to be people working in the games and VFX industry, but occasionally there’s a scientist in there as well.









	Adult and elderly hobbyists. This group doesn’t know much about computers, and they always seem to get snagged on that one little step missing from a tutorial. Their strength as a group is that they adapt unconventional workflows from real life that the student wouldn’t know about and the professional has no time for and create cool stuff with that, as well as that they have a tempering effect on the first group in the larger community.




From these four groups…


	there’s only one that is technical. Which is why we need the concept pages, so that we can create a solid base to write our manual texts on top of.


	three of them likely have previous experience with software and may need migration guides and be told how.


	two of them need to know how to get Krita to cooperate with other software.


	two of them have no clue what they are doing and may need to be guided through the most basic of steps.




From that we can get the following rules:



General Writing


	Use American English if possible.
	We use American English in the manual, in accordance to Krita’s UI being American English by default.



	Keep the language polite, but do not use academic language.
	As a community, we want to be welcoming to the users, so we try to avoid language that is unwelcoming. Swearing is already not condoned by KDE, but going to the far other end, an academic style where neither writer nor reader is acknowledged might give the idea that the text is far more complex than necessary, and thus scare away users.



	Avoid using GIFs (open for debate)
	The reason is that people with epilepsy may be affected by fast moving images. Similarly, GIFs can sometimes carry too much of the burden of explanation. If you can’t help but use GIFs, at the least notify the reader of this in the introduction of the page.



	Keep it translation compatible
	This consists of using SVG for infographics, and using the appropriate markup for a given text.







Regarding photos and paintings


	We would like to discourage photos and traditional paintings in the manual if they are not illustrating a concept. The reason is that it is very silly and a little dishonest to show Rembrandt’s work inside the Krita GUI, when we have so many modern works that were made in Krita. All of the Pepper&Carrot artwork was made in Krita and the original files are available, so when you do not have an image handy, start there. Photos should be avoided because Krita is a painting program. Too many photos can give the impression Krita is trying to be a solution for photo retouching, which really isn’t the focus.


	Of course, we still want to show certain concepts in play in photos and master paintings, such as glossing or indirect light. In this case, add a caption that mentions the name of the painting or the painter, or mentions it’s a photograph.


	Photos can still be used for photobashing and the like, but only if it’s obviously used in the context of photobashing.






Regarding images in general


	Avoid text in the images and use the caption instead. You can do this with the figure directive.


	If you do need to use text, make either an SVG, so the text inside can be manipulated easier, or try to minimize the amount of text.


	Try to make your images high quality/cute. Let’s give people the idea that they are using a program for drawing!


	Remember that the manual is licensed under GDPL 1.3, so images submitted will be licensed under that. In the case of CC-By-Sa/CC-By ensure that the file gets attributed appropriately through a figure caption. Needless to say, don’t submit images that cannot be licensed under either license.







Protocol

So here we line out all the boring workflows.


Tagging and Branches

Adding and removing text will be done in the draft branch.

Proofreading results for old pages will be considered as bugfixes and thus will go into the master branch and merged into the draft branch as necessary.

Before the draft branch is merged for a given release:


	The master branch will be tagged with the old version.


	The draft branch is first double checked that it has updated version number and updated epub cover.




The draft branch will not be merged until the day before a release to keep the pages intact for long enough.

Each release will have a version of the epub uploaded as part of the release process.
.. Where do we get the POT files from? Even the translated versions?



Removing Pages

If a feature is removed in a certain version, the corresponding pages:


	Will first be marked deprecated.


This can be done as so:

.. deprecated:: version number

    Text to indicate what the user should do without this feature.










	Will be linked on a page called ‘deprecated’


	If the next version rolls around, all the pages linked in the deprecated section will be removed.






Adding Pages


	Ensure that it is located in the right place.


	Follow the Mark-up conventions for the Krita Manual to ensure the page is formatted correctly.


	Add the page to the TOC.


	If the feature is new, add in versionadded:

.. versionadded:: version number

    optional something or the other.









As with images, don’t add text that you do not have permission to add. This means that text is either written by you, or you have permission to port it from the original author. The manual is GDPL 1.3+ so the text will be relicensed under that.



Changing Pages

If you fully rewrite a page, as opposed to proofreading it, the resulting page should be reviewed.

If you change a page because a feature has changed, and you have commit access, the change can be pushed without review (unless you feel more comfortable with a review), but you should add:

.. versionchanged:: version number

    This and that changed.





In all cases, check if you want to add yourself to the author field in the metadata section on top.

Using deprecated, versionadded and versionchanged with the version number allows us to easily search the manual for these terms with grep:

grep -d recurse versionadded * --exclude-dir={_build,locale}







Faulty pages

If a page slips through the cracks, either…


	Make a merge request per the Making changes section.


	Make a task at the Manual Project Workboard [https://phabricator.kde.org/project/view/135/].


	Make a bug at bugzilla [https://bugs.kde.org/] under the project Krita in the section ‘documentation’.






Proofreading

There are two types of proofreading that needs to be done.

The most important one is reviewing changes people make. You can do this on KDE_gitlab [https://invent.kde.org/] in two ways:


	Reviewing merge requests

You can help review merge requests. Request reviewing is usually done by programmers to find mistakes in each other’s code, but because programming code is text based just like regular text, we can use this to check against typos as well!


A merge request, is an amount of changes done in a document (added, removed) put into a machine readable file. When someone submits a review request (on system like gitlab or github this is a merge or pull request), people who maintain the original files will have to look them over and can make comments about things needing to change. This allows them to comment on things like typos, over-complicated writing but also things that are incorrect. After a patch has been accepted it can be pushed into the version control system.






	Commenting on changes in the manual.


Commenting changes happens after the fact. You can comment on a change by going to the commit message (from the repository page, go to history and then click on an entry), where you will be able to make comments on the changes made.








In both cases, the interface consists of the difference being shown, with on the left the old version, and on the right the new version. Lines that have been added will be marked in green while lines that have been removed will be marked with red. You can click a speech bubble icon to add an ‘inline’ comment.

The second major way the manual needs to be proofread is over the whole file. Many of the pages have only been checked for correctness but not for style and grammar.

For this you will need to follow the Making changes section, so that you can have full access to the pages and edit them.



Translating

Translation of the manual is handled by the KDE localization community [https://l10n.kde.org/]. To join the translation effort, go to the localization site, select the list of translation teams [https://l10n.kde.org/teams-list.php], select the language you wish to translate for, and follow the instructions on the team page to get in contact with fellow translators.

Please refer to https://community.kde.org/Get_Involved/translation for more general instructions on getting involved in KDE localization.

The localization team has access to the PO files for this manual, which is a file type used by translation programs like POEdit and Lokalize. A translation team is able to work together on translating these files and uploading them to the translations SVN. A special script will then take the translations from the SVN and bring them to the manual section to be incorporated on a daily basis.

Images can be translated if a translation team wants to provide their own images. All images in the image folder are by default for ‘en’. When you want to translate a specific image, go into that folder and add another folder with your language code to add in the translated versions of images. So Sphinx will search for a dutch version of /images/Pixels-brushstroke.png at /images/nl/Pixels-brushstroke.png and for a dutch version of /images/dockers/Krita-tutorial2-I.1-2.png in /images/dockers/nl/Krita-tutorial2-I.1-2.png.

Finished translations also need to be added to the build script to show up online. Translator teams which are confident in the state of their translation should contact the main Krita team via the kimageshop mailinglist(kimageshop@kde.org), or foundation@krita.org, to accomplish this.




Other

For restructured text conventions, check Mark-up conventions for the Krita Manual.





            

          

      

      

    

  

  
    
    


    Images for the Manual
    

    
 
  

    
      
          
            
  
Images for the Manual

This one is a little bit an extension to Saving For The Web. In particular it deals with making images for the manual, and how to optimise images.


Contents


	Images for the Manual


	Tools for making screenshots


	Windows


	Linux


	macOS






	The appropriate file format for the job


	Optimising Images in quality and size


	Windows


	Linux


	Optimising PNG


	Optimising GIF


	Optimising JPEG






	macOS






	Editing the metadata of a file


	Windows and macOS


	Linux


	Viewing Metadata


	Stripping Metadata


	Extracting metadata


	Embedding description metadata


	Embedding license metadata


	Using Properties


	Using XMP


















Tools for making screenshots

Now, if you wish to make an image of the screen with all the dockers and tools, then Saving For The Web won’t be very helpful: It only saves out the canvas contents, after all!

So, instead, we’ll make a screenshot. Depending on your operating system, there are several screenshot utilities available.


Windows

Windows has a build-in screenshot tool. It is by default on the Print Screen key. On laptops you will sometimes need to use the Fn key.



Linux

Both Gnome and KDE have decent screenshot tools showing up by default when using the Print Screen key, as well do other popular desktop environments. If, for whatever reason, you have no


	ImageMagick
	With imagemagick, you can use the following command:

import -depth 8 -dither <filename.png>









While we should minimize the amount of GIFs in the manual for a variety of accessibility reasons, you sometimes still need to make GIFs and short videos. Furthermore, GIFs are quite nice to show off features with release notes.

For making short GIFs, you can use the following programs:


	Peek [https://github.com/phw/peek] – This one has an AppImage and a very easy user-interface. Like many screenrecording programs it does show trouble on Wayland.






macOS

The Screenshot hotkey on macOS is Shift + Command + 3, according to the official apple documentation [https://support.apple.com/en-us/HT201361].




The appropriate file format for the job

Different file formats are better for certain types of images. In the end, we want to have images that look nice and have a low filesize, because that makes the manual easier to download or browse on the internet.


	GUI screenshots
	This should use PNG, and if possible, in GIF.



	Images that have a lot of flat colors.
	This should use PNG.



	Grayscale images
	These should be GIF or PNG.



	Images with a lot of gradients
	These should be JPG.



	Images with a lot of transparency.
	These should use PNG.





The logic is the way how each of these saves colors. JPEG is ideal for photos and images with a lot of gradients because it compresses differently. However, contrasts don’t do well in JPEG. PNG does a lot better with images with sharp contrasts, while in some cases we can even have less than 256 colors, so GIF might be better.

Grayscale images, even when they have a lot of gradients variation, should be PNG. The reason is that when we use full color images, we are, depending on the image, using 3 to 5 numbers to describe those values, with each of those values having a possibility to contain any of 256 values. JPEG and other ‘lossy’ file formats use clever psychological tricks to cut back on the amount of values an image needs to show its contents. However, when we make grayscale images, we only keep track of the lightness. The lightness is only one number, that can have 256 values, making it much easier to just use GIF or PNG, instead of JPEG which could have nasty artifacts. (And, it is also a bit smaller)

When in doubt, use PNG.



Optimising Images in quality and size

Now, while most image editors try to give good defaults on image sizes, we can often make them even smaller by using certain tools.


Windows

The most commonly recommended tool for this on Windows is IrfranView [https://www.irfanview.com/], but the dear writer of this document has no idea how to use it exactly.

The other option is to use PNGCrush as mentioned in the linux section.



Linux


Optimising PNG

There is a whole laundry list of PNG optimisation tools [https://css-ig.net/png-tools-overview] available on Linux. They come in two categories: Lossy (Using psychological tricks), and Lossless (trying to compress the data more conventionally). The following are however the most recommended:


	PNGQuant [https://pngquant.org/]
	A PNG compressor using lossy techniques to reduce the amount of colors used in a smart way.

To use PNGquant, go to the folder of choice, and type:

pngquant --quality=80-100 image.png





Where image is replaced with the image file name. When you press the Enter key, a new image will appear in the folder with the compressed results.
PNGQuant works for most images, but some images, like the color selectors don’t do well with it, so always double check that the resulting image looks good, otherwise try one of the following options:



	PNGCrush [https://pmt.sourceforge.io/pngcrush/]
	A lossless PNG compressor. Usage:

pngcrush image.png imageout.png





This will try the most common methods. Add -brute to try out all methods.



	Optipng [http://optipng.sourceforge.net/]
	Another lossless PNG compressor which can be run after using PNGQuant, it is apparently originally a fork of png crush.
Usage:

optipng image.png





where image is the filename. OptiPNG will then proceed to test several compression algorithms and overwrite the image.png file with the optimised version. You can avoid overwriting with the --out imageout.png command.







Optimising GIF


	FFmpeg [http://blog.pkh.me/p/21-high-quality-gif-with-ffmpeg.html]


	Gifski [https://gif.ski/]


	LossyGif [https://kornel.ski/lossygif]






Optimising JPEG

Now, JPEG is really tricky to optimize properly. This is because it is a lossy file format, and that means that it uses psychological tricks to store its data.

However, tricks like these become very obvious when your image has a lot of contrast, like text. Furthermore, JPEGs don’t do well when they are resaved over and over. Therefore, make sure that there’s a lossless version of the image somewhere that you can edit, and that only the final result is in JPEG and gets compressed further.




macOS


	ImageOptim [https://imageoptim.com/mac] – A Graphical User Interface wrapper around commandline tools like PNGquant and gifski.







Editing the metadata of a file

Sometimes, personal information gets embedded into an image file. Othertimes, we want to embed information into a file to document it better.

There are no less than 3 to 4 different ways of handling metadata, and metadata has different ways of handling certain files.

The most commonly used tool to edit metadata is ExifTool, another is to use ImageMagick.


Windows and macOS

To get exiftool, just get it from the website [https://www.sno.phy.queensu.ca/~phil/exiftool/].



Linux

On Linux, you can also install exiftool.


	Debian/Ubuntu
	sudo apt-get install libimage-exiftool-perl







Viewing Metadata

Change the directory to the folder where the image is located and type:

exiftool image





where image is the file you’d like to examine. If you just type exiftool in any given folder it will output all the information it can give about any file it comes across. If you take a good look at some images, you’ll see they contain author or location metadata. This can be a bit of a problem sometimes when it comes to privacy, and also the primary reason all metadata gets stripped.

You can also use ImageMagick’s identify [https://www.imagemagick.org/script/identify.php]:

identify -verbose image







Stripping Metadata

Stripping metadata from the example image.png can be done as follows:


	ExifTool [http://www.linux-magazine.com/Online/Blogs/Productivity-Sauce/Remove-EXIF-Metadata-from-Photos-with-exiftool]
	exiftool -all= image.png

This empties all tags exiftool can get to. You can also be specific and only remove a single tag:
exiftool -author= image.png



	OptiPNG
	optipng -strip image.png
This will strip and compress the png file.



	ImageMagick [https://www.imagemagick.org/script/command-line-options.php#strip]
	convert image.png –strip







Extracting metadata

Sometimes we want to extract metadata, like an ICC profile, before stripping everything. This is done by converting the image to the profile type:


	ImageMagick’s Convert [https://imagemagick.org/script/command-line-options.php#profile]
	First extract the metadata to a profile by converting:

convert image.png image_profile.icc





Then strip the file and readd the profile information:

convert -profile image_profile.icc image.png











Embedding description metadata

Description metadata is really useful for the purpose of helping people with screenreaders. Webbrowsers will often try to use the description metadata if there’s no alt text to generate the alt-text. Another thing that you might want to embed is stuff like color space data.

ExifTool


	ImageMagick
	Setting an exif value:

convert -set exif:ImageDescription "An image description" image.png image_modified.png





Setting the PNG chunk for description:

convert -set Description "An image description" image.png image_modified.png











Embedding license metadata

In a certain way, embedding license metadata is really nice because it allows you to permanently mark the image as such. However, if someone then uploads it to another website, it is very likely the metadata is stripped with imagemagick.


Using Properties

You can use dcterms:license for defining the document where the license is defined.


	ImageMagick
	For the GDPL:

convert -set dcterms:license "GDPL 1.3+ https://www.gnu.org/licenses/fdl-1.3.txt" image.png





This defines a shorthand name and then license text.

For Creative Commons BY-SA 4.0:

convert -set dcterms:license "CC-BY-SA-4.0 https://creativecommons.org/licenses/by-sa/4.0/" image.png









The problem with using properties is that they are a non-standard way to define a license, meaning that machines cannot do much with them.



Using XMP

The creative commons website suggest we use XMP for this [https://wiki.creativecommons.org/wiki/XMP]. You can ask the Creative Commons License choose to generate an appropriate XMP file for you when picking a license.

We’ll need to use the XMP tags for exiftool [https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/XMP.html].

So that would look something like this:

exiftool -Marked=true -License="https://creativecommons.org/licenses/by-sa/4.0" -UsageTerms="This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>." -Copyright="CC-BY-SA-NC 4.0" image.png





Another way of doing the marking is:

exiftool -Marked=true -License="https://creativecommons.org/licenses/by-sa/4.0" -attributionURL="docs.krita.org" attributionName="kritaManual" image.png






	With imagemagick you can use the profile option again.
	First extract the data (if there is any):

convert image.png image_meta.xmp





Then modify the resulting file, and embed the image data:

convert -profile image_meta.xmp image.png









The XMP definitions per license. You can generate an XMP file for the metadata on the creative commons website.







            

          

      

      

    

  

  
    
    


    Introduction to User Support
    

    
 
  

    
      
          
            
  
Introduction to User Support


Contents


	Introduction to User Support


	Tablet Support


	Quick solutions


	Gathering information


	Additional information for supporters






	Animation


	Onion skin issues


	Crash


	Other possible questions with quick solutions


	Advices for supporters


	How to share a file










Tablet Support

The majority of help requests are about pen pressure and tablet support in general.


Quick solutions


Note

With every change mentioned below you might need to restart your PC to see the effect.



For Windows, all devices:


	Change API in Settings ‣ Configure Krita… ‣ Tablet Settings.



	Wintab: older standard; it supports multiple buttons and high number of pressure levels. If it works fine for you, don’t change to Windows Ink. 2-in-1 devices by default use Windows Ink, you can get a Wintab driver but you need to install it separately.


	Windows 8+ Pointer (Windows Ink): newer standard; it cuts the pressure levels to 1024. It is more suitable for 2-in-1 devices like Surface Pro and Yoga. Some less known brands might not have this standard implemented.











For Windows, tablet/digitizer devices (not convertible/2-in-1 ones):


	Reinstall your driver (Windows Update often breaks tablet driver settings, reinstallation helps).


	Wacom tablets: if you get straight lines at the beginnings of the strokes, first try to update your driver: it should be fixed in 6.3.34-3. If it doesn’t work, disable/minimize “double-click distance” in Wacom settings.


	XP-Pen tablets, pressure being uneven: either switch to Windows 8+ Pointer (Windows Ink) in Configure Krita ‣ Tablet Settings, or disable Windows Ink in XP-Pen settings.






Gathering information


	Which OS do you use?


	Which tablet do you have?


	What is the version of the tablet driver?


	Please collect Tablet Tester (Configure Krita ‣ Tablet Settings ‣ Tablet Tester) text output and share it: How to share a file.


	More detailed Tablet Events log:



	Go to Settings ‣ Dockers ‣ Log Viewer docker, make sure it’s checked.


	In the Log Viewer docker, make sure the first button is pressed (which means the logging is turned on).


	Press Ctrl + Shift + T to turn on tablet events logging.


	Make a few strokes (depending on the situation, the user supporter or developer can ask you for specific series of strokes).


	Press Ctrl + Shift + T to turn off the logging of the tablet events.


	Press the third button in the Log Viewer to save the output into a file.


	Share the file or share the content of the file: How to share a file.




On Linux, you can just use a console instead of Log Viewer – then you’d only need to enable tablet events logging, not logging in general.










Additional information for supporters


	Except for the issue with beginnings of the strokes, Wacom tablets usually work no matter the OS.


	Huion tablets should work on Windows and on Linux, on macOS there might be issues.


	XP-Pen tablets and the rest of brands can have issues everywhere (on all systems).


	If someone asks about a tablet to buy, generally a cheaper Wacom or a Huion are the best options as of 2019, if they want to work with Krita. The List of Supported Tablets.


	Possibly useful instruction in case of XP-Pen tablet issues [https://www.reddit.com/r/krita/comments/btzh72/xppen_artist_12s_issue_with_krita_how_to_fix_it/].







Animation

Issues with rendering animation can be of various shapes and colors. First thing to find out is whether the issue happens on Krita’s or FFmpeg’s side (Krita saves all the frames, then FFmpeg is used to render a video using this sequence of images). To learn that, instruct the user to render as “Image Sequence”. If the image sequence is correct, FFmpeg (or more often: render options) are at fault. If the image sequence is incorrect, either the options are wrong (if for example not every frame got rendered), or it’s a bug in Krita.


Note

If the user opens the Log Viewer docker, turns on logging and then tries to render a video, Krita will print out the whole ffmpeg command to Log Viewer so it can be easily investigated.



There is a log file called log_encode.log in the directory that user tries to render to. It can contain information useful to investigation of the issue (sharing files: How to share a file).



Onion skin issues

The great majority of issues with onion skin are just user errors, not bugs. Nonetheless, you need to find out why it happens and direct the user how to use onion skin properly.



Crash

In case of crash try to determine if the problem is known, if not, instruct user to create a bug report (or create it yourself) with following information:


	What happened, what was being done just before the crash.


	Is it possible to reproduce (repeat)? If yes, provide a step-by-step instruction to get the crash.


	Backtrace (crashlog) – the instruction for Windows is here: Dr. MinGW Debugger, and the debug symbols can be found in the annoucement of the version of Krita that the user has. But it could be easier to just point the user to https://download.kde.org/stable/krita.






Other possible questions with quick solutions


	When the user has any weird issue, something you’ve never heard about, ask them to reset the configuration: Resetting Krita configuration.


	When the user on Windows has trouble with anything related to preview or display, ask them to change Canvas Graphics Acceleration in Settings ‣ Configure Krita ‣ Display.



Note

Telling people to disable canvas acceleration to get better performance is something we shouldn’t do, ever.












Advices for supporters


	If you don’t understand the question, ask for clarification – asking for a screen recording or a screenshot is perfectly fine.


	If you don’t know the solution but you know what information will be needed to investigate the issue further, don’t hesitate to ask. Other supporters may know the answer, but have too little time to move the user through the whole process, so you’re helping a lot just by asking for additional information. This is very much true in case of tablet issues, for example.


	If you don’t know the answer/solution and the question looks abandoned by other supporters, you can always ask for help on Krita IRC channel. It’s #krita on Libera.Chat: The Krita Community.


	Explain steps the user needs to make clearly, for example if you need them to change something in settings, clearly state the whole path of buttons and tabs to get there.


	Instead of Settings ‣ Configure Krita… use just Configure Krita – it’s easy enough to find and macOS users (where you need to select Krita ‣ Preferences…) won’t get confused.


	If you ask for an image, mention usage of Imgur [https://imgur.com] or Pasteboard [https://pasteboard.co] (How to share a file), otherwise Reddit users might create a new post with this image instead of including it to the old conversation.


	If you want to quickly answer someone, just link to the appropriate place in this manual page – you can click on the little link icon next to the section or subsection title and give the link to the user so they for example know what information about their tablet issue you need.






How to share a file


	Images (e.g. screenshots): Imgur [https://imgur.com] [*], Pasteboard [https://pasteboard.co]


	Text only: Pastebin [https://pastebin.com] [*], BPaste [https://bpaste.net], paste.ubuntu.org.cn [https://paste.ubuntu.org.cn], CentOS’s Pastebin Service [https://paste.centos.org/] or KDE Snippets (needs KDE Identity) [https://invent.kde.org/dashboard/snippets].


	.kra and other formats: by mail? Or encode the file using base64 command on Linux, send by mail or on Pastebin, then decode using the same command.


Attention

If you ask user to store their log or other data on a website, make sure it stays there long enough for you to get it – for example bpaste.net stores files by default only for a day! And you can extend it only to one week.




Blocked websites

If the user is behind a firewall of some sorts (for example lives in China), websites with [*] will probably be blocked; please use the alternatives.











            

          

      

      

    

  

  
    
    


    Technical Pages
    

    
 
  

    
      
          
            
  
Technical Pages


“In my 20+ year experience managing projects I learned that tools or systems don’t manage anything, people do, and if people need tools they’ll get them or make them”

—Ton Roosendaal, on #blendercoders




Some parts of the contributor’s manual are for people who wish to help with the more technical parts of contributing to an open source project.

Because technical computer terms are very hard to translate, people who wish to do technical contributions must know English. This is not just because these pages would be hard to translate, but also because the main developers who work on the program will have a hard time figuring out the names of technical terms in languages other than English. Therefore, these pages will not be translated.

Outside these pages we also recommend taking a look at…


	The KDE API Documentation Guidelines [https://community.kde.org/Guidelines_and_HOWTOs/API_Documentation]


	KDE wide Guidelines and How-tos [https://community.kde.org/Guidelines_and_HOWTOs]





Contents:


	Automated Krita builds on CI matrix

	Brush GUI Design with Lager

	Building Krita from Source

	CMake Settings for Developers

	Enable static analyzer

	How to patch Qt

	Introduction to Hacking Krita

	The Krita Palette format KPL

	Krita SVG Extensions

	Modern C++ usage guidelines for the Krita codebase

	Developing Features

	Optimize Image Processing with XSIMD

	Optimizing tips and tools for Krita

	Google Summer of Code

	Advanced Merge Request Guide

	Python Developer Tools

	Introduction to Quality Assurance

	Making a release

	Reporting Bugs

	Strokes queue

	Strokes public API

	Internals of the freehand tool

	Scheduled Undo/Redo

	Processings framework

	Testing Strategy

	Triaging Bugs

	Unittests in Krita








            

          

      

      

    

  

  
    
    


    Automated Krita builds on CI matrix
    

    
 
  

    
      
          
            
  
Automated Krita builds on CI matrix


Android



	
	Release

	Nightly

	CI/MR





	KRITACI_RELEASE

	1

	0

	0



	ANDROIDDEPLOYQT_EXTRA_ARGS

(is set by KRITACI_RELEASE)


	--release

	--no-gdbserver

	--no-gdbserver



	packageId

	org.krita

	org.krita.nightly

	org.krita.debug



	Signed by

	Krita Foundation

(manually by Halla)


	KDE e.V.

(by signing service)


	default debug signature



	BUILD_TYPE

	Release

	Release

	Release



	HIDE_SAFE_ASSERTS

	ON

	OFF

	OFF



	BUILD_TESTING

	OFF

	ON

	ON



	Run the tests

Tests are skipped either by --only-build
option or KDECI_ONLY_BUILD variable


	OFF

	OFF

	OFF



	Upload to ci-builds [https://cdn.kde.org/ci-builds/graphics/krita]

	OFF

	ON

	OFF



	Job is triggered on

	manually on tags

	nightly

	manually








Linux



	
	Release

	Nightly

	CI/MR





	Signed by

	Krita Foundation
(manually by Halla)

	(to be implemented,
by KDE e.V.)

	none



	BUILD_TYPE
(appimages don’t support debug symbols)

	Release

	Release

	Release



	HIDE_SAFE_ASSERTS

	ON

	OFF

	OFF



	BUILD_TESTING

	OFF

	OFF

	ON



	Run the tests

Tests are skipped either by --only-build
option or KDECI_ONLY_BUILD variable


	OFF

	OFF

we run tests for every commit,
no need to run them in nightlies


	ON



	Upload to ci-builds [https://cdn.kde.org/ci-builds/graphics/krita]

	OFF

	ON

	OFF



	Job is triggered on

	manually on tags

	nightly

	for all commits in branches and MRs








Windows



	
	Release

	Nightly

	Protected branches CI

	CI for MRs





	Signed by

	
	.exe — by KDE e.V, using signing service


	.msix — by Krita Foundation, automatically via Windows Store





	only .exe files are signed,
by KDE e.v.

	only .exe files are signed,
by KDE e.v.

	no signature for unprotected branches



	BUILD_TYPE

	RelWithDebInfo

	RelWithDebInfo

	Release

	Release



	SKIP_DEBUG_PACKAGE

	OFF

	OFF

	ON

(too expensive to build debug
package for every commit)


	ON

(too expensive to build debug
package for every commit)




	BUILD_INSTALLERS

	ON

	ON

	OFF

(too expensive to build installers for every commit)qp


	OFF

(too expensive to build installers for every commit)




	HIDE_SAFE_ASSERTS

	ON

	OFF

	OFF

	OFF



	BUILD_TESTING

	OFF

	OFF

	ON

	ON



	Run the tests

Tests are skipped either by --only-build
option or KDECI_ONLY_BUILD variable


	OFF

	OFF

we run tests for every commit,
no need to run them in nightlies


	ON

	ON



	Upload to ci-builds [https://cdn.kde.org/ci-builds/graphics/krita]

	OFF

	ON

	OFF

	OFF



	Job is triggered on:

	manually on tags

	nightly

	for every commit

	for every commit










            

          

      

      

    

  

  
    
    


    Brush GUI Design with Lager
    

    
 
  

    
      
          
            
  
Brush GUI Design with Lager


Contents


	Brush GUI Design with Lager


	Krita controls overview


	Problem Definition


	What is Lager?


	Value-oriented design


	Unidirectional data-flow architecture






	What Lager provides?


	On-the-fly value transformations


	Value aggregation and “effectiveValue” pattern


	Combining value transformations


	Extending value types


	Official documentation






	How all this applies to Krita?


	A complete example from Krita


	‘Data’ for “painting mode” option


	‘Model’ for “painting mode” option


	‘Widget’ for “painting mode” option


	‘Option’ for “mirror” option






	Paint engine porting guide










Krita controls overview

In Krita we have a really complicated system of brush settings, so in the beginning it would be nice to make a short overview of what we have


	PaintOp
	PaintOp is a brush engine that can load a brush preset and paint on canvas



	PaintOpOption
	Option is a high-level property of the brush. E.g. “Size”, “Opacity” or “Smudge Rate”. In the GUI an option is represented as a single page full of smaller settings. Most of Krita options also have a curve that links option’s value to the stylus sensors.



	Sensor
	Sensor represents a single sensor available in the stylus.






[image: Overview of brush editor controls]



Problem Definition

The building block of any brush engine GUI is a PaintOpOption. When building a configuration widget for a PaintOp we just compose a set of independent options, pass them the brush preset (in a form of KisPropertiesConfiguration object) and show the result to the user.

Each option has four responsibilities:


	read/write serialized XML or properties data


	define dependencies between properties of the option and other options, for example






	Brush Application widget is available only for RGB brushes. For all standard brushes it   should be grayed out and set to “Mask” mode


[image: Mask mode is forced for non-RGB brushes]



	Lightness Strength option is available only when an RGB brush is selected and “Lightness Map” mode is enabled


[image: Lightness strength is disabled for non-lightness brushes]









	show options in the GUI as Qt’s widgets


	apply the actual effect of the option to the stroke on the canvas




The problem of our current implementation is that all four responsibilities are packed either in one (sometimes two) classes (see e.g. KisAirbrushOptionWidget, or KisSmudgeOption + KisSmudgeOptionWidget). And the dependencies logic is usually implemented in Widget part of the pack, which makes it extremely hard to debug and maintain (not speaking about porting to QML).



What is Lager?

Lager [https://github.com/arximboldi/lager] is a C++ library to assist value-oriented design by implementing the unidirectional data-flow architecture. It is heavily inspired by Elm and Redux, and enables composable designs by promoting the use of simple value types and testable application logic via pure functions.

What does it mean for us?


Value-oriented design

Value oriented design means that the library operates with immutable “value types”. We don’t “edit” any model. When we want to change something we just replace the whole “state”.

For Krita it means that we have a C++ structure for each part of the brush settings and can manipulate it easily. See, for example, KisAirbrushOptionData which represents the corresponding option:

struct KisAirbrushOptionData
    : boost::equality_comparable<KisAirbrushOptionData>
{
    inline friend bool operator==(const KisAirbrushOptionData &lhs,
                                  const KisAirbrushOptionData &rhs);

    bool isChecked {false};
    qreal airbrushRate {50.0};
    bool ignoreSpacing {false};

    bool read(const KisPropertiesConfiguration *setting);
    void write(KisPropertiesConfiguration *setting) const;
};





KisAirbrushOptionData is a simple structure without any constructor, destructor or virtual functions. It is assignable and comparable. One can also write or read its value to a KisPropertiesConfiguration object.

The main benefit of having such representation of the option is that now we can compare old and new value of the option and if the value hasn’t changed, don’t issue any update. It solves the problem of cycling updates that we have in the old implementation. The old implementation stores all the options in a single KisPropertiesConfiguration, so we cannot split or compare it.



Unidirectional data-flow architecture

The original idea of Lager is that the system would be implemented in a fully “functional
programming” approach. That is, there is a single “state” and the GUI calling “pure functions” to replace this state. We cannot use this “functional” design fully right now, but we can use other composing tools lager provides for our benefit.

Basically, Lager provides tools for building tree-like structures of values that depend on each other in uni-directional way.

Let’s consider the following simplified example of a scatter option:

struct KisSensorData
{
    KoID id;
    QString curve;
};

struct KisCurveOptionData
{
    bool isChecked {false};
    qreal strength {1.0};

    KisSensorData pressureSensor;
    KisSensorData rotationSensor;
    KisSensorData fuzzySensor;
};

struct KisScatterOptionData
{
    bool scatterAxisX {true};
    bool scatterAxisY {true};

    KisCurveOptionData curveOption;
};





You can see that the scatter option is composed of a curve option and a few own properties, like scatterAxisX and scatterAxisY.

The whole GUI is represented as a graph. Each node of this graph knows its value (and has a representation as a plain C++ struct).


[image: Graph of the scatter option]

Since each node knows its current value, when an update comes, the node can compare the new value against the current one and cancel update propagation in case the value haven’t changed. It allows us to avoid the problem of cycling updates, since a lot of Qt’s widgets emit updates even when the value doesn’t change.


[image: Graph of the scatter option]




What Lager provides?

Lager library consists of four main classes:


	lager::state<> is the single source of truth in the system. It stores the actual data and always represents the root of the graph.


	lager::cursor<> is a node of the graph. A cursor connects to the state and track all of its updates. One can read or write into the cursor and the value will be propagated up the tree:


// create state with automatic updates
lager::state<KisScatterOptionData, lager::automatic_tag> optionState;

// connect to one specific subvalue of the state
lager::cursor<qreal> strength =
    optionState[&KisScatterOptionData::curveOption][&KisCurveOptionData::strength];

// read the linked value
strengthSpinBox->setValue(strength.get());

// write the linked value
strength.set(strengthSpinBox->value());

// subscribe to the linked value updates
// (please note that lager also has a way to connect via
// native Qt signals)
strength.bind(std::bind(&QDoubleSpinBox::setValue,
                        strengthSpinBox,
                        std::placeholders::_1));










	lager::reader<> and lager::writer<> work in the same way as cursors, but for read-only and write-only access types





On-the-fly value transformations

When creating a node with a cursor one can not only access member variables, but also do transformations on the fly!

lager::state<KisScatterOptionData, lager::automatic_tag> optionState;

// connect to one specific subvalue of the state
lager::cursor<qreal> strength =
    optionState[&KisScatterOptionData::curveOption][&KisCurveOptionData::strength];

// create a cursor that automatically scales the strength value from 0...1 range
// to 0...100
lager::cursor<qreal> scaledStrength =
    strength.zoom(kiszug::lenses::scale<qreal>(100.0));





Here we use a .zoom() expression with a lens that implements conversion of the value in both directions. That is, when scaledStrength value is read, the lens multiplies the source value by 100.0. When scaledStrength is written, it automatically divides the new value by 100.0 before writing into the source.



Value aggregation and “effectiveValue” pattern

In some cases one needs to combine multiple cursors coming from different sources. For example, Lightness Strength option’s checked state depends on the two separate values:


	whether the user checked it using the checkbox


	whether Lightness Strength is actually supported by the brush




When the brush does not support Lightness Strength, then the option is unchecked and disabled. That can be written in Lager using the lager::with() expression:

lager::state<KisLightnessStrengthOptionData, lager::automatic_tag> optionState;

// the cursor provided by the brush option externally
lager::cursor<bool> allowedByTheBrush = ...;


// connect to the user-set value
lager::cursor<bool> isCheckedByUser =
    optionState[&KisLightnessStrengthOptionData::curveOption]
               [&KisCurveOptionData::isChecked];


// combine the two cursors using logical-and operator into
// an "effective" isChecked value;
lager::reader<bool> effectiveIsChecked =

    // `lager::with()` expression combines multiple cursors into one tuple

    lager::with(allowedByTheBrush, isCheckedByUser)

    // `.map()` expression accepts a standard function or functor which is used to
    // transform the source cursor on-the-fly

        .map(std::logical_and{});





We use such “effectiveValue” design a lot. It is the main tool against the cycling dependencies. The point is, we cannot assign anything to isCheckedByUser from within the update, it would create a cycling dependency:

// piping one cursor into another creates loops, don't do this!
allowedByTheBrush.bind(std::bind(&lager::cursor<bool>::set,
                                &isCheckedByUser,
                                std::placeholders::_1);





Such design has a small complication though. This “effective” value is no longer serialized by KisScatterOptionData automatically, since it is not present in KisScatterOptionData. To overcome this issue we use the process of “baking” the model into the data. This process will be explained later.



Combining value transformations

Lager performs value transformations via so called transducers. Transducer is a special form of a lambda expression that allows combining multiple operations into a single C++ entity, which can be manipulated later. Standard transducers for Lager are provided by zug library (check official documentation for zug [https://sinusoid.es/zug/index.html]). Krita also provides a set of useful transducers in KisZug.h.

Let’s check an example from KisPredefinedBrushModel.h. Our brightness adjustment is stored in a form of a qreal value with range 0…1, but the GUI widget shows it as an integer percentage value in range 0…100. Here is an example of how we can link these values with Lager:

struct PredefinedBrushData
{
    // source value is `qreal`!
    qreal brightnessAdjustment {0.0};
};

// destination value is `int`!
lager::cursor<int> brightnessAdjustment =

    predefinedBrushData[&PredefinedBrushData::brightnessAdjustment]

        // `xform` expression accepts two transducers that transform the expression
        // on-the-fly. The first transducer is a "getter", the second is a "setter"

        .xform(

            // getter: multiply the value by 100.0 and then round it to the nearest
            //         integer

            kiszug::map_mupliply<qreal>(100.0) | kiszug::map_round,

            // setter: cast integer into a `qreal` and scale back into 0...1 range

            kiszug::map_static_cast<qreal> | kiszug::map_mupliply<qreal>(0.01));







Extending value types

The value oriented design has one non-obvious complication. Since we want all the values to be easily assignable and comparable, we can use no polymorphism. Basically, virtual functions are prohibited in the “values” we operate with.

Consequently, if we need to extend some type, e.g. KisCurveOptionData, we cannot do that by overriding virtual methods (what we would do in the old design). Instead we should combine KisCurveOptionData with extra data using composition or inheritance. Here is an example of how we do that for KisScatterOptionData:

// Define the scatter-specific options in a separate mixin class that
// implements all standard operations: equality comparison, read and write

struct KisScatterOptionMixIn
    : boost::equality_comparable<KisScatterOptionMixInImpl>
{
    friend bool operator==(const KisScatterOptionMixInImpl &lhs,
                                const KisScatterOptionMixInImpl &rhs);

    bool axisX {true};
    bool axisY {true};

    bool read(const KisPropertiesConfiguration *setting);
    void write(KisPropertiesConfiguration *setting) const;
};

// Combine this mixin class with KisCurveOptionData and manually forward
// all the main operators to the parent classes

struct KisScatterOptionData
    : KisCurveOptionData,
    , KisScatterOptionMixIn
    , boost::equality_comparable<KisScatterOptionData>
{
    KisScatterOptionData()
        : KisCurveOptionData(KoID("Scatter", i18n("Scatter")))
    {
    }

    friend bool operator==(const KisScatterOptionMixInImpl &lhs,
                           const KisScatterOptionMixInImpl &rhs)
    {
        return static_cast<const KisCurveOptionData&>(lhs) ==
               static_cast<const KisCurveOptionData&>(rhs)
               &&
               static_cast<const KisScatterOptionMixIn&>(lhs) ==
               static_cast<const KisScatterOptionMixIn&>(rhs);
    }

    bool read(const KisPropertiesConfiguration *setting) {
        return KisCurveOptionData::read(setting) &&
            KisScatterOptionMixIn::read(setting);
    }
    void write(KisPropertiesConfiguration *setting) const {
        KisCurveOptionData::write(setting);
        KisScatterOptionMixIn::write(setting);
    }
};





In this example we manually define a class that combines our scatter-specific mixin class with the base KisCurveOptionData. You see it requires a lot of boiler-plate code. Hence there is a special tool to do such composition automatically :)

// Combine the mixin class with KisCurveOptionData using a special tool class
// KisOptionTuple. It inherits from all its template parameters and automatically
// implements equality comparison, read and write operators.

struct KisScatterOptionData : KisOptionTuple<KisCurveOptionData,
                                             KisScatterOptionMixIn>
{
    KisScatterOptionData()
        : KisOptionTuple<KisCurveOptionData,
                        KisScatterOptionMixIn>(KoID("Scatter", i18n("Scatter")))
    {
    }
};






Hint

Even though virtual function are prohibited, we still use them in one place, KisDynamicSensor. KisDynamicSensor is a representation of a single sensor in KisCurveOptionData and it is somewhat polymorphic. But these polymorphic sensors are fully contained inside a single curve option. They are created internally and none of their pointers are ever exposed to the outer world.





Official documentation


	Lager


	Source code: https://github.com/arximboldi/lager


	Documentation: https://sinusoid.es/lager/introduction.html






	Zug


	Source code: https://github.com/arximboldi/zug


	Documentation: https://sinusoid.es/zug/index.html











How all this applies to Krita?

From the previous chapters you know that each option in Krita has four responsibilities:


	read/write serialized XML or properties data


	define dependencies between properties of the option and other options, for example


	show options in the GUI as Qt’s widgets


	apply the actual effect of the option to the stroke on the canvas




The problem of the old implementation was that all of them were implemented in a single class, which was hard to maintain and extent.

In the Lager-based implementation each option now has five different entities that map to these responsibilities cleanly:


	Data reads/writes to/from XML or properties; has no logic inside!


	State — the single source of truth of the system. It just wraps Data into lager::state<Data> and brings it into the world of Lager.


	Model models all dependencies between brush settings and other options; it implements all the logic of the option.






	a model is connected to its state via lager::cursor<>


	a model creates a Qt Property for each brush setting so we could connect it either to a widget or QML control








	Widget implements an actual widget for the option






	a widget connects to model’s Qt Properties using KisWidgetConnectionUtils. In the future QML controls will be connected to these properties directly.


	widgets have no logic inside!








	Option is used by KisPaintOp to apply the actual effect to the brush stroke. Options do not depend on any Lager or GUI classes, they only use Data objects to actually read the data.






A complete example from Krita

Let’s consider KisPaintingModeOption as a simple example. This option is used to select brush painting mode and has only one setting that can flip between two values: build-up and wash.


[image: Brush painting mode selection in the GUI]


‘Data’ for “painting mode” option

First define a Data structure that implements equality comparison, read and write operators:

enum class enumPaintingMode {
    BUILDUP,
    WASH
};

struct KisPaintingModeOptionData
    : boost::equality_comparable<KisPaintingModeOptionData>
{
    inline friend bool operator==(const KisPaintingModeOptionData &lhs,
                                  const KisPaintingModeOptionData &rhs);

    enumPaintingMode paintingMode { enumPaintingMode::BUILDUP };

    bool read(const KisPropertiesConfiguration *setting);
    void write(KisPropertiesConfiguration *setting) const;
};







‘Model’ for “painting mode” option

Now let’s implement a model for this option. Painting mode has a minor complication: it is available only when masking brush feature is disabled. When the user enables masking brush feature, the painting mode option becomes disabled and selects WASH mode automatically.


Hint

The code below uses LAGER_QT_CURSOR macro. It defines a cursor of the provided type, creates a Qt Property with the provided name and links it to the cursor. To access the cursor later we should write LAGER_QT(propertyName).



namespace {
int calcEffectivePaintingMode(enumPaintingMode mode, bool maskingBrushEnabled) {
    return static_cast<int>(maskingBrushEnabled ? enumPaintingMode::WASH : mode);
}
}

class KisPaintingModeOptionModel : public QObject
{
    Q_OBJECT
public:

    // declare cursors of the model

    lager::cursor<KisPaintingModeOptionData> optionData;
    lager::reader<bool> maskingBrushEnabled;

    //
    // Define option settings and create Qt Properties for them:
    //

    // paintingMode is the mode selected by the user in the GUI

    LAGER_QT_CURSOR(int, paintingMode);

    // effectivePaintingMode is the actual mode used by the brush
    // calculated from the combination of user selection and the
    // masking brush presence

    LAGER_QT_READER(int, effectivePaintingMode);

    // A special property type that updates a state (isEnabled + currentIndex)
    // of a button group in a single signal call. It is useful to avoid partial
    // updates that can lead to cycles in some cases.

    LAGER_QT_READER(ButtonGroupState, paintingModeState);


    // The constructor of the model accepts two cursors. `optionData` is stored in
    // an external 'state'; `maskingBrushEnabled` cursor is provided by masking
    // brush option

    KisPaintingModeOptionModel(lager::cursor<KisPaintingModeOptionData> _optionData,
                               lager::reader<bool> _maskingBrushEnabled)
        : optionData(_optionData)
        , maskingBrushEnabled(_maskingBrushEnabled)

        // in paintingMode cursor we just erase the enum type to be able
        // to make connection to QGroupBox

        , LAGER_QT(paintingMode) {
            optionData[&KisPaintingModeOptionData::paintingMode]
                .zoom(kiszug::lenses::do_static_cast<enumPaintingMode, int>)
        }

        // effectivePaintingMode depends on both inputs of the model

        , LAGER_QT(effectivePaintingMode) {
            lager::with(optionData[&KisPaintingModeOptionData::paintingMode],
                        maskingBrushEnabled)
                .map(&calcEffectivePaintingMode)
        }

        // combine two properties into one state

        , LAGER_QT(paintingModeState) {
            lager::with(LAGER_QT(effectivePaintingMode),
                        maskingBrushEnabled.map(std::logical_not{}))
                .map(ToControlState{})}
    {
    }

    // bakedOptionData() creates a new 'Data' objects that has all
    // the "effective" values baked into it.

    KisPaintingModeOptionData bakedOptionData() const
    {
        KisPaintingModeOptionData data = optionData.get();
        data.paintingMode = static_cast<enumPaintingMode>(effectivePaintingMode());
        return data;
    }
};





Please pay attention to bakedOptionData() method of the model. The model has one “effective” property that is not directly stored in its Data storage. Therefore, before serializing the model, we should first bake all the “effective” values into the data object and then use this new object for actual writing. Granted copying option’s data objects is cheap and easy now.



‘Widget’ for “painting mode” option

Finally, let’s consider a simplified version of the code in KisPaintingModeOptionWidget:

class KisPaintingModeOptionWidget : public KisPaintOpOption
{
public:
    KisPaintingModeOptionWidget(lager::cursor<KisPaintingModeOptionData> optionData,
                                lager::reader<bool> maskingBrushEnabled)
        : m_model(optionData, maskingBrushEnabled)
    {
        // for connectControlState()
        using namespace KisWidgetConnectionUtils;

        // Create the main widget

        KisPaintingModeWidget *widget = new KisPaintingModeWidget();
        setConfigurationPage(widget);

        // Create the button group for mode selection

        QButtonGroup *group = new QButtonGroup(widget);

        // .. skipped ..
        // .. initialize group and add actual buttons to it ...
        // .. skipped ..

        // Connect the group to the model: "paintingModeState" is the
        // "read" property, "paintingMode" is "write" property. We read
        // from "effective" property and write directly into 'data'.

        connectControlState(group, &m_model,
                            "paintingModeState",
                            "paintingMode");

        // connect the changes in the model to the output signal
        // of the configuration page

        m_model.optionData.bind(
            std::bind(&KisPaintingModeOptionWidget::emitSettingChanged, this));
    }

    void writeOptionSetting(KisPropertiesConfigurationSP setting) const override
    {
        // write **baked** data!
        m_model.bakedOptionData().write(setting.data());
    }

    void readOptionSetting(const KisPropertiesConfigurationSP setting) override
    {
        KisPaintingModeOptionData data = *m_model.optionData;
        data.read(setting.data());
        m_model.optionData.set(data);
    }

private:
    KisPaintingModeOptionModel m_model;
};







‘Option’ for “mirror” option

Since painting mode is very simple, it doesn’t have any Option representation. The brush engine uses its Data object directly.

For a good example of an ‘option’ let’s consider KisMirrorOption. This class is used by the brush engine while painting the actual stroke of the canvas. The responsibility of KisMirrorOption is to accept the state of the stylus (in a form of KisPaintInformation object) and calculate MirrorProperties from it.

#include <KisPaintOpOptionUtils.h>
namespace kpou = KisPaintOpOptionUtils;

class KisMirrorOption : public KisCurveOption
{
public:

    // The public constructor creates a data object from
    // the settings pointer and passes it to a private constructor
    // that initializes all the necessary state

    KisMirrorOption(const KisPropertiesConfiguration *setting)
        : KisMirrorOption(
            kpou::loadOptionData<KisMirrorOptionData>(setting))
    {
    }

private:

    // The private constructor initializes all the necessary state
    // from the data and passes it to the base option class.
    //
    // Please note that the data is **not** stored anywhere in the
    // option, it is used only during the initialization

    KisMirrorOption(const KisMirrorOptionData &data)
        : KisCurveOption(data)
        , m_enableHorizontalMirror(data.enableHorizontalMirror)
        , m_enableVerticalMirror(data.enableVerticalMirror)
    {
    }

public:

    MirrorProperties apply(const KisPaintInformation &info) const
    {
        // ...
        // skipped some calculations using:
        //   * m_enableHorizontalMirror
        //   * m_enableVerticalMirror
        //   * KisCurveOption::computeSizeLikeValue(info)
        // ...

        MirrorProperties mirrors;

        mirrors.verticalMirror = ...;
        mirrors.horizontalMirror = ...;
        mirrors.coordinateSystemFlipped = ...;

        return mirrors;
    }

private:
    bool m_enableHorizontalMirror;
    bool m_enableVerticalMirror;
};








Paint engine porting guide

When porting is it recommended to use KisBrushOp as an reference implementation.

The rough plan for porting an arbitrary painting engine FooOp to lager is the following:


	Port the GUI part






	Open KisFooOpSettingsWidget class and look at its constructor that creates all the option widgets.


	Replace all standard option widgets with the already ported ones. Use KisBrushOpSettingsWidget as a reference of existing widgets.


	Test if GUI still works correctly and affects the brush in an expected way


	Port all non-standard options to lager and add them to KisFooOpSettingsWidget. Usually, old and new class names map as the following:






	KisFooBarOptionData usually borrows reading and writing code from KisPressureFooBarOption


	KisFooBarOptionModel is just written from scratch


	KisFooBarOptionWidget borrows GUI code from KisPressureFooBarOptionWidget







Use KisScatterOptionData, KisScatterOptionModel and KisScatterOptionWidget as a reference implementation.


	Test if GUI still works correctly and affects the brush in an expected way








	Port the painting part






	Open KisFooOp


	Replace all standard KisPressureFooBarOption classes with the already ported ones. Use KisBrushOp as a reference of existing options.


	Port all non-standard options to lager: you just need to extract KisPressureFooBarOption::apply() function into a separate class named KisFooBarOption. Use KisScatterOption as a reference implementation.


	Test if the brush still reacts to the GUI changes in an expected way








	Check if any of the options you ported had KisPressureFooBarOption::lodLimitation() method. If so, port these limitations to your new KisFooBarOptionData and use a special creation function KisPaintOpOptionWidgetUtils::createOptionWidgetWithLodLimitations() to create a widget for it. Use KisSizeOptionData and KisSizeOptionWidget as a reference implementation.


	If any new brush option has “effective” values, verify that you have KisFooBarOptionModel::bakedOptionData() method in the model and calls it from KisFooBarOptionWidget::writeOptionSetting() in the widget.


	Open KisFooOpSettings and port all the uniform properties to use new data classes. Use KisColorSmudgeOpSettings as a reference implementation.








            

          

      

      

    

  

  
    
    


    Building Krita from Source
    

    
 
  

    
      
          
            
  
Building Krita from Source

If you want to help developing Krita, you need to know how to build Krita yourself. If you merely want to run the latest version of Krita, to test a bug or play with, you can use the nightly build for Windows [https://binary-factory.kde.org/job/Krita_Nightly_Windows_Build/] the nightly build for Linux [https://binary-factory.kde.org/job/Krita_Nightly_Appimage_Build/], or the nightly build for macOS [https://binary-factory.kde.org/job/Krita_Nightly_MacOS_Build/].


Contents


	Building Krita from Source


	Building on Linux


	Building on Windows


	Prerequisites


	Other Compilers






	Preparation


	Getting the dependencies


	Building Krita


	Running Krita






	Building on macOS


	Prequisites


	Preparation


	Building the dependencies


	Building Krita


	Running Krita






	Building on Android









You can build Krita on Linux, Windows, macOS and on Linux for Android. The libraries Krita needs (for instance to load and save various image types) are called dependencies.

Linux is the easiest operating system to build Krita on because all the libraries that Krita needs are available on most recent Linux distributions. For an easy guide to building Krita see Building Krita on Linux for Cats [https://www.davidrevoy.com/article193/compil-krita-from-source-code-on-linux-for-cats].

On macOS you can use tools like homebrew to get the dependencies, or build the dependencies manually. Building the dependencies manually is recommended because we have a number of changes to the source for libraries to make them function better with Krita.

On Windows you can either reuse the dependencies from the KDE Binary Factory, or build the dependencies yourself.

On all operating systems, you need to be familiar with using a terminal. Building Krita is a technical task and demands accuracy in following instructions and intelligence in understanding what happens.


Building on Linux

In general, there are two options for building Krita on Linux. One using the docker environment (recommended) and the other is by manually building all the Krita dependencies on the host linux system (unsupported).


	building in the Docker environment (recommended)


	building on the host Linux (unsupported)






Building on Windows

On Windows, you can either reuse the dependencies from the KDE Binary Factory, or build the dependencies yourself. If you decide to build all the dependencies yourself, this will take a long time. Note that you will do all your work in a CMD command window.

This is also more difficult than building Krita on Linux, so you need to pay attention to details. If you follow the guide closely, install correct dependencies and make sure your PATH doesn’t contain anything unwanted, there should be no issues.


Prerequisites


	Git - https://git-scm.com/downloads


	CMake 3.16.0 or later, the latest is usually fine - https://cmake.org/download/


	Ninja build system - https://github.com/ninja-build/ninja/releases



	Since Ninja is a single executable, you can place it in the bin folder of CMake, next to cmake.exe for convenience.









	LLVM MinGW compiler toolchain



	Can be downloaded here: https://github.com/mstorsjo/llvm-mingw/releases/download/20220906/llvm-mingw-20220906-ucrt-x86_64.zip


	Unzip the archive with 7zip [https://www.7-zip.org/] into a folder like C:\llvm-mingw; the full path must not contain any spaces.


	We are using the tagged release 20220906 with LLVM 15.0.0 on the Binary Factory. In theory a newer version should be compatible, but use at your own risk.


	If you really want to use other compilers, see below.









	You will also need a release of Python 3.10 (not 3.7, not 3.8, not 3.9, not 3.11) - https://www.python.org.



	Make sure to have that version of python.exe in your path. This version of Python will be used for two things to configure Qt and to build the Python scripting module.  Do not set PYTHONHOME or PYTHONPATH.


	Make sure that your Python will have the correct architecture for the version you are trying to build. If building for 32-bit target, you need the 32-bit release of Python.









	It is useful to install Qt Creator - https://download.qt.io/official_releases/qtcreator/





Attention

Make double plus sure you do not have any other compilers or development environments or Python installation in your PATH!




Other Compilers


	In the past we used mingw-w64 gcc 7.3.0 (mingw-builds). This version is no longer supported because our dependencies started requiring a more updated compiler to work.


	It is possible to build Krita with a newer mingw-w64 gcc toolchain, for example gcc 11.2.0 by niXman on GitHub (mingw-builds), or the one from MSYS2.


	MSYS2 can build Krita with the MINGW64, UCRT64 or CLANG64 environments.


	Krita can also be built with MSVC (check the batch file in build-tools\windows). Krita built with MSVC has suboptimal performance due to codegen issues so we can’t use it.





Attention

If you use these compilers, you must build the dependencies yourself. Trying to mix dependencies built with a different compiler may outright fail to configure, or Krita may appear to build successfully but you get random crashes wuen running it.






Preparation

[image: ../_images/Krita-building_for-cats_001-init-dir_001_by-deevad.jpg]
After installing the Prerequisites, prepare your working directory somewhere, like C:\krita-dev. Keep this short (30 characters in the prefix path is fine, but longer than this and you may get build errors). Makes sure the path does not contain whitespace. If you use a different path, remember to adjust the paths in the later steps.

mkdir C:\krita-dev
cd /d C:\krita-dev





Set up python environment (you don’t need to hand-craft the bat file with the predefined PATH variables):

git clone https://invent.kde.org/dkazakov/krita-deps-management.git
git clone https://invent.kde.org/dkazakov/ci-utilities.git -b work/split-ci-branch krita-deps-management/ci-utilities

c:\Python310\python.exe -m venv PythonEnv --upgrade-deps
PythonEnv\Scripts\activate.bat
python -m pip install -r krita-deps-management\requirements.txt







Getting the dependencies

[image: ../_images/Krita-building_for-cats_003-get-libs_001_by-deevad.jpg]
Donwload the dependencies and generate the environment file. Make sure you replace the paths to llvm-mingw and ninja:

python krita-deps-management\tools\setup-env.py --full-krita-env -v PythonEnv -p c:\deps\llvm-mingw-20220906-ucrt-x86_64\bin\ -p c:\deps\llvm-mingw-20220906-ucrt-x86_64\x86_64-w64-mingw32\bin\ -p c:\deps\Ninja\






Attention

If you happen to decide to hand-craft the PATH variable, make sure your PATH variable does not have double backslash symbols \\. Especially as a result of multiple path variables concatenation.

If it has, ASAN symbolizer will crash when parsing error-reports.



Every time you want to build or run your home-grown Krita, open the CMD window, change to the C:\krita-dev folder and run the env.bat file generated by the script above:

cd /d C:\krita-dev
env.bat





You will note that most command samples below contain these two lines, but the truth is you only need to run env.bat once for each CMD window.

Then get the source code of Krita:

[image: ../_images/Krita-building_for-cats_002-git-clone_001_by-deevad.jpg]
cd /d C:\krita-dev
git clone https://invent.kde.org/graphics/krita.git






Attention

If you build Krita with ASAN, make sure you don’t use prebuilt deps, or at least manually rebuild Qt with
ASAN support as well (-DQT_ENABLE_ASAN=ON). There is a know issue in LLVM’s linker [https://github.com/llvm/llvm-project/issues/61685],
which causes Qt be loaded before ASAN and, therefore, causing some allocations confuse ASAN. Until this issue is fixed,
build Qt with ASAN as a workaround.





Building Krita

[image: ../_images/Krita-building_for-cats_005-build_001_by-deevad.jpg]
Again, on the command line, with the same script that is used to make the nightly builds and the releases:

cd /d C:\krita-dev
env.bat
krita\build-tools\windows\build.cmd --no-interactive --jobs 8 --skip-deps --download-dir C:\krita-dev\cache\downloads --deps-install-dir C:\krita-dev\_install --krita-build-dir C:\krita-dev\b_krita --plugins-build-dir C:\krita-dev\b_plugins --krita-install-dir C:\krita-dev\_install





If you are hacking on Krita, you can rebuild Krita without running this script by entering the build directory and running mingw32-make -j8 install or ninja install.

cd b_krita
mingw32-make -j8 install
:: or
ninja install





[image: ../_images/Krita-building_for-cats_006-installing_by-deevad.jpg]


Running Krita

You must start Krita from the command prompt, after having run env.bat:

cd /d C:\krita-dev
env.bat
_install\bin\krita
:: or
_install\bin\krita.exe





[image: ../_images/Krita-building_for-cats_008-running-success_by-deevad.jpg]



Building on macOS

We will build Krita on macOS with the same scripts that are used to build the nightly builds and the releases. We will NOT be building krita from within XCode, but from within the terminal.


Prequisites

You will need to install:


	CMake: https://cmake.org


	XCode: get it from the app store


	Qt Creator: https://download.qt.io/official_releases/qtcreator/






Preparation

Open Terminal.app

cd
mkdir dev
cd dev
git clone https://invent.kde.org/graphics/krita.git





[image: ../_images/Krita-building_for-cats_002-git-clone_001_by-deevad.jpg]
Create an env.sh file that should contain the following lines:

export BUILDROOT=$HOME/dev
export PATH=/Applications/CMake.app/Contents/bin:$BUILDROOT/i/bin/:$PATH







Building the dependencies

[image: ../_images/Krita-building_for-cats_003-get-libs_001_by-deevad.jpg]
It is possible to build Krita against dependencies installed through MacPorts or some similar packaging service. If you do that, you’re on your own though.

Open Terminal.app and source the env.sh file you just created:

cd ~/dev
. env.sh
./krita/packaging/macos/osxbuild.sh builddeps





This will complain several time that it cannot find the Java SDK: just click that away, and don’t worry. Building the dependencies will take several hours.



Building Krita

In the same terminal window (if you open a new one, you will have to source the env.sh script again by running “. env.sh” – that’s a dot.

./krita/packaging/macos/osxbuild.sh buildinstall





This will build and install Krita to $HOME/dev/i/krita.app

[image: ../_images/Krita-building_for-cats_006-installing_by-deevad.jpg]


Running Krita

You can run krita in the same terminal window:

~/dev/i/krita.app/Contents/MacOS/krita





If you want to debug krita with lldb:

lldb ~/dev/i/krita.app/Contents/MacOS/krita
(lldb) target create "./i/bin/krita.app/Contents/MacOS/krita"
Current executable set to './i/bin/krita.app/Contents/MacOS/krita' (x86_64).
(lldb) r





[image: ../_images/Krita-building_for-cats_008-running-success_by-deevad.jpg]



Building on Android

See a dedicated page for building Krita on Android


Contents:


	Building Krita for Android

	Building krita with Docker on Linux

	Building krita on host Linux system (unsupported)









            

          

      

      

    

  

  
    
    


    Building Krita for Android
    

    
 
  

    
      
          
            
  
Building Krita for Android

Use Linux to build Krita for Android. Building Krita for Android on another system
is NOT supported yet. There are two approaches for building Krita for Android:
one with CI’s docker image, and the other one straight in the host system.


Contents


	Building Krita for Android


	Using prebuilt docker image


	Fetch CI-management repositories


	Building the Android container


	Enter the container and build Krita


	Building the APK package


	Troubleshooting










	Using your host system for Android development


	Configure environment variables


	Installing Prerequisites


	Fetch Krita Deps


	Building the APK package


	Troubleshooting










	Installing Android Emulator










Using prebuilt docker image

Docker approach is based on the normal linux-docker builds approach. You might want
to check the details in the original document for Linux:
Krita Docker Image

Here we expect that you have already performed all the
Prerequisites steps and
downloaded Krita sources
using the original document.


Fetch CI-management repositories

For building on Android we need the toolchain files from the ci-management repository,
so fetch them:

pushd ./persistent/krita
git clone https://invent.kde.org/dkazakov/krita-deps-management.git
git clone https://invent.kde.org/dkazakov/ci-utilities.git -b work/split-ci-branch krita-deps-management/ci-utilities
popd







Building the Android container

Firstly you need to download all Krita dependencies and QtCreator. When
fetching the dependencies you need to select he target architecture:
x86_64, armeabi-v7a or arm64-v8a.

# download the dependencies and QtCreator
./bin/bootstrap-deps.sh --android=x86_64

# if you don't want to fetch QtCreator, but only deps,
# use bootstrap-krita-deps.sh
# ./bin/bootstrap-krita-deps.sh --android=x86_64





This script will set up the full SDP environment in ./persistent/deps folder. The
deps themselves will be located in ./persistent/deps/_install

Now build the docker image and run the container. Just pass the --android flag to
the build_image script and it  will fetch the correct image for you:

./bin/build_image --android
./bin/run_container





If you are hard on harddrive space, you can cleanup the caches using the
cleanup section of the original manual.



Enter the container and build Krita

# enter the container
./bin/enter





You need to manually set up a few environment variables and folders
(they might be automated later, but not right now):

# set ABI you are building for
export KDECI_ANDROID_ABI=x86_64

# location where _build and _packaging folders will be located
# (don't change)
export KDECI_WORKDIR_PATH=/home/appimage/appimage-workspace

# location where the dependencies were unpacked (don't change)
export KDECI_SHARED_INSTALL_PATH=/home/appimage/appimage-workspace/deps/usr






Warning

Currently, you need to set up these variable every time you
enter the container!



Then create the build directory and enter it (don’t change the location, since it
is tightly linked to $KDECI_WORKDIR_PATH in the packaging scripts)

mkdir -p /home/appimage/appimage-workspace/krita/_build
cd /home/appimage/appimage-workspace/krita/_build





Configure Krita:

cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo \
      -DHIDE_SAFE_ASSERTS=OFF \
      -DBUILD_TESTING=OFF \
      -DCMAKE_INSTALL_PREFIX=~/appimage-workspace/deps/usr/ \
      -DCMAKE_TOOLCHAIN_FILE=~/persistent/krita/krita-deps-management/tools/android-toolchain-krita.cmake \
      ~/persistent/krita/





There are two important switches that are unique to Android platform:


	CMAKE_INSTALL_PREFIX is set to the same folder as the
dependencies themselves. It is necessary, because APK packaging
scripts cannot search in separate directories.


	CMAKE_TOOLCHAIN_FILE should point to a special toolchain file that will read
custom environment variables (pre-set in the docker containter) and locates
SDK and NDK paths.




Then build Krita as usual:

make -j8 install






Building the APK package

If you set up KDECI_WORKDIR_PATH and KDECI_SHARED_INSTALL_PATH properly,
then just do:

python ~/persistent/krita/build-tools/ci-scripts/build-android-package.py





And you will get an APK package in $KDECI_WORKDIR_PATH/krita/_packaging

If you happen to need an AAB package, then you need to generate a bit more artifacts:

python ~/persistent/krita/build-tools/ci-scripts/build-android-package.py --archive-artifacts
python ~/persistent/krita/build-tools/ci-scripts/build-android-appbundle.py





The first command will build and APK and package all artifacts in
$KDECI_WORKDIR_PATH/krita/_packaging/krita_build_apk and the second script will
reuse these artifacts for building AAB package.



Troubleshooting

The ground truth for the docker builds is the android.yml script that is used on CI.
If you have a suspicion that this manual got outdated, please compare it to the original
android.yml file [https://invent.kde.org/graphics/krita/-/blob/master/build-tools/ci-scripts/android.yml]





Using your host system for Android development

If you chose to build on your host system, you will have much more troubles to resolve, because
you need to set up all SDK and NDK things.

First configure prefix variable where we install our SDKs:

export ANDROID_ROOT=/home/appimage/appimage-workspace/android/





Right now we use Android NDK version r22b to do our builds. So, it is recommended to use that. Download it from google’s
website [https://developer.android.com/ndk/downloads/older_releases.html]
then extract it into $ANDROID_ROOT

Next you need to download command line tools that will let you install
the SDKs and build tools. Look for links to commandlinetools at the bottom
of android studio page [https://developer.android.com/studio].
Download and extract the tools into $ANDROID_ROOT.


Hint

Theoretocally, you can try installing the whole Android Studio and configure
everything within the Studio itself, but this way is not supported currently
(noone just tried that).

If you go with the Android Studio approach then open SDK manager and download
Android SDK Build-Tools (more info in the official documentation [https://developer.android.com/studio/intro/update#sdk-manager])




Configure environment variables

export KDECI_ANDROID_SDK_ROOT=$ANDROID_ROOT/sdk
export KDECI_ANDROID_NDK_ROOT=$ANDROID_ROOT/android-ndk-r22b/
export ANDROID_HOME=$ANDROID_ROOT/sdk
export PATH="$ANDROID_ROOT/sdk/platform-tools/:$ANDROID_ROOT/cmdline-tools/bin/:$PATH"






Note

You might want to put these variables into some env file and source it before
every use of Android environment





Installing Prerequisites

To build Krita for Android you need to have a specific version of Java
installed on your machine:

sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-17-jdk # exactly this version!





Check if no other version of Java is installed. If installed, either remove it
(recommended) or make sure Ubuntu’s update-alternatives pulls exactly version 17
for javac and the runtime (no idea how to check that).

# make sure both commands link to version 17!
javac --version
ls -l /usr/lib/jvm/*





Make sure that you have Python of version 3.10 installed:

> python --version
Python 3.10.13






Note

Theoretically, Python 3.9 may also work, but it is not tested. Python 3.8 will
not work, that is tested.



Install SDKs and build tools:

yes | sdkmanager --sdk_root=$KDECI_ANDROID_SDK_ROOT/sdk/ --licenses
sdkmanager --sdk_root=$KDECI_ANDROID_SDK_ROOT platform-tools
sdkmanager --sdk_root=$KDECI_ANDROID_SDK_ROOT "platforms;android-33"
sdkmanager --sdk_root=$KDECI_ANDROID_SDK_ROOT "build-tools;30.0.3"
sdkmanager --sdk_root=$KDECI_ANDROID_SDK_ROOT "build-tools;34.0.0"
sdkmanager --sdk_root=$KDECI_ANDROID_SDK_ROOT emulator
sdkmanager --sdk_root=$KDECI_ANDROID_SDK_ROOT tools






Hint

Krita’s current minimal API-level is android-23. We can theoretically
install the latest avalable SDK and NDK that still supports this API-level. Though
we update not that often, so our versions may drag a little behind.

The backwards compatibility of NDK and SDK can be checked here:


	NDK: https://developer.android.com/ndk/downloads/revision_history


	SDK: where???








Fetch Krita Deps

Choose sources and environment directories:

export SRCDIR=/home/appimage/persistent/sources
export ENVDIR=/home/appimage/persistent/envdir

mkdir -p $SRCDIR
mkdir -p $ENVDIR





$SRCDIR will store all sources and build artifacts, but $ENVDIR will store
packages and caches.

Checkout Krita repository and all the management repositories:

cd $SRCDIR

git clone https://invent.kde.org/graphics/krita.git
git clone https://invent.kde.org/dkazakov/krita-deps-management.git krita/krita-deps-management
git clone https://invent.kde.org/dkazakov/ci-utilities.git -b work/split-ci-branch krita/krita-deps-management/ci-utilities





Install python dependencies. You might want to use Python’s venv feature for this:

# set up venv
python3.10 -m venv --upgrade-deps $WORKDIR/PythonEnv
source $WORKDIR/PythonEnv/bin/activate

# install requirements
python -m pip install -r $SRCDIR/krita/krita-deps-management/requirements.txt





Set up an environment variable for the target android architecture:

export KDECI_ANDROID_ABI=x86_64





Set up working directory and environment:

cd $SRCDIR/krita
python krita-deps-management/tools/setup-env.py \
    # Path to our venv to make sure it is automatically activated in this environment
    -v $WORKDIR/PythonEnv \
    # select target ABI
    --android-abi $KDECI_ANDROID_ABI \
    # select workdir root (where the caches and downloads will go)
    --root $WORKDIR

# activate the generated environment
source $WORKDIR/base-env

# generate deps file
python krita-deps-management/tools/generate-deps-file.py \
    -s krita-deps-management/latest/krita-deps.yml \
    -o .kde-ci.yml

# fetch the dependencies
python krita-deps-management/ci-utilities/run-ci-build.py \
    # requitred fields for the script
    --project krita --branch master \
    # platform for which to fetch dependencies
    --platform Android/$KDECI_ANDROID_ABI \
    # only generate environment file in `./env`
    --only-env

# activate generated environment

source ./env






Note

Next time you enter the environment, you just neet to perform the latest
environment set up using source ./env. It will activate all your manual
configurations as well, like Python’s venv, KDECI_ANDROID_SDK_ROOT
and KDECI_ANDROID_ABI.



Configure Krita:

cd $SRCDIR/krita/_build
cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo \
    -DHIDE_SAFE_ASSERTS=OFF \
    -DBUILD_TESTING=OFF \
    -DCMAKE_INSTALL_PREFIX=$SRCDIR/krita/_install \
    -DCMAKE_TOOLCHAIN_FILE=$SRCDIR/krita/krita-deps-management/tools/android-toolchain-krita.cmake \
    $SRCDIR/krita/





There are two important switches that are unique to Android platform:


	CMAKE_INSTALL_PREFIX is set to the same folder as the
dependencies themselves. It is necessary, because APK packaging
scripts cannot search in separate directories.


	CMAKE_TOOLCHAIN_FILE should point to a special toolchain file that will read
custom environment variables (pre-set in the docker containter) and locates
SDK and NDK paths.




Then build Krita as usual:

make -j8 install






Building the APK package

When building outside docker it is important that _install and _build folders are
placed straight in the Krita source tree. That allows APK building scripts to find the
assets properly, since it searches stuff relative to the current working directory:

cd $SRCDIR/krita
python build-tools/ci-scripts/build-android-package.py





And you will get an APK package in _packaging subfolder.

If you happen to need an AAB package, then you need to generate a bit more artifacts:

cd $SRCDIR/krita
python build-tools/ci-scripts/build-android-package.py --archive-artifacts
python build-tools/ci-scripts/build-android-appbundle.py





The first command will build and APK and package all artifacts in
_packaging/krita_build_apk and the second script will reuse these artifacts for building AAB package.



Troubleshooting

The ground truth for building the environment (i.e. setting up SDK, NDK and Python) is
the Dockerfile used on CI [https://invent.kde.org/sysadmin/ci-images/-/blob/master/krita-android-builder/Dockerfile]

The ground truth for the actual build of Krita is android.yml script that is used on CI.
If you have a suspicion that this manual got outdated, please compare it to the original
android.yml file [https://invent.kde.org/graphics/krita/-/blob/master/build-tools/ci-scripts/android.yml]





Installing Android Emulator

Using Android emulator is easy, after it is configured initially. The only issue
that worth remembering is that when using x86_64 builds the host system should
support KVM virtualization. KVM virtualization is not required for emulating ARM
target.


Warning

[TODO] Krita docker does not automatically add ‘kvm’ group into the client system (yet),
it should be done manually:


	Add kvm group into the docker with the same group-id as on the host machine


	Add appimage user into kvm group


	Relogin into the appimage user for the changes to take effect






Install cpu-checker and check if KVM is supported on your system (or in the
docker container):

sudo apt-get install cpu-checker
# Check if kvm is available
kvm-ok





Install the system image for the target system. Change x86_64 to the target
architecture you would like to test:

sdkmanager --sdk_root=$KRITA_ANDROID_ROOT/sdk/ "system-images;android-23;google_apis;x86_64"





Create the virtual device:

# save the device name
export device_name=Test_API_23

# create the device
avdmanager create avd --force --name $device_name --abi x86_64 --package 'system-images;android-23;google_apis;x86_64'

# create an SD card for the device
mksdcard -l testsdcard 512M $KRITA_ANDROID_ROOT/sdcard.img





Open configuration file for the new device (located at ~/.android/avd/Test_API_23.avd/config.ini)
and edit the following values:

# increase cache size
disk.cachePartition.size=512MB

# increase the size of the root partition
disk.dataPartition.size=3000M

# if using x86_64 or arm64-v8a targets, enable GPU acceleration
hw.gpu.enabled=yes
hw.gpu.mode=auto

# make sure that the screen size is not too tiny
hw.lcd.density=180
hw.lcd.depth=16
hw.lcd.height=1080
hw.lcd.vsync=60
hw.lcd.width=1920

# increase the amount of RAM available for the device
hw.ramSize=4096M

# set up teh SD card
sdcard.size=512 MB
sdcard.path=<path to your sd card>/sdcard.img

# increase the size of VM heap
vm.heapSize=1024M





Run the emulator (add -wipe-data switch if you would like to reset the device):

emulator -avd $device_name -no-snapshot -no-boot-anim





Install Krita on the device:

adb install ./krita-x86_64-5.2.0-prealpha-debug.apk





When the container it not needed anymore, it can be removed with the follwoing command:

avdmanager delete avd -n $device_name





If Krita crashes you can look up the logs using adb logcat





            

          

      

      

    

  

  
    
    


    Building krita with Docker on Linux
    

    
 
  

    
      
          
            
  
Building krita with Docker on Linux

This guide is useful when you are an advanced developer and want to build krita with the same patched dependencies that are used for the AppImages. If you just want to hack on Krita, read the Build Krita from Source guide.

The Dockerfile is based on the official KDE build environment
that is used on KDE CI for building official AppImage packages. This guide is valid for Ubuntu and Ubuntu-based Linux distributions.


Contents


	Building krita with Docker on Linux


	Prerequisites


	Downloading Krita sources


	Downloading prebuilt Krita dependencies


	Build the docker image and run the container


	Cleanup the dependencies


	Enter the container and build Krita


	Building AppImage package for your version of Krita


	Creating a full clone of the container


	Testing merge requests using container clones


	Updating dependencies in the docker


	Extra developer tools


	Stopping the container and cleaning up


	Troubleshooting


	Krita binary is not found after the first build


	OpenGL doesn’t work on NVidia GPU with proprietary drivers














Prerequisites

First make sure you have Docker installed

sudo apt install docker docker.io





Decide where you want to store your Docker images. All the docker images and containers are by default stored in a special docker-daemon controlled folder under /var directory. You might not have enough space there for building Krita (it needs about 10 GiB). In such a case it is recommended to move the docker images
folder into another location, where there is enough space.


	Stop docker service


sudo systemctl stop docker










	Edit the config file:


On newer systems, like Ubuntu 18.04 and higher you need to open file /etc/docker/daemon.json and add the following json config options:

{
    "data-root" : "/path/where/you/want/to/store/docker/images/"
}





If you have older version of Ubuntu, e.g. Ubuntu 16.04, then you need to do the following:

echo 'DOCKER_OPTS="-g /path/where/you/want/to/store/docker/images/"' >> /etc/default/docker










	Restart the docker service


sudo systemctl start docker














Downloading Krita sources

Then you need to download deps and Krita source tree. These steps are not included into the Dockerfile to save internal bandwidth

# create directory structure for container control directory
git clone https://invent.kde.org/dkazakov/krita-docker-env krita-auto-1

cd krita-auto-1
mkdir persistent

# copy/checkout Krita sources to 'persistent/krita'
cp -r /path/to/sources/krita ./persistent/krita

## or ...
# git clone kde:krita persistent/krita
# "kde:krita" should be replaced with a link for cloning the repository,
# such as "git@invent.kde.org:graphics/krita.git".







Downloading prebuilt Krita dependencies

# download the deps archive
./bin/bootstrap-deps.sh







Build the docker image and run the container

./bin/build_image
./bin/run_container







Cleanup the dependencies

The dependencies are cached in ~/persistent/deps/ folder. It may occupy
up to 4.7 GiB. If you happen to have problems with space, make sure you
removed all the cached checkout:

# clean up about 2.4 GiB of the cached deps checkout

rm -rf ./persistent/deps/_install





If you need more space, you can freely remove the entire deps cache
(it will be automatically refetched on the next call to ./bin/bootstrap-deps.sh)

# clean up everything

rm -rf ./persistent/deps/







Enter the container and build Krita

# enter the docker container (the name will be
# fetched automatically from '.container_name' file)

./bin/enter





… now you are inside the container with all the deps prepared …

# build Krita as usual
# you should be in ~/appimage-workspace/krita-build/
~/bin/run_cmake.sh ~/persistent/krita
make -j8 install

# start Krita
../krita.appdir/usr/bin/krita







Building AppImage package for your version of Krita

If you want to build a portable package for your version of Krita, just enter
the container and type:

~/bin/build_krita_appimage.sh





The built package will be copied to ./persistent/ folder.

By default, the package will be built in release mode. If you want to
add debugging information, add –debug option to the command line:

~/bin/build_krita_appimage.sh --debug







Creating a full clone of the container

It is possible to copy the container with the entire environment, sources,
build directory and QtCreator installation and configuration. After cloning,
no rebuild of Krita is needed!

To copy container to ../krita-auto-2, just type in the host system

./bin/spawn-clone -d ../krita-auto-2





spawn-clone will make an image from the current container and create a
new one out of it. This image will be cached for further usages. If you need
to flush the cache, pass -f option to spawn-clone:

./bin/spawn-clone -f -d ../krita-auto-2





You can start several instances of spawn-clone on the same container
concurrently (e.g. for building multiple merge requests). It has internal
locking mechanism for resolving concurrency problems



Testing merge requests using container clones

To quickly build a merge request ‘123’ basing on the current state of the
container type in the host system

./bin/spawn-clone -m 123 -be





The script will clone the container, checkout the merge request branch,
build it and provide you a terminal for running Krita. The container
will be created at ./clones/clone-mr-123 subfolder of the current container.

If you also want to build an AppImage, add –release-appimage option:

./bin/spawn-clone -m 123 --release-appimage -be





AppImage will be places at ./persistent subfolder of the clone.
When finished with testing the merge request, you can remove the clone
completely by running

./bin/discard-clone /clones/clone-mr-123





You can build multiple merge requests at once!



Updating dependencies in the docker

Sometimes dependencies in Krita change and building Krita or making the AppImage fails. To fix that, you need to update the dependencies.


Note

This method is slow, because you need to rebuild the whole docker, which includes rebuilding whole Krita.



Run those commands in the console in the host system. If you want to update the dependencies in a clone docker, just go to the clone directory where you see bin and persistent directories and run those commands there.

# remove old dependencies
rm ./persistent/deps/_install

# download new deps
./bin/bootstrap-deps.sh

# remove the current container
./bin/remove_container

# remove the image for the current container
docker image remove krita-auto-1

# build image
./bin/build_image

# run the container (it will create one)
./bin/run_container





After that you need to build Krita in the docker as usual.



Extra developer tools

To install QtCreator, enter the container and start the installer, downloaded while fetching dependencies. Make sure you install it into ‘~/qtcreator’ directory without any version suffixes, then you will be able to use the script below:

# inside the container
./persistent/qt-creator-opensource-linux-x86_64.run





To start QtCreator:

# from the host
./bin/qtcreator







Stopping the container and cleaning up

When not in use you can stop the container. All your filesystem state is saved, but all the currently running processes are killed (just ensure you logout from all the terminals before stopping).

# stop the container
./bin/stop

# start the container
./bin/start





If you don’t need your container/image anymore, you can delete them from the docker

# remove the container
sudo docker rm krita-auto-1

# remove the image
sudo docker rmi krita-deps







Troubleshooting


Krita binary is not found after the first build

Either relogin to the container or just execute source ~/.devenv.inc



OpenGL doesn’t work on NVidia GPU with proprietary drivers

The docker run script automatically forwards the GPU devices into the container, but it doesn’t install the drivers for the GPU. You should install exactly the same version of the driver that is installed on your host system. Just run the following script when you are on host:

./bin/install_nvidia_drivers.sh










            

          

      

      

    

  

  
    
    


    Building krita on host Linux system (unsupported)
    

    
 
  

    
      
          
            
  
Building krita on host Linux system (unsupported)


Attention

Building on the host Linux system without docker is now deprecated and considered unsupported. Do that on your own risk!




Preparing your development environment

[image: ../../_images/Krita-building_for-cats_001-init-dir_001_by-deevad.jpg]
The most convenient layout is as follows:


	$HOME/kritadev/krita – the source code


	$HOME/kritadev/build – the location where you compile krita


	$HOME/kritadev/install – the location where you install krita to and run krita from




we will call the “kritadev” folder your build root.

Note: type in what’s shown after ‘>’ in the following commands

you@yourcomputer:~>cd
you@yourcomputer:~>mkdir kritadev
you@yourcomputer:~/>cd kritadev
you@yourcomputer:~/kritadev> mkdir build
you@yourcomputer:~/kritadev> mkdir install







Getting the Source Code

[image: ../../_images/Krita-building_for-cats_002-git-clone_001_by-deevad.jpg]
Open a terminal and enter the build root. Clone Krita from kde’s git infrastructure (not github):

you@yourcomputer:~/kritadev> git clone https://invent.kde.org/graphics/krita.git







Configuring the Build

[image: ../../_images/Krita-building_for-cats_004-configure_001_by-deevad.jpg]
you@yourcomputer:~/kritadev> cd build





Krita uses cmake (https://cmake.org) to define how Krita is built on various platforms. You first need to run cmake to generate the build system, in the kritadevs/build directory, then run make to make Krita, then run make install to install krita.

you@yourcomputer:~/kritadev/build>cmake ../krita \
        -DCMAKE_INSTALL_PREFIX=$HOME/kritadev/install  \
        -DCMAKE_BUILD_TYPE=Debug \
        -DKRITA_DEVS=ON





[image: ../../_images/Krita-building_for-cats_003-get-libs_001_by-deevad.jpg]
Unless you have installed all the dependencies Krita needs, on first running cmake, cmake will complain about missing dependencies. For instance:

-- The following RECOMMENDED packages have not been found:

* GSL, <https://www.gnu.org/software/gsl/>
Required by Krita's Transform tool.





This is not an error, and you can fix this by installing the missing package using your distribution’s package manager. Do not download these packages manually from the source website and build them manually. Do use your distribution’s package manager to find the right packages.

For example, for Ubuntu, you can start with:

you@yourcomputer:~/kritadev/build>apt-get build-dep krita





Which will install all the dependencies of the version of Krita in the repositories. You might need to enable the deb-src repositories by editing /etc/apt/sources.list (see https://help.ubuntu.com/community/Repositories/CommandLine) or, if you’re using the KDE Plasma desktop, enabling them in the Settings of the Discover application.

However, the development version might use different dependencies, to find these, you can use apt-cache search:

you@yourcomputer:~/kritadev/build>apt-cache search quazip
libquazip-dev - C++ wrapper for ZIP/UNZIP (development files, Qt4 build)
libquazip-doc - C++ wrapper for ZIP/UNZIP (documentation)
libquazip-headers - C++ wrapper for ZIP/UNZIP (development header files)
libquazip1 - C++ wrapper for ZIP/UNZIP (Qt4 build)
libquazip5-1 - C++ wrapper for ZIP/UNZIP (Qt5 build)
libquazip5-dev - C++ wrapper for ZIP/UNZIP (development files, Qt5 build)
libquazip5-headers - C++ wrapper for ZIP/UNZIP (development header files, Qt5 build)





You will want to get the ‘dev’ library here, because you’re doing dev, and then Krita is using Qt5, so select that one. If this doesn’t help, check the Ubuntu packages search [https://packages.ubuntu.com/].

If all dependencies have been installed, cmake will output something like this:

-- Configuring done
-- Generating done
-- Build files have been written to: /home/boud/dev/b-krita






Warning

There is one run-time package that you need to install. CMake will not warn about it missing. That is the Qt5 SQLite database driver package. On Ubuntu this is named libqt5sql5-sqlite, the name might be different on other distributions. You need this to be able to start Krita after you have built and installed Krita! This is only needed if you build the master (5.0) branch of Krita.



Until that is shown, cmake has not succeeded and you cannot build Krita. When this is shown, you can build Krita:

[image: ../../_images/Krita-building_for-cats_005-build_001_by-deevad.jpg]
you@yourcomputer:~/kritadev/build> make





You can speed this up by enabling multithreading. To do so, you first figure out how many threads your processor can handle:

cat /proc/cpuinfo | grep processor | wc -l





Then, add the resulting number with -j (for ‘Jobs’) at the end, so for example:

you@yourcomputer:~/kritadev/build> make -j4







Installing

[image: ../../_images/Krita-building_for-cats_006-installing_by-deevad.jpg]
When the build has fully succeeded, you can install:

you@yourcomputer:~/kritadev/build> make install





And when that is complete, you can run Krita:

you@yourcomputer:~/kritadev/build>../install/bin/krita







Running Krita

You do not have to set environment variables in order to run Krita.

you@yourcomputer:~> cd ~/kritadev/
you@yourcomputer:~> ./install/bin/krita





[image: ../../_images/Krita-building_for-cats_008-running-success_by-deevad.jpg]


Updating

[image: ../../_images/Krita-building_for-cats_009-want-update_by-deevad.jpg]
Now, Krita is in constant development, so you will want to update your build from time to time. Maybe a cool feature got in, or a bug was fixed, or you just want the latest source.

[image: ../../_images/Krita-building_for-cats_010-git-update_by-deevad.jpg]
First, we get the new source from the git repository:

you@yourcomputer:~> cd ~/kritadev/krita/
you@yourcomputer:~/kritadev/krita> git pull





If you want to get the code from a specific branch, you will need to checkout that branch first:

you@yourcomputer:~/kritadev/krita> git checkout <name of the branch>
you@yourcomputer:~/kritadev/krita> git pull





[image: ../../_images/Krita-building_for-cats_011-git-update-success_by-deevad.jpg]
Then, we build again:

you@yourcomputer:~/kritadev/krita> cd ~/kritadev/build/
you@yourcomputer:~/kritadev/build> make install





If you update daily, you might want to automate these command by making your own minimal bash script.



Trouble Shooting

[image: ../../_images/Krita-building_for-cats_012-git-update-fail_by-deevad.jpg]
The recent development version might break, or sometime be just unusable. Experimental changes are made daily.

This will affect your productivity if you don’t know how to ‘go back in time’ (for example, your favorite brush doesn’t work anymore).

But if you know how to do it, no issue can really affect you, because you know how to come back to a previous state.

[image: ../../_images/Krita-building_for-cats_013_by-deevad.jpg]
To travel the source in time we need to read the timeline history. The terminal tool for it is git log.

you@yourcomputer:~> cd ~/kritadev/krita/
you@yourcomputer:~/kritadev/krita> git log





With git log, you can consult all the last changes to the code, the ‘commit’. What we’re interested in is the long identification number, the ‘git hash’ (such as cca5819b19e0da3434192c5b352285b987a48796). You can scroll the git log, copy the ID number then quit(letter Q on keyboard). Then time-travel in your source directory:

you@yourcomputer:~/kritadev/krita> git checkout cca5819b19e0da3434192c5b352285b987a48796
you@yourcomputer:~/kritadev/krita> git pull





And, we build again:

you@yourcomputer:~/kritadev/krita> cd ~/kritadev/build/
you@yourcomputer:~/kritadev/build> make install





[image: ../../_images/Krita-building_for-cats_intro_by-deevad.jpg]
To update again to the actual and ‘fresh from a minute ago’ source-code named master, simply ask git to come back to it with git checkout then pull to update :

you@yourcomputer:~/kritadev/krita> git checkout master
you@yourcomputer:~/kritadev/krita> git pull







Common problems

[image: ../../_images/Krita-building_for-cats_012-git-update-fail_by-deevad.jpg]
Outside of the source being unstable, there’s the following common problems:


	The most common problem is a missing dependency. Install it. A missing dependency is not an “error” that you need to report to the other Krita developers.


	A dependency can also be too old. CMake will report when the version of a dependency is too old. That is also not an “error”. You might need to update your Linux installation to a newer version.


	You can also have a successful build, then update your linux installation, and then find that Krita no longer builds. A library got updated, and you need to remove the CMakeCache.txt file in your build dir and run cmake again.


	Sometimes, changes in Krita’s source code from git revision to git revision make it necessary to make your installation and/or build dir empty and build from scratch. One example is where a plugin is removed from Krita; the plugin will be in your install dir, and won’t get updated when Krita’s internals change.








            

          

      

      

    

  

  
    
    


    CMake Settings for Developers
    

    
 
  

    
      
          
            
  
CMake Settings for Developers

The CMake [https://www.cmake.org] build system generators used by Krita is one of the most used build system generators in the C++ world. A build system is a system that describes how an application should be built from source code. CMake generates a build system from the information given in the CMakeLists.txt and *.cmake files. It is a complete but rather unusual language.

If you start working on Krita, you will need knowledge of two things: how to run the cmake generator, and which variables are important there, and how to edit the CMakeLists.txt files. This page tells you how to run the cmake generator.

The cmake generator is run like this:

cmake -DSOME_CMAKE_VARIABLE=SOME_VALUE ../path/to/source





That is, every option is prefixed with -D, followed by a usually uppercase variable name, the equal sign and the value. The following variables are important for Krita.

You cannot build Krita inside the source directory, so you need to give the path to the source directory, where the top-level CMakeLists.txt file is found.


Contents


	CMake Settings for Developers


	BUILD_TESTING


	CMAKE_INSTALL_PREFIX


	CMAKE_BUILD_TYPE


	CMAKE_PREFIX_PATH


	HIDE_SAFE_ASSERTS


	KRITA_DEVS


	PYQT_SIP_DIR_OVERRIDE


	USE_LOCK_FREE_HASH_TABLE


	FOUNDATION_BUILD


	KRITA_ENABLE_BROKEN_TESTS


	LIMIT_LONG_TESTS


	ENABLE_PYTHON_2


	BUILD_KRITA_QT_DESIGNER_PLUGINS










BUILD_TESTING

If set to ON, the unittests will be built. All developers should have this enabled! You run the unittests with `make test`, or you can run them on their own from their location in the build tree.



CMAKE_INSTALL_PREFIX

This determines where Krita will be installed to. By default this is `/usr/local` on Linux, which is not what you want.



CMAKE_BUILD_TYPE

This has three options: Debug, RelWithDebInfo and Release. Developers should always use Debug, because otherwise ASSERTS will not fire, and developers should pay attention to asserts. Packagers should use RelWithDebInfo.



CMAKE_PREFIX_PATH

This can be set to make the build system look for dependencies in other places than the default one.



HIDE_SAFE_ASSERTS

If set to ON, Krita will not show popups whenever the code encounters a problem that developers need to know about, but users not. If set to OFF, Krita will popup a little message window telling you about the error, of OFF, it will print the information to the terminal. For developers, either is fine, at least, if you start Krita and pay attention to the terminal output. For packagers, it should be ON.



KRITA_DEVS

This is to be used with the Debug CMAKE_BUILD_TYPE, to re-enable optimizations that make it possible to actually work with Krita. By default, Debug disables all compiler optimizations, and Krita needs those.



PYQT_SIP_DIR_OVERRIDE

If you have built your own PyQt and SIP, use this to make sure Krita can find them.



USE_LOCK_FREE_HASH_TABLE

This option enables the experimental lock free hash table. This is ON by default at the moment.



FOUNDATION_BUILD

This option is for packaging Krita on systems that do not have the default color themes shipped by KDE Plasma.



KRITA_ENABLE_BROKEN_TESTS

A number of unittests are known to be broken. They should be fixed, but in the meantime, having dozens of failing unittests hides regressions. Set this to ON to run the broken tests. These tests are always built.



LIMIT_LONG_TESTS

When set to ON, the default, some unittests will be cut short. Set to OFF to test for stress conditions.



ENABLE_PYTHON_2

Use Python 2 instead of Python 3. Only to be used when integrating Krita in a python2-based VFX pipeline.



BUILD_KRITA_QT_DESIGNER_PLUGINS

OFF by default, enable this to build plugins for Qt Designer/Qt Creator so you can add Krita specific widgets to .ui files.





            

          

      

      

    

  

  
    
    


    Enable static analyzer
    

    
 
  

    
      
          
            
  
Enable static analyzer


Contents


	Enable static analyzer






	Install the latest version of clang-tidy



For older versions of Ubuntu

If you are using older version of Ubuntu (e.g. via Krita Docker build environment [https://invent.kde.org/dkazakov/krita-docker-env]) make sure that you added the backports repository:

sudo add-apt-repository ppa:savoury1/llvm-defaults-11
sudo apt-get update







sudo apt install clang-11 clang-format-11 clang-tidy-11 clang-tools-11










	Go to the Analyser settings in QtCreator (Options->Analyser)


	In the field for Clang-Tidy executable select the script from Krita source tree sdk/clang-tidy-arguments-wrapper.sh. This script removes GCC-specific compile options not supported by clang. Without the wrapper script the analyser tool will fail.


	Open “Diagnostic Configuration” dialog. Duplicate the default configuration, switch to “Clang-Tidy Checks” tab and choose “Use .clang-tidy config file”


	In the “Project Settings” pane make sure that your new Diagnostic Configuration is activated.


	Start analysing by clicking on Analyze->Clang Tidy and Clazy…







            

          

      

      

    

  

  
    
    


    How to patch Qt
    

    
 
  

    
      
          
            
  
How to patch Qt


Contents


	How to patch Qt





The Qt repository is split into submudules, so pushing a fix for it is not very trivial. Let’s assume you
have Krita deps built using Krita’s build scripts and you want to modify Qt and push a fix into the registry.


	Make a commit in QtBase submodule


When using submodules, the submodule folder is in “detached” state without any branch assigned,
so we need to reset the branch head after we make a commit:

cd qtbase
git commit -a -m "your commit message"

# reset the branch head (make sure you don't have any local
# changes in 'krita/5.15' branch!)

git update-ref refs/heads/krita/5.15 HEAD
git checkout krita/5.15
git pull --rebase

cd ..













	Make a commit in the root repository and push


git checkout krita/5.15
git pull --rebase
git commit -a -m "commit message for the root repo"
git push --recurse-submodules=on-demand










	Update the sha1-link in Krita’s repository



	Open 3rdparty/ext_qt/CMakeLists.txt


	Modify QT_GIT_TAG with the newly pushed sha1


	Push!














            

          

      

      

    

  

  
    
    


    Introduction to Hacking Krita
    

    
 
  

    
      
          
            
  
Introduction to Hacking Krita


Contents


	Introduction to Hacking Krita


	Getting started with KDE Software


	Getting Started


	Building Krita


	Working with the Krita codebase


	Debugging


	Tips when Tackling Issues


	Calligra and Krita


	Style guidelines


	Development Philosophy






	Getting in Touch


	Contributing Patches


	Forking on Gitlab


	Update the master branch in your fork


	Label workflow


	How to prepare your commits for a merge request














Getting started with KDE Software

Krita is a great place to start even if you are brand new to KDE development. We’d love to have you join! You’ll be able to work on one of the coolest and fastest-growing open source painting programs out there. Krita also benefits from a modular architecture and the use of the KDE Frameworks and Qt libraries, which makes it easier to focus on new features instead of reinventing the wheel. And it makes coding fun! To work on Krita, you have to use C++ and Qt. It’s a good way to learn both, actually!

KDE has undergone big changes since a major 2014 reorganization [https://www.kde.org/announcements/kde-frameworks-5.0.php]. As a result, working with KDE software has never been easier.  Unfortunately, since the changes were so widespread, the documentation has not caught up at all.  If you are embarking on this journey, it would be very generous to share your discoveries with others and update pages.  (=



Getting Started

Here’s some links to get your started.


	Most important, the repository [https://invent.kde.org/graphics/krita.git]. There is a mirror on Github [https://github.com/KDE/krita], however note that we do not use Github for development, do not create pull requests or file issues on github.


	KDE Developer wiki - The KDE Techbase Wiki has instructions for new developers.  On top of basic tools like C++, git, and general notions such as building software libraries, some special tools that are particular to Krita are Qt, CMake, and KDE Frameworks.  It can be very helpful to get started by finding some of the articles discussing these tools and reading up. Here are some of the more useful pages to get you started:



	https://techbase.kde.org/Development


	https://techbase.kde.org/Contribute


	https://techbase.kde.org/Development/Git/Configuration


	https://techbase.kde.org/Development/Tutorials


	https://booki.flossmanuals.net/kde-guide/


	https://doc.qt.io/ Qt has some of the best documentation of any software library.









	Set up your development environment and build Krita!


	Find a few bugs to fix in KDE’s Bugtracking system [https://bugs.kde.org/]. It’s often a good idea to get some experience with the code through fixing bugs, to get familiar with the development process without being overwhelmed. Though there’s nothing against working on that cool feature that scratches your itch!


	If you intend to be a regular contributor to Krita, even just for bugreports and feature discussion, the first thing you will want to do is register for a KDE Identity account [https://identity.kde.org/].  This serves as your mostly-universal login to KDE code repositories and websites.






Building Krita

[image: ../_images/Krita-building_for-cats_intro_by-deevad.jpg]
To get started, all you need to do is get a copy of Krita and build it! This is not all that much different from building something off GitHub… except that Krita is very large compared to most software.  There are build guides to get you going on various platforms, but of course Linux is easiest.



Working with the Krita codebase

Here’s some pointers for working with our codebase.


	Architecture
	The code base changes all the time with Krita, we’re not afraid of big refactorings, so there is no up to date documentation on the code architecture. There have been some written in the past, but they quickly became outdated and of little use. There is a fairly up to date API guide [https://api.kde.org/krita/html/index.html] if you want to look at how the code is structured.



	Integrated Development Environment (IDE)
	The most popular IDEs that we use are Qt Creator, Emacs, KDevelop, or vim. Qt Creator has the advantage of the ctrl-k menu, which lets you leap to classes, lines, everywhere. You don’t have to build with Qt Creator though! It can be easier to jump to the terminal, do a ‘make’, check what’s up, and then jump back to the IDE.



	Resources
	The most important step to learning the code is to really understand memory management: pointers, smart pointers and pointer arithmetic. This is something that Java and C# developers will need to spend a little more time understanding. Here are a couple resources to get you more familiar with C++ and Qt:



	Qt Concepts [https://doc.qt.io/archives/qt-4.8/how-to-learn-qt.html]


	Design Patterns with Qt [https://www.ics.com/designpatterns/book/index.html]


	C++ in a Nutshell by O’Reilly (book)












Debugging

There are large and small problems. For small problems the debugger in Qt Creator (run external application) or adding qDebug messages to the code is fine. If the problem is difficult, the first step should always be to write a unit test. A small bit of code that follows a set pattern and exercises the faulty code and shows the problem. That helps so much figuring out a fix and keeping it fixed.

When you run a debug build of Krita, you may be surprised how little debug output you see. This is because most of Krita’s debugging information is turned off by default.  The debug statements are grouped into categories such as dbgUI, dbgKrita and so on.  The output categories are controlled by an environment variable QT_LOGGING_RULES.

The list of Krita’s debug categories is contained in kis_debug.h and main.cc, and the rules for the environment variable are described in the Qt reference for QLoggingCategory [https://doc.qt.io/qt-5/qloggingcategory.html].

As an example, to enable most of Krita’s debug output, you can run the following:

export QT_LOGGING_RULES="krita*=true"; krita

Using the rule *=true will produce a firehose, if you want it.



Tips when Tackling Issues


	Features and Refactorings
	Sometimes you just know that a lot of work is going to be needed to reach a particular goal. These will go in separate feature branches off ‘master’.



	Performance Improvements
	Sometimes you don’t feel like working on a feature – or someone mentioned something being particularly slow. The first thing to do then is carry out that scenario when Krita runs under callgrind [http://c.learncodethehardway.org/book/ex41.html] and vtune [https://en.wikipedia.org/wiki/VTune]. These tools show bottlenecks at the end of a run. It’s important to use both, since both give different insights!



	Bugs
	Sometimes you rummage around the bugs on b.k.o to see what looks like a nice Saturday morning fix. Sometimes a bug is really urgent (like all data loss bugs). Sometimes someone on IRC or the forum mentions a bug. The first thing to do is reproduce it. The second thing is to look in the code to see what is going on. If it’s a crash bug, especially one that seems mysterious, it might help to google for a few of the key lines in the backtrace. Sometimes it’s a distribution issue!



	Blockers
	If you are helping with Krita and your progress is being blocked by something - let us know! Talk with us on the Krita developer IRC [https://krita.org/irc/] and we will see what we can do to help!







Calligra and Krita

In October 2015, the Krita project separated from the rest of the Calligra office suite.  The new repository still clearly contains this history. Most source code files will have one of two prefixes. “Ko” stands for KOffice, the original name of Calligra office suite.  These files mostly comprise basic, lower-level libraries.  “Kis” stands for KImageShop, the original name of Krita. These files are where most of the painting-specific functionality is maintained.

Krita 2.9 stable is built from the Calligra repo.  Krita 3.x and above is built from the Krita repo.



Style guidelines

See HACKING in the codebase.



Development Philosophy

Krita is nearly ten years old, consists of something like a million lines of code, and has had many individual contributors throughout the years. If you run into something in the code that doesn’t make sense to you, it may very well not make sense to anyone.  Developing a codebase this large is an art form, you should feel confident in making risky changes even if you’re not sure they’ll work, you can always go back with git checkout -- * if you mess it up!




Getting in Touch

If you’re working on a bug fix, or maybe a bit of GUI polish, you might get stumped. The best thing to do then is to get in touch with the rest of the Krita team. Part of the fun of working on an open source application is the community, after all! Join us on #krita on Libera.Chat (keep in mind that most people are in Europe or India) and just ask your question. Stay around, especially if you don’t get an answer immediately. Some of the developers have their irc client open permanently and will often answer questions hours later!

You can also send mail to the mailinglist: kimageshop@kde.org. It’s better not to send mail to individual developers directly, you might accidentally pick someone who hasn’t got the answer, and miss the chance of getting your question answered by another Krita developer.



Contributing Patches

Patch review and development tracking happens on gitlab [https://invent.kde.org]. To log in, enter your KDE Identity in the LDAP login field. You can join the Krita: Next [https://phabricator.kde.org/project/profile/8/]. If you are used to Github, the transition to gitlab is not difficult [https://invent.kde.org/help/#new-to-git-and-gitlab], but it is slightly different.

To push to invent.kde.org, you will not need to have SSH access setup, but you do KDE identity account. If several of your merge requests are accepted, you can get a commiter’s account, which will allow you to push directly to the repositories.  You can read more about that here: Getting a developer account [https://community.kde.org/Infrastructure/Get_a_Developer_Account]


Attention

Since moving to the gitlab instance, we don’t use git@git.kde.org:krita but rather git@invent.kde.org:graphics/krita. Gitlab will not be able to see your commits if you push to the former. You can use git remote set-url origin git@invent.kde.org:graphics/krita to get everything pointing correctly.



So then, how does an aspiring contributor submit patches?


Forking on Gitlab


	Forking on gitlab is done by going to the repository [https://invent.kde.org/graphics/krita.git] and pressing fork. You will then make a personal fork of the repository.




Your fork will probably be located here:


https://invent.kde.org/<username>/krita









	In your fork, you press clone to get the git urls to do the git clone from. You can then pull and push your commits from these.


# for ssh access
git clone git@invent.kde.org:<username>/krita.git
# for https access
git clone https://invent.kde.org/<username>/krita.git





You can also use the Web IDE to make your changes directly on invent.kde.org, but because Krita is a c++ program, we don’t recommend this outside of typo fixes and doxygen documentation strings. You wouldn’t be able to see the effect of your changes, after all!






	Set up a new remote which points to the official repository, so you’ll be able to update your local master branch.


# for ssh access
git remote add upstream git@invent.kde.org:graphics/krita.git
# for https access
git remote add upstream https://invent.kde.org/graphics/krita.git





After that, you can see all of your urls using:

git remote --verbose





As you can see, origin points to your fork, while upstream points to the official repository.






	Create a new branch and checkout to it.


git checkout -b "<username>/<description of the new feature>"










	Make your first fix, push everything to your branch in your fork.


# make sure you didn't leave any unnecessary debug or unfinished code
git diff
# stage all changes
git add .
# make sure that all added files are the ones you want to have in your commit
git status
# commit changes (here, write a commit messages that follows the rules)
git commit
# push to your branch
git push






Attention

Make sure all of your commits go to your own branch, not onto master.








	Once you’re done, login to the KDE gitlab instance, go to merge requests and press new merge request


	Make sure your merge request is between the branch from your fork and the official master branch.


	Write a detailed description about the changes that you are proposing with your merge request. If it is a change in the user interface, it would be good if you can provide screenshots through attachments.



Tip

The Krita repository has a merge request template that labels your request appropriately and gives a checklist of common formalities that all patches should adhere to. You can select it from the Template drop down.










The Krita developers will be notified of new merge requests, and they will try to review your request as soon as possible. If you suspect your patch slipped through the cracks, don’t hesitate to contact us through the means described above.



Update the master branch in your fork

After working for some time, you may want to update the master branch of your fork to be in sync with the master branch of the official repository.


	Checkout the master branch in your working environment.


git checkout master










	Pull changes from the official repository.


git pull --ff-only upstream master










	Push it to your fork.


git push





The other possibility is to just delete the fork you worked previously on and create another one – it will be up-to-date with official repository’s master branch already.










Label workflow

Make sure the state of your merge request is labeled correctly. The picture below shows the basic label workflow that your merge request should go through:

[image: ../_images/Merge_Request_Label_Workflow.png]

	When you create a merge request, mark it with WIP to make sure no one will accidentally merge your request prematurely.


	When you finish your work, label it with Needs Review. That will let developers know your merge request is ready.


	A Krita developer will read and test your merge request. After that they will write comments and label the merge request accordingly:



	If the merge request is ready to be merged, with Approved label.


	If it requires changes to proceed, with Needs Changes label.









	If your merge request is in Needs Changes state, please address the concerns of the reviewer and submit the code to your branch. Gitlab will update your merge request accordingly. Add Needs Review label to your MR again.


	When your merge request is in the Approved state, you can either merge the code yourself to master if you have developer access, or wait for KDE developer to do it for you.



Attention

If you have developer access and merge someone’s merge request to the repository, you are partially responsible for the code.


	Don’t merge MRs that weren’t approved!


	Read and test extensively all MRs before you approve or merge!














Note

In time of writing, setting labels on merge requests were only possible by contributors with write access to the official repository. (If you don’t know what that means, that probably means you’re not one of them). Because of that, when you create or change your merge request you need you get on IRC (see The Krita Community) and ask someone to label it for you.





How to prepare your commits for a merge request

After merging to master, your commits should fit nicely in the Krita git history.


	Commit messages should clearly and concisely state what changes you made with that particular commit and why – see How to Write a Git Commit Message [https://chris.beams.io/posts/git-commit/].


	Every commit should be compilable and follow the KDE commit guidelines – see KDE Commit Policy [https://community.kde.org/Policies/Commit_Policy].


	Commits should be self-contained: if you code a bigger feature, it’s better if you divide the code into bits that can possibly exist independently.


	When you add new features during the development, it’s fine to add new commits.


	If you only need to fix previous commits, don’t add new ones – instead, amend the ones that you made before and force-push your new commits to the branch in your fork.


# if you already committed your changes...
git commit
# ...add all changed files the "staged" state
git add .
# and amend the previous commit
git commit --amend






Note

You can only force-push to your own branch on your own fork. If you need to remove changes from one of the commits that are already in the official repository, please use git revert.








	When you want to reduce the number of commits:



	you can squash them before making a merge request.


	if you have developer access, you can squash the commits just before merging with master.


	See the Beginner’s guide to rebasing and squashing [https://github.com/servo/servo/wiki/Beginner's-guide-to-rebasing-and-squashing#squashing] for further guidance.









	Your work should go to a new branch, instead of master.


	Your commits will be rebased and put in master using fast-forward merge. If you need a manual merge (if, for example, you’re working on a big feature) and you don’t have the commit access, please contact a Krita developer.









            

          

      

      

    

  

  
    
    


    The Krita Palette format KPL
    

    
 
  

    
      
          
            
  
The Krita Palette format KPL

There’s been a number of color swatch definitions over the years. To ensure we can store color managed color, as well as store other metadata we use, Krita has its own color palette format, KPL.

This document is a technical description of the format.


Basic Structure

KPL files are zip files containing the following files:


	mimetype
	A text file containing the mimetype, to differentiate it from a regular zip. application/x-krita-palette



	colorset.xml
	The main color definition file.



	profiles.xml
	This is a manifest of the icc profiles that are inside the zip file. We wanted to have no ambiguity in regards to which icc files were bundled.



	A number of icc files.
	These are the necessary icc profiles for interpreting the values in colorset.xml







profiles.xml

A manifest of the icc profiles that are inside the zip file. We wanted to have no ambiguity in regards to which icc files were bundled.

<Profiles>
   <Profile name="sRGB-elle-V2-g10.icc" filename="sRGB-elle-V2-g10.icc" colorModelId="RGBA" colorDepthId="F32"/>
</Profiles>





Krita doesn’t store every profile it uses. XYZ and LAB are colorspaces that only have one real space definition, and therefore it doesn’t make sense to embed these files.



colorset.xml

This is the main palette definition. It can handle comments, groups and more.

The top level element is a Colorset element, it’s children can either be ColorSetEntry elements, or Group elements. ColorSetEntry s that are direct children of Colorset are the ungrouped colors, and are, inside Krita, referred to as the “default” group.

<Colorset name="Scene Linear Swatches" comment="This is a palette for easy access to some swatches ready for scene-linear painting." columns="9" rows="1" readonly="false" version="1.0">






	name
	The human friendly name of the color palette.



	comment
	The description for the palette.



	columns
	The amount of columns in the palette in total. This is the same for all groups.



	rows
	The rows of the default group, see group for more info.



	readonly
	Whether the file can be edited.



	version
	The version of the file.







Group

Group elements can only have ColorSetEntry s as children. Group s are shown in the UI as a grid where the cells can be empty or contain a ColorSetEntry.

<Group name="Hot Colors" rows="5">
</Group>






	name
	The name of the group.



	rows
	The total amount of rows this group takes up, this, together with the column value in the toplevel Colorset element, determines the grid size.







ColorSetEntry

<ColorSetEntry name="Noon daylight at 0 EV" id="SI-D65-0EV" bitdepth="F32" spot="false">
  <XYZ space="XYZ identity built-in" x="0.17107713223" y="0.18000000715" z="0.17107713223"  />
  <Position row="0" column="0"/>
</ColorSetEntry>






	name
	The name of the color. Unlike the create swatches, we don’t support translated color names.



	id
	The id value. This is for complex colorsets where there is a human friendly name, and a name that uniquely identifies the color in the swatch database. In the above example, which encodes the D65 standard illuminant at 0 stops, SI-D65-0EV is a clear unambiguous id, but “Noon daylight at 0 EV” is a much more human friendly way to refer to it. Often, the ID is used for referencing spot colors inside files.



	bitdepth
	The bitdepth at which the color should be loaded. This is largely for our own convenience. Values are U8 (Unassigned 8bit integer), U16 (Unassigned 16bit integer), F16 (16 bit Floating Point), and F32 (32 bit Floating Point). Lab and CMYK don’t support F16, and for CMYK F32 is not recommended because it doesn’t deserialize the same way as the integer colorspaces.



	spot
	Whether or not the color is a spot color. This is currently not used elsewhere in Krita, but the intend is to use it for encoding spot colors as only the id.





ColorSetEntry s have two children:

The Position element is the position of the swatch inside the parent group grid. Krita doesn’t store empty swatches.

The other child element is a Create Swatch defintion. Krita supports Gray, sRGB, RGB, XYZ, CMYK, Lab and in theory YCrCb. Note that Krita supports unbounded colors as long as the bitdepth is F32.



Color swatch definition from the Create Wiki:

The following is the Color Swatch definition from the old create wiki [https://web.archive.org/web/20110826002520/http://create.freedesktop.org/wiki/Swatches_-_colour_file_format/Draft] . Krita largely uses this definition. Because the Create wiki is down, it’s contents are reproduced here. It is for reference only.

<colors xmlns:xlink="http://www.w3.org/1999/xlink">
    <color name="blue">
        <label lang="en">Blue</label>
        <label lang="es">Azul</label>
        <label lang="en_US_SoCal">glassy</label>
        <CMYK space="2ndFloorCMYK" c="0.8703" m="0.6172" y="0" k="0"/>
        <Lab space="mine" L="34.67" a="54.1289" b="-103.3359"/>
        <HSV space="prof01" h="240" s="1" v="1"/>
        <HLS space="prof02" h="240" l="0.5" s="1"/>
        <Luv space="prof03" L="34.6701" u="-15.0121" v="-124.7986"/>
        <XYZ space="prof04" x="0.1566" y="0.0833" z="0.7196"/>
        <Yxy space="prof05" Y="0.0833" x="0.1632" y="0.0869"/>
        <Gray space="prof06" g="0.2515"/>
        <sRGB r="0" g="0" b="1.0"/>
        <RGB space="lcd" r="0.1608" g="-0.1518" b="1.0753"/>
    </color>

    <color name="red">
        <label lang="en">Red</label>
        <CMYK space="2ndFloorCMYK" c="0.0011" m="0.7992" y="0.9405" k="0.0038"/>
        <sRGB r="1.0" g="0" b="0"/>
    </color>

    <colorspace name="2ndFloorCMYK" xlink:href="2nd_floor.icm"/>
    <colorspace name="mine" xlink:href="sample.icm"/>
    <colorspace name="lcd" xlink:href="generic_lcd.icm"/>
</colors>






Relax-NG for the swatches

namespace xlink = "http://www.w3.org/1999/xlink"
grammar {
start = element colors {
color+, colorSpace*
}
color = element color {
attribute name { text },
label *,
(RGB ? & sRGB ? & CMYK ? & Lab ? & HSV ? & HLS ? & Luv ? & XYZ ? & Yxy ? & Gray ? & YCbCr ?)
}
label = element label {
attribute lang { text } ?,
text
}
spaceAttribute = attribute space { text }
RGBAttributes =
attribute r { xsd:float },
attribute g { xsd:float },
attribute b { xsd:float }
RGB = element RGB {
spaceAttribute,
RGBAttributes
}
sRGB = element sRGB {
RGBAttributes
}
CMYK = element CMYK {
spaceAttribute,
attribute c { xsd:float },
attribute m { xsd:float },
attribute y { xsd:float },
attribute k { xsd:float }
}
Lab = element Lab {
spaceAttribute,
attribute L { xsd:float },
attribute a { xsd:float },
attribute b { xsd:float }
}
HSV = element HSV {
spaceAttribute,
attribute h { xsd:float },
attribute s { xsd:float },
attribute v { xsd:float }
}
HLS = element HLS {
spaceAttribute,
attribute h { xsd:float },
attribute l { xsd:float },
attribute s { xsd:float }
}
Luv = element Luv {
spaceAttribute,
attribute L { xsd:float },
attribute u { xsd:float },
attribute v { xsd:float }
}
XYZ = element XYZ {
spaceAttribute,
attribute x { xsd:float },
attribute y { xsd:float },
attribute z { xsd:float }
}
Yxy = element Yxy {
spaceAttribute,
attribute Y { xsd:float },
attribute x { xsd:float },
attribute y { xsd:float }
}
YCbCr = element YCbCr {
spaceAttribute,
attribute Y { xsd:float },
attribute Cb { xsd:float },
attribute Cr { xsd:float }
}
Gray = element Gray {
spaceAttribute,
attribute g { xsd:float }
}
colorSpace = element colorspace {
attribute name { text },
attribute xlink:href { xsd:anyURI }
}
}








Using for validating

To use the above RelaxNG compact schema to validate a swatch you can use:

trang -I rnc -O rng colors.rnc colors.rng
xmllint --relaxng colors.rng colors.xml







Color Grouping Proposal

Krita doesn’t use this.

<group>
    <label lang='en'>One group</label>
    <color name='red'>
        <label lang='en'>Red</label>
        <sRGB r="1.0" g="0" b="0"/>
    </color>
    <group>
        <label lang='en'>Nested group</label>
        ...
    </group>
    </group>
<group>









            

          

      

      

    

  

  
    
    


    Krita SVG Extensions
    

    
 
  

    
      
          
            
  
Krita SVG Extensions

Krita has a few extensions over SVG format to ensure correct saving and
loading of Krita custom elements.


Attribute: krita:marker-fill-method

Possible values:


	default – markers are filled according to SVG standard rules,
that is each marker has its own fill, which is filled in the marker’s
local coordinates.


	auto – markers are considered to be a part of the path. The
outline of the path is combined with the outline of the markers and
filled with a single pass of the object’s fill strategy.




Default value: default



[DEPRECATED] Attribute: krita:arc=‘arc’ and krita:arcType=‘chord’

That is a temporary namespace that was used before introduction of
sodipodi:arc-type=‘chord’ option. Krita never saves files with this
option and the support of it will be removed soon.





            

          

      

      

    

  

  
    
    

    Modern C++ usage guidelines for the Krita codebase
    

    
 
  

    
      
          
            
  
	bg.. meta::
	
	description:

	Guide to using features from C++11, C++14 and beyond in Krita’s codebase.










Modern C++ usage guidelines for the Krita codebase


Contents


	Modern C++ usage guidelines for the Krita codebase


	General links about using Modern C++ in Qt


	Particular Features


	Type Inference (auto)


	Range-based for loop


	General Initializer Lists


	Lambdas, and new-style signals/slots


	constexpr


	<algorithm>


	enum class


	Local type definitions (i.e. using)


	nullptr


	Deleted, default, override, final


	unique_ptr/QScopedPointer


	Performance-related (rvalues)


	Move Constructors


	Reference Qualifiers (rvalue references)






	C++11 features mostly for template programming


	Other C++11 features that will not be useful














General links about using Modern C++ in Qt

There have been a few links discussing mixing C++11 with Qt, and starting with Qt 5.6 C++11 support will be default. Note: there is a lot of hype about C++11, and although many of its new features are quite welcome, often the trade-offs from these changes get neglected.


	ICS.com [https://www.ics.com/blog/qt-and-c11]


	qt.io [https://blog.qt.io/blog/2011/05/26/cpp0x-in-qt/]


	woboq.com: c++11 in Qt5 [https://woboq.com/blog/cpp11-in-qt5.html].


	woboq.com: c++14 in Qt5 [https://woboq.com/blog/cpp14-in-qt.html].


	FOSDEM 2013 presentation slides [https://archive.fosdem.org/2013/schedule/event/introcplusplus11/attachments/slides/203/export/events/attachments/introcplusplus11/slides/203/fosdem2013_cpp11.pdf].




Here are some more general purpose guides to C++11 features.


	C++11 FAQ Bjarne Stroustrup’s [http://www.stroustrup.com/C++11FAQ.html] - the grand daddy.


	Older, more thorough introductions to several topics [https://www.informit.com/authors/bio/e19aded6-574c-4c46-8511-101f9f0ed8f8].




Qt’s API design principles do not always overlap with the C++ Standards Committee design principles. (Range-based for demonstrates the design clash pretty clearly.)


	https://wiki.qt.io/API_Design_Principles






Particular Features

Under “drawbacks,” every item should list: “Programmers will face another feature they must learn about.”


Type Inference (auto)


	Motivation:
	If a function f has a return type Type, it is redundant to write a local variable Type x = f(y).  Using auto declarations is a simplification in two ways scenarios.  First, it allows the programmer to write code without worrying about doing the manual type deduction, for example:

for( KoXmlReader::const_iterator x = iter.begin(),... ) { }





versus:

for (auto x = iter.begin(), ...) { }





This is particularly useful with nested template types and C++11 lambdas, and other complex types which have an obvious role, but a lengthy type definition.

A second important benefit of auto is that it allows the programmer to more easily refactor.  Suppose we have a function gimmeSomeStrings() which returns a QList<QString>, and we access it somewhere else like this

auto someStrings = gimmeSomeStrings();





If we later decide that we want to store a hash of strings and that gimmeSomeStrings should return a QMap<int, QString>, we probably won’t need to make any changes inside the client snippet if we are doing tasks like iterating.



	Drawbacks:
	The use of auto obfuscates variable types.  For example, auto x = 2 is not obviously an integer, and auto x = {"a", "b", "c"} returns std::initializer_list, and sometimes it is not clear what some function returns by the name of the function.



	Recommendation:
	Do not use auto, except, maybe, in loops, where there can be no confusion about the type of what is looped. But even there, hesitate.







Range-based for loop


	Motivation:
	This is something a long time coming in C++.  It is a standardized replacement for Qt’s foreach() construct, which works not only with Qt objects but all iterable C++ types.

for (T x : list ) { ... }





It will work with standard tooling and static analysis, and can be faster by defaulting to in-place access.  For this reason range-based iterators should always be used for STL containers, if those are ever needed in Krita.



	Drawbacks:
	By default, Qt’s foreach rewites the code to make a shallow copy and then use const accessors, while c++11 does the opposite, avoiding copying when possible.  When using const accessors, this is faster, but if you try to make changes to the data, this will slow your loop down instead [https://www.dvratil.cz/2015/06/qt-containers-and-c11-range-based-loops/].



	Recommendation:
	
Sometimes, the range-based for is faster.  Sometimes the Qt iterator is faster.  Personally I like the range-based for in principle, since it works better with static analysis, it has a faster best-case speed, and it is always possible to write it in a way that replicates the foreach() behavior, though the reverse is not true.




On the other hand, there is a bad, dangerous  worst case performance hit when a detach/copy is triggered, and this is not easy to catch with standard syntax. In the blog post linked above, the discussion explains that is possible to get around this limitation by defining a macro const_(), which will gives a new syntax to request the compiler use constant iterators:

for (T x : _const(list) ) { ... }





Qt’s recommendation on the other hand is to use foreach() for Qt iterators, and range-based for on STL containers, because you always know what you’re getting, and you always keep your syntax easy to read.  In my opinion is the most meaningful new feature without any sort of clear answer, and quite interesting to think about.







General Initializer Lists


	Motivation:
	Initializer lists are intended to work in many different places to simplify the syntax for complicated initialization.  For example, a list of strings could be initialized const QStringList x = {"abc", "def", "xyz"  }; and if you later changed the type to QVector<QString>, or even std::list<std::string>, you wouldn’t have to make any change to the right hand side.

A second place initializer lists are used is in creating standard initial values for class members.  This takes the place of writing a lengthy constructor list like:

Type::Type()
 : MemberString1("a")
 , Subclass1(0)
 , Subclass2(1)
 , ...





In addition to being more concise, it saves you from repeating yourself, if you have several constructors which all start with the same defaults.

Mixed uniform initialization is a separate new feature of initializer lists when constructing classes.  It is possible to specify some defaults when you declare member variables, but then override them with delegating constructors. This MSDN page is a good reference [https://msdn.microsoft.com/en-us/library/dn387583.aspx].



	Drawbacks:
	None I can think of. This is super simple, completely obvious to read and write, and shortens code by removing long unnecessary lists of defaults.



	Recommendation:
	Yes!







Lambdas, and new-style signals/slots


	Motivation:
	
Lambda expressions are a big new addition for C++11. Many programmers claim they start to feel like an essential part of the language very quickly. One of the biggest uses for lambdas is in the standard algorithm library <algorithm>, which is described below.  In Qt5, this, along with std::function and std::bind, allow for One of the most useful C++11 integrations, a new signal/slot syntax which replaces the moc macros SIGNAL() and SLOT() with standard C++.




Old style:

connect(sender, SIGNAL (valueChanged(QString,QString)),  receiver, SLOT (updateValue(QString)) );





New style:

connect(sender, &Sender::valueChanged, receiver, &Receiver::updateValue );





New style signals and slots provide a great benefit from the tooling perspective: now, all types for functions and function arguments can be checked statically, and you don’t have to catch typos by monitoring debug messages saying “no such slot.”

Another possibility is to use lambdas directly inside connect(), instead of defining a class member function which is only used once. The greatest benefit is that the function can be defined right where it is used; it also aids readability to get rid of a list of tiny helper functions from the header.


	“Qt5: C++11 lambdas are your friend” [https://artandlogic.com/2013/09/qt-5-and-c11-lambdas-are-your-friend/]


	C++ language reference [https://en.cppreference.com/w/cpp/language/lambda]


	Qt.io New Signal/Slot Syntax [https://wiki.qt.io/New_Signal_Slot_Syntax] Also gives detailed pros/cons.






	Drawbacks:
	The new-style syntax makes it somewhat harder to use default arguments, which requires the use of lambdas.  It is also perhaps a little less pretty.

Lambdas in general are have become one of the most clunky pieces of C++11 notation. Since they allow a great deal of options for example, capturing by reference with [&] and capturing by value with [=], they are a significant new addition to the C++ learning curve. Using small local functions with uninformative names like auto F = [&] ( x ) { whatever } is confusing for everyone.

Although it is possible to use lambdas are tricky inside signals and slots, there are gotchas. Lambdas will not disconnect automatically, although there is a special syntax to make that happen.



	Recommendation:
	Lambdas will feel strange to many C++ programmers. At a minimum, any time you use them you should add a comment explaining what you’re doing.  (Krita codebase could use more comments anyway.)  New style signals and slots should be used with caution, especially while the 2.9 branch is being maintained.

Overall, the Qt wiki gives a good overview, and I agree with its suggestions, which is to permit a small amount of mixing of the different syntax.  Their recommendation is to use new-style signals and slots when possible, which is the vast majority of the time, to fall back on the old macros when one needs to use a default argument, and to use lambdas very rarely, only in cases when one needs to create a signal that is not bound to a particular object.  The latter sort of case is not something that C++ newcomers would want to be touching anyway.







constexpr


	Motivation:
	Performing calculations at compile time can speed things up at runtime.  KDAB: speed up your Qt 5 programs using C++11 [https://www.kdab.com/wp-content/uploads/stories/slides/DD12/mutz-dd-speed-up-your-qt-5-programs-using-c++11.pdf]



	Drawbacks:
	Not easy to use these features.



	Recommendation:
	This could be useful in specific places, like KoCompositeOpRegistry.  Overall it is not something most programmers will run into.







<algorithm>


	Motivation:
	A handwritten loop that looks for occurences of the number 20 and replaces it with 99 is routine, and will take several lines to write, including defining local variables. Instead, something like

std::replace (myvector.cbegin(), myvector.cend(), 20, 99);





is more concise, safer  is even self-documenting, since the name of the function itself explains what it is doing. <u>If you make sure to use Qt’s const iterators</u>, there should never see a performance penalty compared to a hand-written loop, there can sometimes even see a gain. A list of standard algorithms can be found here. [http://www.cplusplus.com/reference/algorithm/] Historically Qt provided its own algorithm library, but now encourages programmers to use the STL versions instead, and Qt’s own algorithm library will mostly become deprecated. https://doc.qt.io/qt-5/qtalgorithms.html  Unlike range-based for, where it is difficult to specify a const iterator instead of a standard iterator, with <algorithm> we are easily able to specify the const iterator.



	Drawbacks:
	Some of the standard algorithms are not completely obvious from observing the name.  For example, I could not personally list what are the five arguments of std::replace_copy off the top of my head, and you shouldn’t expect anyone to. When values inside the container need to be modified, non-const iterators may be slower than a Qt foreach() loop.



	Recommendation:
	Encourage the use of <algorithm> when it improves code clarity.  Speed not a big problem most of the time, don’t make changes which are hard to understand just for a tiny hypothetical speed boost.  However, moving to <algorithm> and away from Qt foreach() inside hot paths could prove useful in the future.







enum class


	Motivation:
	These are a type-safe version of enums, and allows the programmer to associate several different types of data with an enum, such as a character.  This gives stricter type safety, for example, when it might be possible to accidentally convert a variable into a numeric type.  For example:

enum class Color : char {Red = 'R', Green = 'G', Blue = 'B'};





Other benefits of enum classes are that they can be forward-declared, and that the data can be any sort of constexpr.  For example, if one had a constexpr function color_symbol() that returned the symbol given some color data, the enum class members could be defined like:

enum class Color: char {Red = color_symbol({255, 0, 0}) ...};





The standard C++ reference does a nice job explaining these features. https://en.cppreference.com/w/cpp/language/enum



	Drawbacks:
	Virtually none.  Very small changes to the code, more type safety, removes the need for some tables of values.  The only problem is sometimes this requires fixing code that was unsafe to begin with.



	Recommendation:
	Use freely.







Local type definitions (i.e. using)


	Motivation:
	An easier and localized way to use typedefs. Can be at the namespace, class, or function level.  Allows you to rewrite a typedef so that the new name occurs on the left hand side of the equals sign, which is easier to read.  They allow you to place typedefs closer to where they’re used. They are particularly nice inside templates.



	Drawbacks:
	Very few.  These are quite intuitive



	Recommendation:
	Go for it.







nullptr


	Motivation:
	The use of nullptr as a default pointer initializer is a very small change in C++11, and mostly an aesthetic one. Technically, there are only a few things it prevents : it cannot be converted to a numeric type like int x = nullptr;, and it cannot be used as a class type in a template, so the following is a compiler error:

meta_type<class A, class B>;
meta_type<C, nullptr> x;





The most important to nullptr is simply that you are tagging your code - ‘’hey: there is a null pointer lurking around here, be careful!’’



	Drawbacks:
	It takes longer to type nullptr than it takes to type 0, and it’s not so visually pleasing.  Converting the existing code base would be very laborious and mess up git history. Tiny benefits.



	Recommendation:
	We do not use nullptr in Krita. Not in new code, and we don’t refactor old code to use it. Also not Q_NULLPTR.







Deleted, default, override, final


	Motivation:
	These are keywords used for designing inheritance patterns. They are useful for preventing accidental copy construction.



	Drawbacks:
	Since Krita does not export libraries, most of the time we won’t need to worry about these.  They are limited to solving some pretty specialized problems.



	Recommendation:
	No reason to hold back from these features if they seem useful. They are well named and fairly self-explanatory, especially for developers with a Java or C# background.  If you apply them correctly, you can prevent other coders from making mistakes when they use your classes.  For others, these definitions can be ignored until they cause a compile error, which tell you that you’re doing something the wrong way.







unique_ptr/QScopedPointer


	Motivation:
	Here is a glowing review of unique_ptr [https://www.drdobbs.com/cpp/c11-uniqueptr/240002708]. This is really about a philosophy of C++ memory management, not just a particular smart pointer type.  The idea is that whenever you create an object on the heap, you should always house it inside a smart pointer.  The reason this philosophy is considered new to C++11 is that unique_ptr is the first time they ‘got it right’ designing a very nice smart pointer class. Most importantly, the class uses negligible overhead. In particular: sizeof(unique_ptr<T*>) = size_t, it can be passed as a function argument without copying, and dereferencing is inline.





QScopedPointer is essentially the same thing as unique_ptr, and perhaps it is more idiomatic to use QScopedPointer instead.


Note

It is a useful idiom to store a d-ptr using QScopedPointer<Private>, but if you do this you must also declare a destructor in the header file, even if it has an empty implementation in the source file.

“Rule of Zero”: more about the C++ design philosophy behind unique_ptr. [https://rmf.io/cxx11/rule-of-zero/]




	Drawbacks:
	The philosophy mentioned above can be summarized like this: we should state up front what we are going to prohibit programmers from doing.  Like the const keyword, unique_ptr puts restrictions on what can be done with the pointer, the main one being, it cannot be copied. Like enforcing const correctness, this can be annoying to get right throughout a codebase.

One particular limitation is that Qt container classes.  For example QVector<std::unique_ptr> is invalid, because QVector requires its members can be copied. This makes converting to unique_ptr a bit slow, since QVector<T *> will have to be converted to std_array<unique_ptr<T*>>. If the owner was being copied before, it will become uncopiable.  This can be a good thing, but it can also be extra work.

Moving a unique_ptr requires additional semantics. [http://www.cplusplus.com/reference/memory/unique_ptr/operator=/]



	Recommendation:
	Smart pointers are already prevalent in the codebase with the KisSP family, but more use of them should be encouraged.   d_ptrs should be wrapped in a QScopedPointer. The rule is: first Krita’s shared pointers, then Qt’s, do not use the std smart pointers.







Performance-related (rvalues)

Using move constructors and rvalues are very subtle and advanced features, but widely celebrated as successes of C++11.  The point of these features is to save on costs of copying memory when passing function arguments. The idea is that if one is OK allowing a function to steal, alter or destroy its argument, then that function can be called slightly faster if the argument is not copied at all, but instead simply performing an ownership transfer.  C++ programmers should already be aware that writing performant code where data gets shuffled around sometimes requires opening a can of ampersands.  These features will naturally stay confined to the corners of the codebase behind the scenes where they belong, and should be introduced when they are useful.


	Tutorial for rvalue references [http://thbecker.net/articles/rvalue_references/section_01.html]


	KDAB: speed up your Qt 5 programs using C++11 [https://www.kdab.com/wp-content/uploads/stories/slides/DD12/mutz-dd-speed-up-your-qt-5-programs-using-c++11.pdf]


	Slide 37 describes lvalue/rvalue types in exact detail [http://wiki.hsr.ch/PeterSommerlad/files/MeetingCPP2013_SimpleC++.pdf]  Also explains the terms “xvalue” and “prvalue” sometimes seen as well.





Move Constructors


	Recommendation:
	Use whenever it aids performance.







Reference Qualifiers (rvalue references)


	Recommendation:
	Use whenever it aids performance.








C++11 features mostly for template programming

Krita makes very light use of templates.  These features are useful, coming across them in the code base will add complexity for new learners, and have not been necessary so far.


	decltype : this is the most likely of these features to be useful, for example, in KisInputManager.


	static_assert


	variadic templates






Other C++11 features that will not be useful


	Threading support (Relies on C++ threading model; use Qt threading instead)


	shared_ptr and weak_ptr (Relies on C++ threading model; use KisSharedPointer instead)


	New literal types (already have QString/ki18n)


	Extended Unions (already have QVariant)









            

          

      

      

    

  

  
    
    


    Developing Features
    

    
 
  

    
      
          
            
  
Developing Features

There’s several stages to making a feature request become reality. The first section of this page goes over a set of common issues with making feature requests and gives hints on how to make a simple feature request into a proper proposal. The rest documents how a feature goes from a proposal to an actual reality.


Step 1: Making a proposal

“vOpenBlackCanvasMischiefPhotoPaintStormToolKaikai has a frobdinger tool! Krita will never amount to a row of beans unless Krita gets a frobdinger tool, too!”

The cool thing about open source is that you can add features yourself, and even if you cannot code, you talk directly with the developers about the features you need in your workflow. Try that with closed-source proprietary software! But, often, the communication goes awry, leaving both users with bright ideas and developers with itchy coding fingers unsatisfied.

This post is all about how to work, first together with other artists, then with developers to create good feature requests, feature requests that are good enough that they can end up being implemented.

For us as developers it’s sometimes really difficult to read feature requests, and we have a really big to-do list (600+ items at the time of writing, excluding our own dreams and desires). So, having a well written feature proposal is very helpful for us and will lodge the idea better into our conscious. Conversely, a demand for a frobdinger tool because another application has it, so Krita must have it, too, is likely not to get far.

Writing proposals is a bit of an art form in itself, and pretty difficult to do right! Asking for a copy of a feature in another application is almost always wrong because it doesn’t tell us the most important thing:

What we primarily need like to know is HOW you intend to use the feature. This is the most important part. All Krita features are carefully considered in terms of the workflow they affect, and we will not start working on any feature unless we know why it is useful and how it is exactly used. Even better, once we know how it’s used, we as developers can start thinking about what else we can do to make the workflow even more fluid!

Good examples of this approach can be found in the pop-up palette using tags, the layer docker redesign of 3.0, the onion skin docker, the time-line dockers and the assistants.

Feature requests should start on the forum, so other artists can chime in. What we want is that a consensus about workflow, about use-cases emerges, something our UX people can then try to grok and create a design for. Once the design emerges, we’ll try an implementation, and that needs testing.

For your forum post about the feature you have in mind, check this list:


	It is worth investigating first if the feature in question has similar functionality in Krita that might need to be extended to solve the problem. We in fact kind of expect that you have used Krita for a while before making feature requests. Check the manual first!


	If your English is not very good or you have difficulty finding the right words, make pictures. If you need a drawing program, I heard Krita is pretty good.


	In fact, mock-ups are super useful! And why wouldn’t you make them? Krita is a drawing program made for artists, and a lot of us developers are artists ourselves. Furthermore, this gets past that nasty problem called ‘communication problems’.


	Focus on the workflow. You need to prepare a certain illustration, comic, matte painting, you would be (much) more productive if you could just do — whatever. Tell us about your problem and be open to suggestions about alternatives. A feature request should be an exploration of possibilities, not a final demand!


	The longer your request, the more formatting is appreciated. Some of us are pretty good at reading long incomprehensible texts, but not all of us. Keep to the ABC of clarity, brevity, accuracy. If you format and organize your request we’ll read it much faster and will be able to spent more time on giving feedback on the exact content. This also helps other users to understand you and give detailed feedback! The final proposal can even be a multi-page PDF.


	We prefer it if you read and reply to other people’s requests than to start from scratch. For animation we’ve had the request for importing frames, instancing frames, adding audio support, from tons of different people, sometimes even in the same thread. We’d rather you reply to someone else’s post (you can even reply to old posts) than to list it amongst other newer requests, as it makes it very difficult to tell those other requests apart, and it turns us into bookkeepers when we could have been programming.




Keep in mind that the Krita development team is insanely overloaded. We’re not a big company, we’re a small group of mostly volunteers who are spending way too much of our spare time on Krita already. You want time from us: it’s your job to make life as easy as possible for us!

So we come to: Things That Will Not Help.

There’s certain things that people do to make their feature request sound important but are, in fact, really unhelpful and even somewhat rude:


	“Application X has this, so Krita must have it, too”.
	See above. Extra malus points for using the words “industry standard”, double so if it refers to an Adobe file format.

We honestly don’t care if application X has feature Y, especially as long as you do not specify how it’s used.

Now, instead of thinking ‘what can we do to make the best solution for this problem’, it gets replaced with ‘oh god, now I have to find a copy of application X, and then test it for a whole night to figure out every single feature… I have no time for this’.

We do realize that for many people it’s hard to think in terms of workflow instead of “I used to use this in ImagePainterDoublePlusPro with the humdinger tool, so I need a humdinger tool in krita” — but it’s your responsibility when you are thinking about a feature request to go beyond that level and make a good case: we cannot play guessing games!



	“Professionals in the industry use this”.
	Which professionals? What industry? We cater to digital illustrators, matte painters, comic book artists, texture artists, animators… These guys don’t share an industry. This one is peculiar because it is often applied to features that professionals never actually use. There might be hundreds of tutorials for a certain feature, and it still isn’t actually used in people’s daily work.



	“People need this.”
	For the exact same reason as above. Why do they need it, and who are these ‘people’? And what is it, exactly, what they need?



	“Krita will never be taken seriously if it doesn’t have a glingangiation filter.”
	Weeell, Krita is quite a serious thing, used by hundreds of thousands of people, so whenever this sentence shows up in a feature request, we feel it might be a bit of emotional blackmail: it tries to get us upset enough to work on it. Think about how that must feel.



	“This should be easy to implement.”
	Well, the code is open and we have excellent build guides, why doesn’t the feature request come with a patch then? The issue with this is very likely it is not actually all that easy. Telling us how to implement a feature based on a guess about Krita’s architecture, instead of telling us the problem the feature is meant to solve makes life really hard!

A good example of this is the idea that because Krita has an OpenGL accelerated canvas, it is easy to have the filters be done on the GPU. It isn’t: The GPU accelerated canvas is currently pretty one-way, and filters would be a two-way process. Getting that two way process right is very difficult and also the difference between GPU filters being faster than regular filters or them being unusable. And that problem is only the tip of the iceberg.





Some other things to keep in mind:


	It is actually possible to get your needed features into Krita outside of the Kickstarter sprints by funding it directly via the Krita foundation, you can mail the official email linked on krita.org for that.


	It’s also actually possible to start hacking on Krita and make patches. You don’t need permission or anything!


	Sometimes developers have already had the feature in question on their radar for a very long time. Their thinking might already be quite advanced on the topic and then they might say things like ‘we first need to get this done’, or an incomprehensible technical paragraph. This is a developer being in deep thought while they write. You can just ask for clarification if the feedback contains too much technobabble…


	Did we mention we’re overloaded already? It can easily be a year or two, three before we can get down to a feature. But that’s sort of fine, because the process from idea to design should take months to a year as well!




To summarize: a good feature request:


	starts with the need to streamline a certain workflow, not with the need for a copy of a feature in another application


	has been discussed on the forums with other artists


	is illustrated with mock-ups and example


	gets discussed with UX people


	and is finally prepared as a proposal


	and then it’s time to find time to implement it!


	and then you need to test the result.






Step 2: Triaging the proposal

This is strictly a developer task. What is done is that we identify how much work a proposal would need to be implemented. Since 2016 we use these groups to categorize wishbugs so we can plan them into a current release or select them for a fundraiser.

To fulfill this step, we need to have a full list which consolidated the ideas and requirements. A good feature request from step one will have these lined out.


	WISHGROUP: Pie-in-the-sky
	not going to happen, but it would be really cool.



	WISHGROUP: Big Projects
	needs more definition, maybe two, three months of work.



	WISHGROUP: Stretchgoal
	up to a couple of weeks or a month of work.



	WISHGROUP: Larger Usability Fixes
	maybe a week or two weeks of work.



	WISHGROUP: Small Usability Fixes
	half a day or a day of work.



	WISHGROUP: Out of scope
	too far from our current core goals to implement.



	WISHGROUP: Needs proposal and design
	needs discussion among artists to define scope first. A good proposal doesn’t need this.







Step 3: Discussing in irc/phab

Again, strictly a developer task. While nothing stops an adventurous programmer from just going in and implementing something, it helps to go to the #krita irc on Libera.Chat and tell us you’re working on it. Not because you need permission(Krita is open source after all), but we do want to be able to help you in your endeavours. Such help can include technical help, like where things are in the code, but also interface design help.

Some features, such as new frame types for animation, or multithreading on some part or the other also needs careful discussion so we know what is going to need changes.

Eventually, a phabricator task will be made to track the issue as well as including mockups. Branch progress is also discussed during the weekly meeting in the irc.



Step 4: Work in a feature branch

New feature branches are called ‘name/number-shortdescription’. Examples: “rempt/T379-resource-management”, “kazakov/hdr-support”, “wolthera/edgedetectionfilter”, “jounip/T8764-clone-frames”.

Originally this was lastname only, but some users have an endlessly long last name while others prefer using their kde identity name. The main purpose is to identify who is responsible for the work in the branch.

Work in a feature branch continues till all major elements are done. A review request is done over the whole branch. Sometimes, for UI purposes, people check out the branch to test it.

When the review is accepted, the branch is merged into master for further testing. When such a branch is merged, a mail needs to be sent to kimageshop@kde.org to notify everyone about this, you can do this automatically by adding ‘CCMAIL:kimageshop@kde.org’ to your merge commit.

As Krita’s nightlies are based on master that means a binary will be compiled for the master branch with the new feature in at most 24 hours.



Step 5: Documentation and demonstration

When a feature hits the master branch, an entry will be written for the draft branch of this very manual. In particular a reference manual entry will be written to ensure some documentation, some bigger features that interact with one another might also receive a tutorial.

The people who programmed or designed the feature are encouraged to help with this documentation process(as they know it best), but it is not mandatory. What is appreciated is that the issue or task is assigned to the manual team.

Similarly, demonstration videos or images are welcome, as they will be used for the release notes. The release notes for the next big version are available here [https://krita.org/en/krita-4-2-release-notes/], come help us with making the page look good!

Finally, upon release a stable branch is created for the master branch (often named Krita/versionnumber), and a release is made with the new feature.





            

          

      

      

    

  

  
    
    


    Optimize Image Processing with XSIMD
    

    
 
  

    
      
          
            
  
Optimize Image Processing with XSIMD


Contents


	Optimize Image Processing with XSIMD


	About SIMD


	Data alignment


	Fixed-size chunks


	Separate builds for each CPU


	Compilation targets


	Multiarch builds


	1. DLL-based approach


	2. Template-based approach






	Explicit scalar implementation of the code






	XSIMD Library


	Arithmetic operations


	Conditionals


	Gather-scatter


	Mixed-style






	Useful projects for Krita










About SIMD

SIMD (Single instruction, multiple data) is a type of parallel data processing where a single processor instruction can process multiple values. For this purpose the CPU incorporates special computational blocks that perform the most popular arithmetic operations in parallel. For example, using AVX blocks it can multiply 8 floating-point numbers by other 8 floating-point numbers at roughly the same “speed” [1] as it would multiply a couple of numbers using a standard instruction. Such speed increase is possible because these blocks have 8 separate physical pipelines that do the multiplication in parallel.


[image: ../_images/parallel_multiply_example.png]

_mm256_mul_ps is potentially 8 times faster than normal fmul instruction



All SSE/AVX instruction are available in C++ compiler using so-called “compiler intrinsics”. A very convenient reference for them can be found in this guide from Intel [https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html]. They have a bit weird naming, but it is usually enough just to understand the naming scheme. For example, multiplication intrinsic has at least 10 variants [2]:



	
	Single-precision multiplication (float):
	
	__m256 _mm256_mul_ps (__m256 a, __m256 b) — multiply 8 pairs of packed single-precision floating-point values stored in two 256-bit registers


	__m128 _mm_mul_ps (__m128 a, __m128 b) multiply 4 pairs of packed single-precision floating-point values stored in two 128-bit registers


	__m128 _mm_mul_ss (__m128 a, __m128 b) — multiply 1(!) pair of single-precision floating-point values stored in lowest 32-bits of two 128-bit registers










	
	Double-precision multiplication (double):
	
	__m256d _mm256_mul_pd (__m256d a, __m256d b) — multiply 4 pairs of packed double-precision floating-point values stored in two 256-bit registers


	__m128d _mm_mul_pd (__m128d a, __m128d b) — multiply 2 pairs of packed single-precision floating-point values stored in two 128-bit registers


	__m128d _mm_mul_sd (__m128d a, __m128d b) — multiply 1(!) pair of double-precision floating-point values stored in lowest 64-bits of two 128-bit registers










	
	32-bit signed integer multiplication (qint32):
	
	__m256i _mm256_mul_epi32 (__m256i a, __m256i b) — multiply 8 pairs of packed signed 32-bit integer values stored in two 256-bit registers


	__m128i _mm_mul_epi32 (__m128i a, __m128i b) — multiply 4 pairs of packed signed 32-bit integer values stored in two 128-bit registers










	
	32-bit unsigned integer multiplication (quint32):
	
	__m256i _mm256_mul_epu32 (__m256i a, __m256i b) — multiply 8 pairs of packed unsigned 32-bit integer values stored in two 256-bit registers


	__m128i _mm_mul_epu32 (__m128i a, __m128i b) — multiply 4 pairs of packed unsigned 32-bit integer values stored in two 128-bit registers















You don’t need to remember all the intrinsics by heart. It is usually enough to remember what features are available in the CPU and then use Intel’s guide linked above to find the proper intrinsic name and variant. Or use XSIMD library that hides all this boilerplate completely.

There is one thing you need to remember though, that is so-called “scalar” intrinsics. Look at functions _mm_mul_ss and _mm_mul_sd in the list above. Even though they are listed among “vector” instructions, they are not “vector”. They multiply a single pair of floating point numbers stored in the lowest bits of vector registers. Such instructions will be very important for us when we start implementing scalar versions of vector algorithms a bit later. The point is, _mm_mul_ss has exactly the same precision and rounding rules as its vector counterpart (_mm_mul_ps), so we can guarantee that the two versions of the algorithm generate exactly the same result.


Hint

The standard instruction for floating point multiplication is fmul from x87 FPU instruction set. All x87 FPU instructions use 80-bit precision and its rounding mode it controlled by a special rounding control register, which is usually set to to-nearest mode. But SIMD-based vector instructions use the exact precision of their operands (32 or 64 bits) and rounding is always set to to-nearest-even. It means that we should avoid mixing x87 FPU and SIMD instructions in the same algorithm, or we get inconsistent results!


Warning

Beware the C standard library functions, they may use x87 FPU instructions!





As we learned before, vector instructions allow doing 8-times more computations at roughly the same time. But why are they used so rarely in the real applications? The answer is, one needs to satisfy several very severe requirements to use them. Usually, it also involves a significant amount of boiler-plate code.

Requirements for SIMD usage:



	Data alignment. The data should preferably have strict alignment by 128/256-bit (for older CPUs).


	Fixed-size chunks. One instruction can process exactly 4 or 8 elements at a time; one cannot process 3 or 5 elements without doing (a lot of) extra work. Hence it is difficult to write generic and reusable algorithms


	Per-arch builds. At compile time we don’t know what instructions set will actually be supported by the user’s CPU: it might be SSE4, AVX or AVX2, we don’t know; therefore we need to compile multiple versions of our algorithm for each supported CPU







These requirements mean that we cannot just pass a random data to SIMD and get a 8-times improvement. We need to do a lot of preparatory work. The rest of the this manual will explain how to satisfy these three requirements.



Data alignment

In the original SIMD instruction set there were two instructions available: one for aligned memory access and one for unaligned:



	__m256 _mm256_load_ps (float const * mem_addr) — load eight 32-bit floating point values stored at mem_addr into a 256-bit register. The address at mem_addr must be 256-bit aligned, otherwise application will crash with SIGSEGV.


	__m256 _mm256_loadu_ps (float const * mem_addr) — same as above, but mem_addr is allowed to be unaligned.







In older CPUs (before Nehalem for Intel [https://en.wikipedia.org/wiki/Nehalem_(microarchitecture)] and before TODO:unknown for AMD) aligned version of the instruction was more efficient when dealing with aligned data than the unaligned one. Hence we had to write two different versions of the code, one for aligned data and one for unaligned. In modern Intel CPUs both instructions give exactly the same performance when passed with the aligned data, so it is considered safe to use the unaligned version all the time.


Caution


	TODO: Is it safe to always use unaligned access on ARM?


	TODO: Are we required to use element-aligned on ARM?






Please remember, that for better performance it is still recommended to make sure that all buffers are aligned to SIMD-word boundary (that is, 32 bytes for AVX and 16 bytes for SSE).



Fixed-size chunks

Even though we can partially ignore alignment issues with modern CPUs, we still cannot ignore the fact that the size of the chunks must be fixed.

Let’s consider the following example, where we need to process 10 pixels:


[image: ../_images/fixed_size_chunks_example.png]

_mm256_mul_ps will potentially read past the end of the allocated buffers



If we simply apply the vector instruction twice, we will read past the end of the allocated buffer, which will cause SIGSEGV.

In general there are three solutions for the problem:


	Solution 1: always allocate a buffer of “aligned” size, that is, always round-up buffer size to the next multiple of simd-word’s length



[image: ../_images/solution1_roundup_buffer_size.png]

Always allocate a bit more data to make the buffer size “aligned”



After processing you can just ignore the processed values at the tail of the buffer.

This approach is usually the best one of the three:



	you only need one (vector) version of the algorithm


	it is extremely efficient (you need minimal amount of ‘if’s or other boilerplate)







Though this solution is not always possible. Sometimes the buffer is provided by the caller and we know nothing about it, including where it ends.

As a rule of thumb, use this approach when you have full control over the buffer allocation and deallocation. For example, when you process some temporary buffer inside some self-contained algorithm. Just allocate the aligned buffer with “aligned” size and enjoy the speed!

We use this approach in KisBrushMaskVectorApplicator<...>::processVector. This function generates a dab of an auto-brush. To do that, it allocates a fully aligned buffer with xsimd::vector_aligned_malloc<float>(simdWidth), processes the full simdWidth of it, and then just ignores the values past the requested width of the brush.






	Solution 2: implement two versions of the algorithm, vector and scalar


If we have two versions of the algorithm, vector and scalar, then we can easily process the biggest part of the buffer with the vector version, and finish the tail in a one-by-one manner with the scalar one:


[image: ../_images/solution2_two_versions_of_the_algorithm.png]

Process the tail with the scalar version of the algorithm



The downside of this approach is that we need to implement the same algorithm twice(!). It is extremely time-consuming and error-prone, but it is still usually the default choice, since it allows us to work with buffers of any alignment or size.

The two algorithms should use exactly the same operations mathematically. Even floating-point precision and rounding should be exactly the same. Otherwise the rendering will have subtle artifacts (stair-like stripes aligned to 8-pixel boundaries).


Hint

As noted before, modern CPUs have two different floating-point computation blocks: x87 FPU and SSE scalar blocks. They have different precision and rounding rules. Make sure your scalar version of the algorithm does not use x87 FPU, even transitively via standard C library.



Rules of thumb:



	Always write a unittest that compares the results of vector and scalar versions of the algorithm (see KisCompositionBenchmark::checkRounding.+() tests for example). There  might be will be rounding errors in your algorithms.


	Avoid using standard C library functions in the scalar version of your algorithm



	standard C library is supposed to use x87 FPU by default


	the choice of the FPU engine depends on whether -ffast-math option is passed to the compiler. Usually, -ffast-math switches library functions to the SSE engine, but that is an “implementation defined” area.









	When having issues, check the assembly. The scalar version of the algorithm shouldn’t use any x87 FPU instructions, only _mm_..._ss instructions from SSE set.


	If your code generates stair-like artifacts aligned to 8-pixel border, check rounding again.



[image: Rounding artifacts example]






	Make sure that all ‘if’ conditions are exactly the same in both, vector and scalar algorithms.


Sometimes you will be tempted to do some fast-path optimization in the scalar version of the algorithm, which are not available in the vector version. Don’t do that! For example, when blending two pixels, if the source pixel is fully transparent you can just skip writing into the destination pixel. The problem is, you cannot do the same in the vector version, because the neighboring source pixels are not fully transparent. You cannot exclude a single pixel from a batch-write, so that will cause a write operation into the destination. In some cases such subtle difference will cause really hard to find bugs in rendering.

Basically, you need to always make sure that the fast-path optimization in scalar and vector algorithms are exactly the same, even if it means you have to remove some optimizations from the scalar version.











Here in Krita we use this “two versions” approach in composite ops. You can check an example in KoOptimizedCompositeCopy128.h:



	the main algorithm is implemented in class CopyCompositor128. It has two methods compositeVector() and compositeOnePixelScalar().


	these two functions are called from KoStreamedMath::genericComposite; this helper function handles both, alignment issues and scalar tail processing


	basically, KoStreamedMath::genericComposite splits processing into 4 stages:



	stage 1: calls compositeOnePixelScalar() until the dst buffer is aligned


	stage 2a: in case src and dst buffers have the same alignment, calls fully aligned version of compositeVector()


	stage 2b: in case src and dst buffers have different alignment, calls a special version of compositeVector() that expects dst buffer to be aligned, but src buffer not aligned


	stage 3: call compositeOnePixelScalar() to process the tail











Here is an illustration of what happens in KoStreamedMath::genericComposite:



	case 1: src and dst buffers have the same alignment



[image: ../_images/generic_composite_case1.png]

src and dst buffers have the same alignment








	case 2: src and dst buffers have different alignment



[image: ../_images/generic_composite_case2.png]

src and dst buffers have different alignment
















This approach looks extremely complicated (and it really is), but is solves all the SIMD problems on all possible CPUs, even the older ones. Therefore we use it in the most speed-critical part of Krita, in color composition.






	Solution 3: copy the tail into the temporary (aligned) buffer and process it using the vector version of the algorithm


This is quite an obvious solution, but we don’t use it anywhere in Krita. Copying the data into the temporary buffer and back is rather expensive, especially when the algorithm might be called for shorter chunks (e.g. for 10 pixels)










Separate builds for each CPU


Compilation targets

The term “cpu optimization” is usually rather confusing. It can be used in three different meanings:



	Compiler’s “target architecture”. An architecture, for which the compiler generates code. This architecture is selected by -march and -mtune compiler switches. -march allows the compiler to issue architecture specific instructions. It also enables the corresponding intrinsics. -mtune activates automatic optimizations (and vectorizations) of the code for the specified architecture.


For example, if we specify -march=nehalem, then _mm_mul_ps intrinsic will become available (since it is a part SSE), but _mm256_mul_ps will not (it is from AVX set). If we specify -march=sandybridge, then both intrinsic will become available.






	“Host architecture”. An architecture of the CPU where we compile Krita on. In most of the cases this architecture doesn’t matter. If the compiler supports generation of instructions for a specific instruction set at all (e.g. AVX), then it will generate them on any host CPU, even the older one.


Theoretically, you can instruct the compiler to build Krita for the “host architecture”, by passing -march=native -mtune=native, but it is not recommended, since it makes the binaries not portable.


Hint

Back in 2012 Krita also had an option to compile for the “host architecture”. That option was removed later in favor of multiarch builds of the critical code.








	“User’s CPU architecture”. An architecture of the CPU where the user will run Krita on.







Obviously, we cannot tell in advance what CPU the user will run Krita on. We can detect CPU capabilities only when Krita actually starts on user’s device. Therefore we need to have multiple versions of the hot-path algorithms, prebuilt for each possible CPU architecture and select the optimal version on Krita startup.

Here is Krita we prebuild code for 7 most popular target instruction sets:



	SSE2 — basic 128-bit floating-point and integer arithmetic


	SSSE3 — SSE2 + several shuffle instructions


	SSE4.1 — SSSE3 + integer conversions and rounding instructions


	AVX — SSE4.1 + 256-bit floating-point (only!) arithmetic and shuffles


	AVX2+FMA — AVX + 256-bit integer arithmetic and fused-multiply-add (used a lot in compositioning code for implementation of lerp function)









Multiarch builds

There are two standard approaches for multiarch builds:


1. DLL-based approach

The easiest approach assumes that you build the same .dll or .so library multiple times, one for each supported architecture. Then, on application launch, you load the library that fits best to the current CPU. GNU ld also has some special features that allow automatically resolve symbols on a per-architecture basis. GNU libc uses this approach.

Here in Krita we do not use this approach:



	it causes too much code to be duplicated between the cloned libraries


	relying on the linker features is not a portable approach









2. Template-based approach

In Krita we use a template based approach. It is very explicit and provides full control over how implementations are generated and selected.

Let’s consider an example of KoOptimizedPixelDataScalerU8ToU16. It is a simple class that provides optimized routines for converting pixels between uint8 and uint16 pixel formats. We use this class to increase precision of colorsmudge brush and avoid the well-known “color drift on low opacity” bug.

Firstly, we need to declare an abstract interface class that will be available to the user:

// file: KoOptimizedPixelDataScalerU8ToU16Base.h

class KRITAPIGMENT_EXPORT KoOptimizedPixelDataScalerU8ToU16Base
{
public:
    // ...
    virtual void convertU8ToU16(const quint8 *src, int srcRowStride,
                                quint8 *dst, int dstRowStride,
                                int numRows, int numColumns) const = 0;

    virtual void convertU16ToU8(const quint8 *src, int srcRowStride,
                                quint8 *dst, int dstRowStride,
                                int numRows, int numColumns) const = 0;
    // ...
};





The class does nothing serious other than declares two pure virtual methods that will be used by the colorsmudge brush later.

Then we need to add a header file with the class that actually implements this interface using SSE/AVX instructions:

// file: KoOptimizedPixelDataScalerU8ToU16.h

template<typename _impl>
class KoOptimizedPixelDataScalerU8ToU16 : public KoOptimizedPixelDataScalerU8ToU16Base
{
public:
    // ...
    void convertU8ToU16(const quint8 *src, int srcRowStride,
                        quint8 *dst, int dstRowStride,
                        int numRows, int numColumns) const override
    {
        // ... very clever implementation of U8->U16 scaling using SSE/AVX is skipped ...
    }

    void convertU16ToU8(const quint8 *src, int srcRowStride,
                        quint8 *dst, int dstRowStride,
                        int numRows, int numColumns) const override
    {
        // ... very clever implementation of U16->U8 scaling using SSE/AVX is skipped ...
    }
    // ...
};





Pay attention to the only template parameter of the class. The class is parameterized with “architecture”, which is a simple class provided by XSIMD. We don’t use this template parameter inside the class. We only need it to create multiple copies of the class without violating ODR-rule.

In the next step we need to create a FactoryImpl class. It is actually the class that will be copied multiple times.

// file: KoOptimizedPixelDataScalerU8ToU16FactoryImpl.h

class KRITAPIGMENT_EXPORT KoOptimizedPixelDataScalerU8ToU16FactoryImpl
{
public:

    /// declare a templated factory method that is parameterized
    /// by the CPU architecture

    template<typename _impl>
    static KoOptimizedPixelDataScalerU8ToU16Base* create(int);
};





// file: KoOptimizedPixelDataScalerU8ToU16FactoryImpl.cpp

/// define a full template specialization for the factory
/// method for `xsimd::current_arch` architecture

template<>
KoOptimizedPixelDataScalerU8ToU16Base *
KoOptimizedPixelDataScalerU8ToU16FactoryImpl::create<xsimd::current_arch>(
    int channelsPerPixel)
{
    return new KoOptimizedPixelDataScalerU8ToU16<xsimd::current_arch>(
        channelsPerPixel);
}





FactoryImpl class has the only method. This method creates the scaler object and returns it via the abstract interface. Pay attention that create() method has no generic template implementation. Its only implementation is fully specialized with “magic” type xsimd::current_arch. xsimd::current_arch is a special placeholder type that points to the “desired target” architecture type, when the .cpp file is compiled for multiple architectures.

Now we need to actually compile KoOptimizedPixelDataScalerU8ToU16FactoryImpl.cpp for all targets. To do that we should use a special CMake macro:

// file: CMakeLists.txt

if(HAVE_XSIMD)

    # create 6 copies of the file and compile each one
    # with the corresponding compiler flags

    ko_compile_for_all_implementations(__per_arch_rgb_scaler_factory_objs
                                       KoOptimizedPixelDataScalerU8ToU16FactoryImpl.cpp)
else()

    # in case XSIMD is not available, just compile the .cpp file once
    # with the default compiler options (x86_64)

    set(__per_arch_rgb_scaler_factory_objs KoOptimizedPixelDataScalerU8ToU16FactoryImpl.cpp)
endif()

# ...

set(kritapigment_SRCS
    # ...
    ${__per_arch_rgb_scaler_factory_objs}
    # ...
)





Now we have six explicit intantiations of KoOptimizedPixelDataScalerU8ToU16FactoryImpl class. One for each target architecture. The only thing left is to implement runtime selection of the proper instantiation. To do that, let’s implement a real Factory class:

// file: KoOptimizedPixelDataScalerU8ToU16Factory.h

class KRITAPIGMENT_EXPORT KoOptimizedPixelDataScalerU8ToU16Factory
{
public:
    static KoOptimizedPixelDataScalerU8ToU16Base* createRgbaScaler();
};





// file: KoOptimizedPixelDataScalerU8ToU16Factory.cpp

KoOptimizedPixelDataScalerU8ToU16Base *KoOptimizedPixelDataScalerU8ToU16Factory::createRgbaScaler()
{
    return createOptimizedClass<
            KoOptimizedPixelDataScalerU8ToU16FactoryImpl>(4);
}





The Factory class calls a special function createOptimizedClass(), which detects the current CPU architecture and calls the proper instantiation of the FactoryImpl class to create the scaler object.

The usage of the optimized class is very simple:

/// detect the current CPU capabilities, select the best-fit `FactoryImpl`
/// factory and create the scaler object that is optimized for the current CPU

KoOptimizedPixelDataScalerU8ToU16Base *scaler =
    KoOptimizedPixelDataScalerU8ToU16Factory::createRgbaScaler();

/// use the scaler as usual...

scaler->convertU8ToU16(...);






Hint

Why do we have two factory objects, FactoryImpl and Factory?

The main reason is that we really don’t want to export a templated class from a .so/.dll library. Exporting templates is not portable, so we encapsulate all the templates behind the wall of a Factory class.



Some notes about writing efficient processing functions:



	when processing pixels we should perform as few virtual calls as possible


	the best way to minimize the number of virtual calls is to use “row-stride” approach, like convertU8ToU16() does


void convertU8ToU16(const quint8 *src, int srcRowStride,
                    quint8 *dst, int dstRowStride,
                    int numRows, int numColumns) const override










	when implementing your own algorithms just reuse the signature of convertU8ToU16()










Explicit scalar implementation of the code

As we discussed above, we need to generate a version of an algorithm for every target CPU. Usually, we also need to provide one more version of the code, which is fully scalar, i.e. doesn’t use any SIMD instructions. This scalar version is used used in the following cases:



	no XSIMD library is not found during the compilation of Krita


	the CPU Krita runs on doesn’t support any SIMD we know


	the user emplicitly disabled SIMD optimizations in ‘Performance’ tab in Krita’s ‘Preferences’







This extra version is generated by passing a special architecture in the template parameter xsimd::generic. Depending on how you code implements the SIMD optimization, you would either need to handle this architecture manually or not.

The code in `KoOptimizedPixelDataScalerU8ToU16 uses explicit checks for macros like XSIMD_WITH_AVX2 and XSIMD_WITH_NEON64, therefore, it does not need any special handling for the “scalar” xsimd::generic architecture. For xsimd::generic all these macros are undefined, hence the code automatically folds into plain old C-for-loop.

If your code is more abstract, i.e. delegates all the architecture dispatching to XSIMD library (the library itself is described below), then you need to add a custom implementation for xsimd::generic arcitecture. You can check the example of how it is done in KoAlphaMaskApplicator:

template<typename _channels_type_,
        int _channels_nb_,
        int _alpha_pos_,

        // implementation that will be passed by `xsimd::current_arch`
        typename _impl,

        // a dummy parameter to make `std::enable_if` work
        typename EnableDummyType = void

        >
struct KoAlphaMaskApplicator : public KoAlphaMaskApplicatorBase
{
    void applyInverseNormedFloatMask(quint8 *pixels,
                                    const float *alpha,
                                    qint32 nPixels) const override {
        // ... default implementation that uses plain C-for-loops only ...
    }
    // ... skipped unrelated...
};

#if defined(HAVE_XSIMD) && !defined(XSIMD_NO_SUPPORTED_ARCHITECTURE)

#include "KoStreamedMath.h"

template<typename _impl>
struct KoAlphaMaskApplicator<
        quint8, 4, 3, _impl,

        // enable this implementation only when it is **not** `xsimd::generic`
        typename std::enable_if<!std::is_same<_impl, xsimd::generic>::value>::type

        > : public KoAlphaMaskApplicatorBase
{
    void applyInverseNormedFloatMask(quint8 *pixels,
                                    const float *alpha,
                                    qint32 nPixels) const override
    {
        // ... actual implementation of SIMD algorithm using XSIMD ...
    }
    // ... skipped unrelated...
};








XSIMD Library

All we did before was just a preparation for the actual work. Now we need to write the actual SIMD code.

Here in Krita we use a special library XSIMD [https://github.com/xtensor-stack/xsimd]. It wraps all the compiler intrinsics into convenient C++ classes. The heart of XSIMD is xsimd::batch<type, arch> class. It behaves as if it were a simple arithmetic type, but processes multiple values at once.

Example:

/// Define convenience types to manage vector batches.
/// `_impl` is a template parameter that is passed via `xsimd::current_arch`
/// by the per-arch build script. The size of the vector is defined
/// by the actual architecture passed to it.

using uint_v = xsimd::batch<unsigned int, _impl>;
using float_v = xsimd::batch<float, _impl>;

// load pixels into a vector register

uint_v data_i = uint_v::load_unaligned(reinterpret_cast<const quint32 *>(pixels));

// extract alpha channel from the pixels and convert it to float

const float_v pixelAlpha =
    xsimd::to_float(xsimd::bitwise_cast<int_v>(data_i >> 24U));





In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath:



	batch type

	element type

	num elements (AVX2)

	num elements (AVX)

	num elements (SSE2)





	int_v

	qint32

	8

	8*

	4



	uint_v

	quint32

	8

	8*

	4



	float_v

	float

	8

	8

	4







	— even though the first version of AVX doesn’t support integer packs, XSIMD implements that by combining two(!) SSE2 registers into one batch. This way we can easily convert int_v into float_v back and forth.





Arithmetic operations

Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Let’s consider example from KoAlphaMaskApplicator::fillGrayBrushWithColor, which fills the alpha mask of the RGBA8 brush with provided color (all the inline comments assume the current architecture is AVX2):

/// a convenience batch for 8 copies of the provided brush color
/// (please note that the constructor accepts a plain quint32 value,
/// this value is loaded into all 8 slots of the batch)

const uint_v brushColor_i(*reinterpret_cast<const quint32*>(brushColor) & 0x00FFFFFFu);

/// a convenience batch of 8 values `0xFF`

const uint_v redChannelMask(0xFF);

for (int i = 0; i < block1; i++) {

    const int vectorPixelStride = numChannels * static_cast<int>(float_v::size);

    /// Load RGBA8 pixels into the brush. If `brush` pointer is aligned to 256 bits,
    /// the speed it a little bit better, but it is not strictly necessary, since we
    /// use `load_unaligned` call.

    const uint_v maskPixels = uint_v::load_unaligned(reinterpret_cast<const quint32*>(brush));

    /// calculate the alpha channel value of each pixel

    const uint_v pixelAlpha = maskPixels >> 24;

    /// calculate the red channel value of each pixel (the brush is guaranteed to be
    /// grayscale here, that is, all color channels have the same value)

    const uint_v pixelRed = maskPixels & redChannelMask;

    /// calculate the final alpha value of the brush

    const uint_v pixelAlpha_i = multiply(redChannelMask - pixelRed, pixelAlpha);

    /// combine alpha value and the provided painting color

    const uint_v data_i = brushColor_i | (pixelAlpha_i << 24);

    /// store the result into the brush memory buffer

    data_i.store_unaligned(reinterpret_cast<typename uint_v::value_type *>(dst));

    dst += vectorPixelStride;

    /// we have processed `float_v::size` pixels at once, so advance the pointer
    /// (for AVX2 `float_v::size` is `8`)

    brush += float_v::size;
 }







Conditionals

Conditionals for vectorized values look very different from normal values. You can compare two batches, but instead of getting a single boolean you get a batch of booleans. This resulting boolean batch is called “a mask” and you can analyze it afterwards.

Let’s consider an example from KoOptimizedCompositeOpAlphaDarken.h. Alpha-darken blending mode has a lot of conditionals inside, so it is a very nice example. Here is a short excerpt from it:

/// check what dst pixels have zero alpha value, the result is
/// written into a mask of type `float_m`

const float_m empty_dst_pixels_mask = dst_alpha == zeroValue;

/// check if **all** dst pixels have null alpha

if (!xsimd::all(empty_dst_pixels_mask)) {

    /// it seems like there are some pixels with non-zero alpha...
    /// check if all pixels have non-zero alpha

    if (xsimd::none(empty_dst_pixels_mask)) {

        /// if all destination pixels have non-zero alpha, just
        /// blend them as usual

        dst_c1 = (src_c1 - dst_c1) * src_alpha + dst_c1;
        dst_c2 = (src_c2 - dst_c2) * src_alpha + dst_c2;
        dst_c3 = (src_c3 - dst_c3) * src_alpha + dst_c3;
    }
    else {

        /// if at least one pixel has zero alpha, we cannot use its
        /// `dst_c1` value, because it is undefined; we need to
        /// conditionally overwrite such pixels with `src_c1`

        dst_c1 = xsimd::select(empty_dst_pixels_mask, src_c1, (src_c1 - dst_c1) * src_alpha + dst_c1);
        dst_c2 = xsimd::select(empty_dst_pixels_mask, src_c2, (src_c2 - dst_c2) * src_alpha + dst_c2);
        dst_c3 = xsimd::select(empty_dst_pixels_mask, src_c3, (src_c3 - dst_c3) * src_alpha + dst_c3);
    }
}
else {

    /// if **all** dst pixels have null alpha, just overwrite them

    dst_c1 = src_c1;
    dst_c2 = src_c2;
    dst_c3 = src_c3;
}







Gather-scatter

TODO: this chapter is not written yet. Please check implementation of FastRowProcessor<KisCurveMaskGenerator> and PixelWrapper<quint16, impl>::read for examples.



Mixed-style

Sometimes you may want to mix XSIMD code and raw compiler intrinsics. In some cases, it may give much better performance, especially if a specific CPU instruction exists for your operation. In such cases you can just access the underlying __m128 or __m256 type of the batch via .data member.

Let’s consider an example from KoOptimizedPixelDataScalerU8ToU16:

// a pack of 16 quint16 values stored in a 256-bit AVX2 register
using uint16_avx_v = xsimd::batch<uint16_t, xsimd::avx2>;

// a pack of 16 quint8 values stored in a 128-bit SSE register
using uint8_v = xsimd::batch<uint8_t, xsimd::sse4_1>;


for (int i = 0; i < avx2Block; i++) {

    /// load a pack of 16 8-bit integer values using SSE4 instruction

    const uint8_v x = uint8_v::load_unaligned(srcPtr);

    /// convert them into 16 16-bit integers (and store in a
    /// wider register) using AVX2 instruction

    uint16_avx_v y(_mm256_cvtepu8_epi16(x));

    /// scale the value and add entropy to the lower bits to make
    /// rounding smoother using AVX2 instruction

    const uint16_avx_v y_shifted = y << 8;
    y |= y_shifted;

    /// store the value using AVX2 instruction

    y.store_unaligned(
         reinterpret_cast<typename uint16_avx_v::value_type *>(dstPtr));

    srcPtr += channelsPerAvx2Block;
    dstPtr += channelsPerAvx2Block;
}





This approach uses a custom instruction provided by the CPU to optimize the conversion process. It gives a huge speed benefit for the color smudge brush, where this scaler is used. The main problem of this approach is that you need to implement the custom code for every platform we support, including NEON and NEON64.




Useful projects for Krita


	[easy, small] Optimize lightness mode for Krita brushes


It needs changes in the following places:



	KoColorSpace::modulateLightnessByGrayBrush()


	KoColorSpace::fillGrayBrushWithColorAndLightnessWithStrength()


	KoColorSpace::fillGrayBrushWithColorAndLightnessOverlay()







The project is really nice and self-contained. You can follow the example of KoColorSpaceAbstract::m_alphaMaskApplicator that does exactly the same thing.






	[easy, big] Optimize masking brush compositioning


You basically need to rewrite a single class KisMaskingBrushCompositeOp. The problem is that the class is parameterized with a dozen of composition functions. Theoretically, those functions are arithmetic, so they can be just passed with xsimd’s batches, but you would probably need to define custom KoColorSpaceMathsTraits for them.






	[difficult, small] Optimize gradients


The project basically needs to optimize KoCachedGradient and all the places where it is used. The project might be a bit complicated, because it needs to use gather/scatter functionality, which is a bit tricky.






	[easy, small, depends on the previous three] Optimize brush textures


Basically, you needs to rewrite KisTextureOption::apply to use the code of the previous three projects to do batch-processing.






	[very difficult, big] Scale predefined brushes with vectorized instructions


In this project you needs to rewrite KisQImagePyramid class to use custom scaling algorithm instead of relying on QImage. We know that QImage internally uses SSE/AVX instructions for scaling, but we are required to use RGBA8 mode for that. And our brushes are usually GrayA8 or even Alpha8, so we have huge overhead on allocations, copies and conversions (confirmed by VTune).








Footnotes



[1]
The term “speed” here is am intentional simplification. The real “speed” of instructions is usually measured in two values, latency and throughput.



[2]
Actually, it has much more variants, one of each integer size, sign-ness variant and register width.







            

          

      

      

    

  

  
    
    


    Optimizing tips and tools for Krita
    

    
 
  

    
      
          
            
  
Optimizing tips and tools for Krita


Hot Spots


	thumbnails are recalculated a lot


	the histogram docker calculates even when hidden


	brush outline seems slow


	the calculation of the mask for the autobrush is very slow and doesn’t cache anything


	caching a whole row or column of tiles in the h/v line iterators should speed up things a lot


	tile engine 1 has the BKL; tile engine 2 cannot swap yet and isn’t optimized yet


	projection recomposition doesn’t take the visible area into account


	pigment preloads all profiles (startup hit)


	gradients are calculated on load, instead of being associated with a PNG preview image that is cheap to load






Tools


Valgrind


Tips

You can tell callgrind to focus only on the part of the code you want to optimize. This results in cleaner data.  For example, you may want to only monitor the performance when drawing a stroke. Unless the thing you’re trying to optimize is the program startup, you can tell valgrind to run with the logging, or instrumentation, turned off at start:

valgrind  --tool=callgrind --instr-atstart=no krita

Instrumentation can then be activated and deactivated with callgrind_control. To begin performance monitoring:

callgrind_control -i on

And then to end it:

callgrind_control -i off

I usually write a few aliases in my .bashrc  (or .zshrc):

alias callgrind="valgrind --tool=callgrind --instr-atstart=no"
alias callgrind-on="callgrind_control --instr=on"
alias callgrind-off="callgrind_control --instr=off"








Sysprof



mutrace

mutrace [http://0pointer.de/blog/projects/mutrace.html] is a tool that count how much time is spend waiting for a mutex to unlock.




Easy optimization

As soon as you see slow code, try to have a look at the code to see if we
aren’t creating a lot of unnecesserary objects, 90% of the time slow code is
caused by this (the remain 10% are often caused by a lot of access to the
tilesmanager, like with random accessor)

For instance:

Avoid:


for(whatever)
{
    QColor c;
    ...
}








Do:


QColor c;
for(whatever)
{

}








It might seems insignificant, but really it’s not, on a loop of a milion of
iterations, this is expensive as hell.

An other example:

Avoid:


for(y = 0 to height)
{
    KisHLineIterator it = dev->createHLineIterator(0, y, width);
    for(whatever)
    {
        ...
    }
}








Do:


KisHLineIterator it = dev->createHLineIterator(0, 0, width);
for(y = 0 to height)
{
    for(whatever)
    {
        ...
    }
    it.nextRow(); // or nextCol() if you are using a VLine iterator
}










Vector instructions

Krita takes heavy advantage of the Vc [https://github.com/VcDevel/Vc] library to speed up its brush strokes with CPU vector instructions.  If you are planning to work with that library, it is worth reading through its documentation.

There are more general introductions to what vector instructions are for, and how they work here.



	Reference about MMX on Intel’s website [http://developer.intel.com/design/archives/processors/mmx/].


	Fundamentals of Media Processor Designs [http://www.cise.ufl.edu/~peir/cda6159/media12.pdf]: introduction to the use of MMX/SSE instructions.


	Software Optimization Guide for AMD64 [http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF].


	STL like programming but using MMX/SSE{1,2,3} when available [http://www.pixelglow.com/macstl/].









Profile guided optimization

Profile guided optimization is something else though. It is a special way of compiling and linking, that the compiler and linker use profiling information to know how best to optimize the code. So code that is used a lot is compiled with -O3 (the most optimizations), while code that is not used a lot gets -Os (to take less space), and so forth. This is a very useful technique that was not available on Linux until last year, and the news today is that Firefox now builds properly with it and there is a nice noticeable speed improvement for Linux users.


	source:
	https://linux.slashdot.org/comments.pl?sid=2117150&cid=35987784



	wikipedia:
	https://en.wikipedia.org/wiki/Profile-guided_optimization





g++ -O3 -march=native -pg -fprofile-generate ...
// run my program's benchmark
g++ -O3 -march=native -fprofile-use ...







Links


	Design for Performance [https://es.scribd.com/document/53483851/Design-for-Performance]: great read about performance optimization (aimed at game developers, but many tricks apply for Krita).


	TCMalloc [http://goog-perftools.sourceforge.net/doc/tcmalloc.html]: a malloc replacement which make faster allocation of objects by caching some reserved part of the memory.


	Optmizing CPP [http://www.agner.org/optimize/optimizing_cpp.pdf]: extensive manual on writing optimized code.








            

          

      

      

    

  

  
    
    


    Google Summer of Code
    

    
 
  

    
      
          
            
  
Google Summer of Code

Every summer Google puts on a program that helps university developers get involved with the open source community. This is known as Google Summer of Code (GSoC).
Krita has always participated in GSoC through the KDE community. For more information you can take a look at the gsoc website [https://summerofcode.withgoogle.com/].


How to participate as a student?

Submitting a resumé or CV isn’t how this program works. For you to be picked, you need to be involved with the Krita
community early and show you have some capacity to do programming. The summer program involves focusing on one project.
You will have a mentor assigned to help learn the ropes. Here [https://community.kde.org/GSoC/2021/Ideas#Krita] are some potential project ideas for 2021, for other years you can find them on this page [https://community.kde.org/GSoC] (navigate to the specific year and find Krita). If there is another project
that you want to see, you can also propose your own. Use these guidelines [https://community.kde.org/GSoC#Student_proposal_guidelines] to help formulate ideas.
We’ve mentored around half a dozen students every year since GSoC started. Many students enjoyed their work and continue to be involved; perhaps your mentor will be a past GSoC student.



What is expected from you before participating


	A basic understanding of git, which would include pulling and pushing code, create branches and rebase commits.


	A fair understanding of c++ and its ecosystem. (Ecosystem here means tools like cmake, make, gcc, gdb and valgrind).


	Knowing how to work with Qt is not mandatory but would be helpful.


	You should be able to navigate the codebase, using an IDE like Qt Creator is preferred.






Before starting to work on a Proposal


	Build Krita from source.


	Try fixing a bug or implement a wish. If you are unable to find something to work on, don’t hesitate to ask us. Someone would surely help you.


	If you are picking something from the list ask whether someone has already picked that idea or not.


	If you are proposing an idea of your own, please do discuss about that with us. We need to see whether the project is viable or not before starting out.


	Whatever you are onto, please communicate before proceeding.






How to create a proper proposal?


	Divide your proposal into separate sections as directed by the KDE student proposal guidelines [https://community.kde.org/GSoC#Student_proposal_guidelines].


	The most important parts are the Goals, Implementation and the Timeline, pay attention to them.


	Goals are the requirements of the project, the features introduced and the bug fixed from the perspective of an user.


	Implementation, as the name says should tell us how are you going to implement the requirements. Put the classes or methods you are going to use, mockups of the UIs here.


	TimeLine would indicate how much time would you devote behind each feature you would be working on. Beware this would later become the yardstick for evaluations.




Tips:


	Start as early as possible, that way you could get most feedback.


	Don’t have more than you can chew, it is far better to put what you think is achievable inside 3 months.


	Allocate a bit buffer time, things could go wrong, better to be prepared.


	Don’t forget to write documentation, the features should be well documented in the manual.


	Wherever you see, you could add tests, please do add that, most of the times it is better to write the tests first.






How do I ensure that I get selected?


	Communicate, GSoC is half communication.


	Show that you can code independently by fixing bugs or implementing wishes.


	Know whom to ask for help and when to ask, neither everyone knows everything nor everyone is available all the time.


	Even if you do all of them we can’t exactly ensure that you will be selected, it all depends on how many slots Google allocates for KDE.






Done with the proposal, what should I do now?


	Try fixing some more bugs or implement a wishlist item.


	If anything is missing from the manual, do make a Merge Request to it.


	Help other students with their proposal, GSoC is not a competetion.






I am selected what now?


	Create a Phabricator Task with the requirements and implementation details of your project.


	If you don’t have a developer account already, request for one.


	Add your blog to KDE Planet.


	Create a new branch which would refer to the Phabricator Task with a name like, TXXX-<task_name>.


	Create a status report page at https://community.kde.org/GSoC/<year>/StatusReports where you would be listing all the commits and blog posts. This would be sent to Google as the work product.


	Start hacking.






Where to ask for help?


	The best place would be our IRC channel which would be #krita on Libera.Chat.


	The second best place would be our mailing list [https://mail.kde.org/mailman/listinfo/kimageshop].


	Keep in mind that the team is spread over 5 continents and most of the time, weekends are awkwardly quiet.


	Any kind of private communication is discouraged, whatever you need to ask, ask in the public channels, unless required.








            

          

      

      

    

  

  
    
    


    Advanced Merge Request Guide
    

    
 
  

    
      
          
            
  
Advanced Merge Request Guide

Since April 2019, we’re using Gitlab to review merge requests and patches to the code. Check Forking on Gitlab on how to start with making a merge request.


When to make a merge request

There’s three times you need to make merge requests.


	When you do not have commit access.


	When the change you are making is huge, like with feature development, large refactors, complex bugfixes. For these we do not fork, but instead make a branch in the main repository in the following format: name/number-shortdescription. Check Developing Features for more information.


	When you are not sure about whether what you did is correct. It is common within the Krita community that even developers with commit access will have a weaning period in which they still make merge requests for each change as they’re getting comfortable with the codebase. It is not mandatory to do so at this point, but requests are the best way for us to help one another with writing good code.






Checklist for review

Here’s a quick checklist that is gone over when reviewing patches. While some requests require specialist knowledge, these items are so universal that anyone who knows how to check them can do so and comment on them. Feel free to do this yourself on open requests [https://invent.kde.org/graphics/krita/-/merge_requests?scope=all&state=opened], we welcome it!

Also check out the manual for reviewing merge requests in Gitlab [https://invent.kde.org/help/user/project/merge_requests/index.md].


	Does the code build
	Most important check. Apply the patch locally and build it. If it doesn’t build, the patch will not be accepted at all.



	Does it not crash?
	Basically, build the patch, run Krita, and check if the functions associated doesn’t crash. If it does, make a backtrace and post it in the review.



	Does it leak memory?
	

	Does the patch break tests?
	

	CPP features used.
	Is the usage of CPP in accordance with HACKING and the Modern C++ usage guidelines for the Krita codebase guidelines? So for example, is auto not used outside of the single case we accept it?



	Is the code in conformance with KDE/Krita style?
	Check the HACKING file for directions.



	Are the commit messages sensible?
	There’s several guides for this, but in general, try to make sure that the commit messages actually explain what you did.


	https://github.com/RomuloOliveira/commit-messages-guide






	Does the patch make sense.
	This is in the category of specialist knowledge, but you can apply some common sense here. If a patch for a filter also adjusts the resource management, you can ask yourself why this would be necessary. Furthermore, does the patch actually fix the thing it says it is fixing? These are not easy checks to make, but important things to consider when looking at the patch.





Requests that need changes to them need to be labeled with needs-changes. Requests that are accepted should be labeled accepted. This is to ensure we can figure out which requests are in need of review. Requests that need to be reviewed need to lack both labels.





            

          

      

      

    

  

  
    
    


    Python Developer Tools
    

    
 
  

    
      
          
            
  
Python Developer Tools

For working with Krita’s Python code, there are a couple of tools for running unit tests and code checks.


Contents


	Python Developer Tools


	Setup


	Code Checks


	Unit Tests










Setup

To set up a Python environment for running code checks, unit tests etc, it is recommended to use a Python virtual environment for installing the needed Python packages. For this, install virtualenwrapper from your package manager or follow the installation instructions [https://virtualenvwrapper.readthedocs.io/en/latest/install.html/]. It is also possible to install the needed Python packages directly into your system.

To create a virtual environment for Python 3 with virtualenwrapper, run:

mkvirtualenv krita -p /usr/bin/python3





This will create a virtual environment called krita and activate it. You will see that your command line now starts with (krita) to indicate the active virtual environment.

Now change into your Krita git repository install the needed dependencies into the environment:

pip install --upgrade -r dev-tools/python/dev-requirements.txt





You can rerun this command to update the packages should the version numbers in the requirement file get updated.

To get out of the virtual environment, type:

deactivate





And to get back into the virtual environment, type:

workon krita







Code Checks

The code checker follows Python’s official style guide, PEP8 [https://www.python.org/dev/peps/pep-0008/].

To run codechecks on all Python files, type:

flake8 .





Or limit to a specific directory or file:

flake8 plugins/python/plugin_importer/







Unit Tests

To run all Python unit tests, type:

pytest .





Or limit to a specific directory, file, or test:

pytest plugins/python/plugin_importer/tests/test_plugin_importer.py::PluginImporterTestCase::test_zipfile_doesnt_exist





See Pytest’s Getting Started [https://docs.pytest.org/en/latest/getting-started.html] documentation for more information about pytest in general.

Unit tests for Python plugins should reside in a tests folder inside the plugin’s folder. See the plugin_importer plugin for example unit tests. Note that in order to be able to import Krita’s Python plugins outside of Krita in the unit test setup, there is a mock krita module that will return mock objects for any attribute names so that importing krita and registering plugins etc. become no-ops. Thus, it’s only possible to test code units that are independent of Krita-related functions. Another caveat is that the mock krita module doesn’t work with wildcard imports (from krita import *), but those should be avoided anyway.





            

          

      

      

    

  

  
    
    


    Introduction to Quality Assurance
    

    
 
  

    
      
          
            
  
Introduction to Quality Assurance

We are users and developers systematically working on increasing quality of Krita and the process of it’s development. We help sustain the self-auditing culture of Krita’s community.

We


	Methodically assess functionality, usability and security.


	Hunt for bugs and cater for bugs already captured.


	Aid in quality management. Create tools to make developer’s life easier.





How To Help?

The quality assurance field is really broad and diverse and we are always looking for people of all skills and talents. Below you will find a list of opportunities to help, so you can dive right into it. Also, don’t forget to visit us on the IRC, we will be happy to meet you.


Bug Triaging

There is a great amount of incoming bug reports, more than the core team can handle. We are looking for volunteers who would go through the bug tracker and handle the reported bugs. This includes:


	Determining if a bug is really a bug or a new feature request


	Confirming bugs by reproducing


	Guiding reporters to provide all the information needed to fix the bug


	(Optional) Providing logs, backtraces, core dumps





Get Started


	Reporting Bugs provides general information about bug reports and guidance for their creation


	Krita-specific guide to Triaging Bugs





See also


	Guide to Developing Features


	Hints for user support also apply here: Introduction to User Support


	Docs for gathering logs, backtraces, etc.


	https://docs.krita.org/en/KritaFAQ.html?highlight=mingw#how-can-i-produce-a-backtrace-on-windows


	https://docs.krita.org/en/reference_manual/dockers/log_viewer.html













Beta Testing

To validate an upcoming stable version will work as expected, there is the beta version. You can help by dowloading the beta, trying it out and sharing your feedback. Every beta comes with a survey, which will ask for some basic information about your setup (all anonymized, of course) and guide you through testing latest features and bug fixes. You can find link to the survey on Krita’s welcome page.

To know when there is a new beta, watch out for the news on the welcome page, or in the News section on Krita website.

For more information about the process refer to the Testing Strategy.



Test Engineering

The test suite is the safety net enabling the community to fearlessly move forward. We have a comprehensive testing strategy to help us find bugs early in the process and deliver the best user experience possible. But without people, the strategy is just a bunch of words. There are many ways you can help, for both technical and less technical people.


	If you like to experiment and try new things, consider exploratory testing. No coding skill required.


	Hone your analytical skills by designing end-to-end tests.


	Try your hand at unit testing. Design and implement the low level tests for both backend and UI code.




Check out Testing Strategy for more information.



Enhancement Projects

There is plenty of projects from small to big, some include writing and organizing, some require coding. We currently register following projects: https://phabricator.kde.org/T11218. Does something catch your eye?



Do you have something else in mind?

This list is not definite. We are always open to new ideas and approaches. Please, join us on the IRC (The Krita Community) to discuss the possibilities.






            

          

      

      

    

  

  
    
    

    Making a release
    

    
 
  

    
      
          
            
  
	f.. meta::
	
	description:

	Releasing Krita










Making a release


Contents


	Making a release


	Krita releases and update channels


	On branching out a stable branch


	Before the release


	Update version in source code


	Update versions in the stable branch to avoid XMLGUI conflicts


	Create the tarball


	Create and push the tag


	Create the tarball


	Make Windows, Linux, macOS and Android packages


	Release coordination






	PR and Communications


	Pre-release


	Release


	Post-release


	Notes


















Krita releases and update channels

At any point of time Krita users have access to four(!) versions of Krita. We calls these versions “channels”, since they are “channels through which the users can get updates of the software”.


	Krita Stable is the latest stable version of Krita that has been released to the users



	the user can manually download it from the official side


	packages are stored at the “stable” prefix on dko: https://download.kde.org/stable/krita/


	AppImage updater will suggest an update only from one stable version to another, e.g. “Krita 5.2.2 -> Krita 5.2.3” or “Krita 5.2.2 -> Krita 5.3.0”


	AppImage updater uses link at address: https://download.kde.org/stable/krita/updates/Krita-Stable-x86_64.appimage.zsync









	Krita Beta is the latest alpha or beta version of Krita



	these packages are supposed to be used for pre-release testing


	we usually make beta-release announcements with direct links to these packages


	packages are stored at the “unstable” prefix on dko: https://download.kde.org/unstable/krita/


	AppImage updater will suggest updates if



	the next beta or release candidate version has been released;


	the final release is published (update to final)









	AppImage updater uses link at address: https://download.kde.org/unstable/krita/updates/Krita-Beta-x86_64.appimage.zsync









	Krita Plus is the latest stable release with all backported patches, built nightly



	this channel is basically the nightly build of the current stable branch


	packages are stored at the gitlab’s CDN server: https://cdn.kde.org/ci-builds/graphics/krita/krita-5.2/


	AppImage updater will suggest updates if



	a new nightly with the same minor version has been published, e.g.



	krita/5.2 will update to the new version of krita/5.2


	krita/5.3 will update to the new version of krita/5.3


	they will not cross-update, unless the next point…









	a stable version of the next minor branch has been officially released



	krita/5.2 will update to krita/5.3 after the first official stable release of krita/5.3 has been made
















	AppImage updater uses link at the corresponding branch at CDN:



	krita/5.2 packages use: https://cdn.kde.org/ci-builds/graphics/krita/krita-5.2/linux/Krita-Plus-x86_64.appimage.zsync


	krita/5.3 packages use: https://cdn.kde.org/ci-builds/graphics/krita/krita-5.3/linux/Krita-Plus-x86_64.appimage.zsync


	after the first version of krita/5.3 has been released, the link in 5.2 branch should be replaced









	TODO: remap these links to some static location at https://updates.krita.org/krita-5.2/linux/Krita-Plus-x86_64.appimage.zsync









	Krita Next is the nightly build of the development (master) branch of Krita



	packages are stored at the gitlab’s CDN server: https://cdn.kde.org/ci-builds/graphics/krita/master/


	AppImage updater will suggest updates every time development branch gets a new nightly build


	AppImage updater uses link at address: https://cdn.kde.org/ci-builds/graphics/krita/master/linux/Krita-Next-x86_64.appimage.zsync


	TODO: remap these links to some static location at https://updates.krita.org/master/linux/Krita-Next-x86_64.appimage.zsync













On branching out a stable branch

When we change the stable branch name, e.g. when changing krita/5.2 into krita/5.3 we should update its name in several
places to keep CI infrastructure working properly:


	APK signer: https://invent.kde.org/sysadmin/ci-utilities/-/blob/master/signing/apksigner-projects.yaml


	Windows signer: https://invent.kde.org/sysadmin/ci-utilities/-/blob/master/signing/windowsbinariessigner-projects.yaml


	Nightly builds publisher: https://invent.kde.org/sysadmin/ci-utilities/-/blob/master/signing/buildpublisher-projects.yaml


	Translations’ “stable” branch: https://invent.kde.org/sysadmin/repo-metadata/-/blob/master/projects-invent/graphics/krita/i18n.json


	Notify translators about the tranlsations branch switch!


	Update the link to “Krita Plus” ZSync channel in build-tools/ci-scripts/show-updates-status.py script



	make sure you keep the old link in the script as well, until the branch is fully deprecated and removed
from the CDN server (we need to keep the link up for some time to let people update to the new version)









	Update Krita version in master branch to be higher than in stable.






Before the release


	Coordinate with #kde-promo


	Notify translators of string freeze!


	Verify that the release notes page is done, like https://krita.org/en/krita-4-2-release-notes/


	Verify that all dependency builds are up to date. Remember that these builds are built from master, not from the stable branch.



	https://binary-factory.kde.org/job/Krita_Android_arm64-v8a_Dependency_Build/


	https://binary-factory.kde.org/job/Krita_Android_armeabi-v7a_Dependency_Build/


	https://binary-factory.kde.org/job/Krita_Android_x86_64_Dependency_Build/


	https://binary-factory.kde.org/job/Krita_Android_x86_Dependency_Build/


	https://binary-factory.kde.org/job/Krita_Nightly_Appimage_Dependency_Build/


	https://binary-factory.kde.org/job/Krita_Nightly_MacOS_Dependency_Build/


	https://binary-factory.kde.org/job/Krita_Nightly_Windows_Dependency_Build/




Compare the build date and included commits to the commit in 3rdparty directory in master:

git fetch origin && git log origin/master 3rdparty














Update version in source code


	!! REMOVE THE SURVEY LINK !! (or, if this is a beta, make a survey and update the survey link)


	update the version of krita5.xmlgui


	update the CMakeLists.txt version


	update the snapcraft.yaml file


	update the appstream screenshots: https://invent.kde.org/websites/product-screenshots


	update org.kde.krita.appdata.xml ‘s release tag in the BRANCH


	update download_release_artifacts.sh


	update Android version (keep in mind that all Krita releases on Android are marked as Beta at the moment): packaging/android/apk/build.gradle


	When releasing beta-version double-check that you updated to “beta1”, not just plain “beta”. Only “alpha” versions can be made without a number, because they are built nightly.






Update versions in the stable branch to avoid XMLGUI conflicts


	stable branch is always marked as “alpha” (without a number in the end)


	update the version of krita.xmlgui; it should be $(( $VERSION_IN_RELEASE_BRANCH + 1 ))


	update the CMakeLists.txt version


	update org.kde.krita.appdata.xml ‘s release tag


	packaging/android/apk/AndroidManifest.xml






Create the tarball


Create and push the tag


	Set the tag:


git tag -a v5.1.0-beta1 -m "Krita 5.1.0 Beta1"










	Push the tag:


git push origin refs/tags/v5.1.0-beta1:refs/tags/v5.1.0-beta1










	If you need to change the tag position (not recommended):


# remove the previous tag

git push origin :refs/tags/v5.1.0-beta1

# make a new tag locally
git tag -a v5.1.0-beta1 -m "Krita 5.1.0 Beta1"

# push the new tag
git push origin refs/tags/v5.1.0-beta1:refs/tags/v5.1.0-beta1

# all Krita developers now have to refetch tags to
# get the updated tag position
git fetch origin --tags














Create the tarball


	Get the tarball from gitlab: https://invent.kde.org/graphics/krita/-/tags


	Unpack the tarball


	Rename folder from krita-v5.1.0-beta1 into krita-5.1.0-beta1 (without ‘v’ prefix in the version string)


	Package the tarball as .gz and .xz


	Sign both tarballs:


gpg --output krita-5.1.0-beta1.tar.gz.sig --detach-sign krita-5.1.0-beta1.tar.gz
gpg --output krita-5.1.0-beta1.tar.xz.sig --detach-sign krita-5.1.0-beta1.tar.xz










	Upload the gz tarball to files.kde.org, where builders can pick them up (the sigs and the xz tarball aren’t used for the binary builders):



	https://files.kde.org/krita/.release/$version/krita-$version.tar.gz













Make Windows, Linux, macOS and Android packages


	Request four release builds on binary-factory.kde.org, after starting each build,go to “Console Output” section, click on “Input Requested” and choose a tarball version to build.



	https://binary-factory.kde.org/job/Krita_Release_Windows64_Build/


	https://binary-factory.kde.org/job/Krita_Release_Appimage_Build/


	https://binary-factory.kde.org/job/Krita_Release_MacOS_Build/


	https://binary-factory.kde.org/job/Krita_Release_Android_arm64-v8a_Build/


	https://binary-factory.kde.org/job/Krita_Release_Android_armeabi-v7a_Build/


	https://binary-factory.kde.org/job/Krita_Release_Android_x86_64_Build/


	https://binary-factory.kde.org/job/Krita_Release_Android_x86_Build/











Runs



	https://binary-factory.kde.org/job/Krita_Release_Android_AppBundle_Build/ (after the android builds are done)








	Download all built artifacts using download_release_artifacts.sh script. Open the script and modify KRITA_VERSION variable to correspond to the version string.


	For each build check:


	Krita starts


	Localization works


	Python plugins are available


	Basic painting and most recently fixed bugs are fixed






	Sign the AppImage:

gpg --detach-sign --output krita-5.1.0-beta-x86_64.appimage.sig krita-5.1.0-beta-x86_64.appimage







	Sign four Android packages (or send them to Halla for signing)

Note: there is a useful script for signing them…


	krita-arm64-5.1.0-beta1-unsigned.apk


	krita-arm32-5.1.0-beta1-unsigned.apk


	krita-x86-5.1.0-beta1-unsigned.apk


	krita-x86_64-5.1.0-beta1-unsigned.apk




After signing, remove “-unsigned” suffix, so the signed packages would look like that:


	krita-arm64-5.1.0-beta1.apk


	krita-arm32-5.1.0-beta1.apk


	krita-x86-5.1.0-beta1.apk


	krita-x86_64-5.1.0-beta1.apk






	Now you should have 18 files in your release folder


	Generate an md5sum.txt file for all of them:

md5sum ./* > md5sum.txt







	Verify that the filesize of .zsync blob is different from the one
stored on https://download.kde.org


	for stable releases: https://download.kde.org/stable/krita/updates/Krita-Stable-x86_64.appimage.zsync


	for unstable releases: https://download.kde.org/unstable/krita/updates/Krita-Beta-x86_64.appimage.zsync




The filesize must be different, otherwise KDE’s mirroring system will not
propagate the change automatically. If you see that the filesize is the same,
notify sysadmins to update the mirrors manually.

Please take it into account that “unstable” releases should have “Beta” in the zsync file name,
not “Unstable” as you could guess. This word comes from $CHANNEL variable in build_image.sh script.



	Upload all files to download.kde.org (or ask sysadmins to do that using this manual ftp://upload.kde.org/README):




Note that the msix file is only for uploading to the Windows Store, it doesn’t need to be uploaded to download.kde.org.



	
	to https://download.kde.org/unstable/krita/5.1.0-beta1/
	
	krita-5.1.0-beta1.tar.gz


	krita-5.1.0-beta1.tar.gz.sig


	krita-5.1.0-beta1.tar.xz


	krita-5.1.0-beta1.tar.xz.sig


	krita-5.1.0-beta1-x86_64.appimage


	krita-5.1.0-beta1-x86_64.appimage.sig


	krita-x64-5.1.0-beta1-dbg.zip


	krita-x64-5.1.0-beta1-setup.exe


	krita-x64-5.1.0-beta1.zip


	krita-x86-5.1.0-beta1-dbg.zip


	krita-x86-5.1.0-beta1-setup.exe


	krita-x86-5.1.0-beta1.zip


	krita-5.1.0-beta1.dmg


	krita-arm64-5.1.0-beta1.apk


	krita-arm32-5.1.0-beta1.apk


	krita-x86-5.1.0-beta1.apk


	krita-x86_64-5.1.0-beta1.apk


	md5sum.txt










	
	to https://download.kde.org/unstable/krita/updates/
	
	Krita-Beta-x86_64.appimage.zsync












Please don’t forget to replace “unstable” to “stable” for stable release builds.
It should be replaced for both, packages themselves and zsync file





	Template ticket for sysadmins:

Hi, sysadmins!

Could you please do the final steps for publishing Krita release?

There are two tasks:

1) Upload release artifacts (20 files) to download.kde.org:

    * Source link: https://files.kde.org/krita/release-5.1.0-beta1/
    * Destination link: https://download.kde.org/unstable/krita/5.1.0-beta1/

2) Upload updates ZSync artifacts (1 file) to download.kde.org:
    * Source link: https://files.kde.org/krita/release-5.1.0-beta1-updates/
    * Destination link: https://download.kde.org/unstable/krita/updates/

3) Add `Krita 5.1.0 Beta1` bugzilla version







	Now the folder on download.kde.org should have 21(!) files. Check if you missed something (and you surely did! :) ).


	Verify consistency of all ZSync AppImage update links using the special script:

cd krita/
python build-tools/ci-scripts/show-updates-status.py





It should show information like this:

== Channel: Stable FAILED ==
ZSync URL: https://download.kde.org/stable/krita/updates/Krita-Stable-x86_64.appimage.zsync
ZSync exists: True
AppImage exists: False
    MTime:  Wed, 06 Dec 2023 13:28:16 +0000
    Filename:  krita-5.2.2-x86_64.appimage
    URL:  https://binary-factory.kde.org/job/Krita_Release_Appimage_Build/124//artifact/krita-5.2.2-x86_64.appimage
    SHA-1:  16a1a640084446b45ea078d8b81cffc075144a02

== Channel: Beta (unstable) FAILED ==
ZSync URL: https://download.kde.org/unstable/krita/updates/Krita-Beta-x86_64.appimage.zsync
ZSync exists: True
AppImage exists: False
    MTime:  Thu, 14 Sep 2023 09:26:05 +0000
    Filename:  krita-5.2.0-rc1-x86_64.appimage
    URL:  https://binary-factory.kde.org/job/Krita_Release_Appimage_Build/121//artifact/krita-5.2.0-rc1-x86_64.appimage
    SHA-1:  4bd0f522c22f41e504bf1e9ced540fa11ed5ec53

== Channel: Plus FAILED ==
ZSync URL: https://cdn.kde.org/ci-builds/graphics/krita/krita/5.2/linux/Krita-Plus-x86_64.appimage.zsync
ZSync exists: False
AppImage exists: False

== Channel: Next ==
ZSync URL: https://cdn.kde.org/ci-builds/graphics/krita/master/linux/Krita-Next-x86_64.appimage.zsync
ZSync exists: True
AppImage exists: True
    MTime:  Tue, 02 Apr 2024 22:30:57 +0000
    Filename:  krita-5.3.0-prealpha-64b33ed808-x86_64.appimage
    URL:  https://cdn.kde.org/ci-builds/graphics/krita/master/linux/krita-5.3.0-prealpha-64b33ed808-x86_64.appimage
    SHA-1:  e360127c3c956499ed0266ad8eb9bcdad3789956





Check the following:



	none of the channels are marked with FAILED


	AppImage’s filename is set to the one you just uploaded


	Appimage’s URL is a full URL pointing to a seemingly correct location (see the definition of the “channels” above)


	AppImage exists: True will tell you if the AppImage URL in downloadable,
so you don’t have to recheck it yourself







If you want to test ZSync manually, don’t use the system-provided package. Use
this cli-tool provided by AppImage team: https://appimage.github.io/zsync2/



	If you are doing the first stable release after branching-out, e.g. the first release of “Krita 5.3.0”, then make sure
ask sysadmins to relink “Krita Plus krita/5.2” zsync file to “Krita Plus krita/5.3”


	If you are doing any stable release, manually switch zsync file of Krita Beta to the Krita Stable, to make sure
users will get updates.


	If you are doing any release from a stable branch, manually update the version to the next one with suffix “alpha” to
make sure that Krita Plus packages correctly show it to the user.


	Manually verify that the previous version of Krita AppImage can update to
the new one from the GUI. It should use the .zsync file uploaded above.






Release coordination


	Mail KDE release coordination <release-team@kde.org>


	Send release notes for future Krita versions to news@publisher.ch


	Create bugzilla version: https://bugs.kde.org/editversions.cgi?product=krita Or file a sysadmin ticket for that.


	[only for a major release] Warn kde sysadmins that we’re going to release and that krita.org is going to take load. Just file a ticket on phabricator.







PR and Communications


Pre-release


	Update Kiki page


	Update press pack and page


	Verify if manual pages are updated, if not annoy @woltherav and add undocumented features to Krita: Manual


	Notify people that they can start making release demonstrations.






Release


	Update download page


	Publish the announcement and release notes


	Add release links to Release History section of the site: https://krita.org/en/about/krita-releases-overview/


	Add the release to the org.krita.org.appdata.xml file in MASTER.






Post-release


	tumblr (wolthera)


	BlenderArtists (wolthera)


	deviantart (wolthera)


	VK (dmitry)


	blendernation (halla)


	twitter (halla)


	facebook (halla)


	3dpro (halla)


	reddit (raghukamath)





Notes

Additional info can be found here:
https://phabricator.kde.org/T10762







            

          

      

      

    

  

  
    
    


    Reporting Bugs
    

    
 
  

    
      
          
            
  
Reporting Bugs

Krita is, together with many other projects, part of the KDE community. Therefore, bugs for Krita are tracked in KDE’s bug tracker: KDE’s bug tracker [https://bugs.kde.org]. The bug tracker is a tool for Krita’s developers to help them manage bugs in the software, prioritize them and plan fixes. It is not a place to get user support!

The bug tracker contains two kinds of reports: bugs and wishes. Bugs are errors in Krita’s code that interrupt using Krita. Wishes are feature requests: the reporter thinks some functionality is missing or would be cool to have.

Do not just create a feature request in the bug tracker: follow Feature Requests [https://krita.org/en/item/ways-to-help-krita-work-on-feature-requests/] to learn how to create a good feature request.

This guide will help you create a good bug report. If you take the time to create a good bug report, you have a much better chance of getting a developer to work on the issue. If there is not enough information to work with, or if the bug report is unreadable, a developer will not be able to understand and fix the issue.


Contents


	Reporting Bugs


	Only Report Bugs


	Check the FAQ


	Ask on Krita Artists or IRC Chat Channel


	Use the Latest Version of Krita


	Be Complete and Be Completely Clear


	After You Have Filed the Report










Only Report Bugs

A bug is a problem in Krita’s code.


	If you have problems with your drawing tablet, for instance no support for pressure, then that is unlikely to be a problem in Krita’s code: it is almost certain to be a problem with your setup or the driver for your tablet.


	If you’ve lost the toolbox, that’s not a bug.


	If you have deleted your work, that is not a bug.


	If Krita works differently from another application, that’s not a bug.


	If Krita works differently than you expected, that’s not a bug.


	If Krita is slower than you expected, that’s not a bug.


	If Krita crashes, that’s a bug.


	If a file you save comes out garbled, that’s a bug.


	If Krita stops working, that’s a bug.


	If Krita stops displaying correctly, that’s a bug.






Check the FAQ

If you’ve got a problem with Krita, first check the FAQ [https://docs.krita.org/en/KritaFAQ.html]. See whether your problem is mentioned there. If it is, apply the solution.



Ask on Krita Artists or IRC Chat Channel

If uncertain, ask us in the chatroom “#krita” via matrix. A introduction about Matrix is given here [https://community.kde.org/Matrix]. Create a matrix on kde.org account and join the #krita:kde.org channel. Or ask a question on Krita Artists [https://krita-artists.org/c/support/6] forum.

Krita’s chat channel is maintained on Libera.Chat. Developers and users hang out to discuss Krita’s development and help people who have questions.


Important

Most Krita developers live in Europe, and the channel is very quiet when it’s night in Europe. You also have to be patient: it may take some time for people to notice your question even if they are awake.




Also …

Krita does not have a paid support staff. You will chat with volunteers, users and developers. It is not a help desk.



But you can still ask your question, and the people in the channel are a friendly and helpful lot.



Use the Latest Version of Krita

Check Krita’s website to see whether you are using the latest version of Krita. There are two “latest” versions:


	Latest stable: check the Download page [https://krita.org/download/]. Always try to reproduce your bug with this version.


	Stable and Unstable Nightly builds: The stable nightly build is built from the last release plus all bug fixes done since the last release. This is called Krita Plus The unstable nightly build contains new features and is straight from the development branch of Krita. This is called Krita Next. You can download these builds from the Download page [https://krita.org/download/].






Be Complete and Be Completely Clear

Give all information. That means that you should give information about your operating system, hardware, the version of Krita you’re using and, of course about the problem.


	Open the the bug tracker [https://bugs.kde.org/enter_bug.cgi?product=krita].


	If you do not have an account yet, create one.




[image: the bug tracker's new bug form, advanced fields hidden]
In the New Bug form, fill in the following fields:


	Component: if you experience an issue when running a filter, select Filters. If you don’t know the component, select “* Unknown”


	Version: select the correct version. You can find the version of Krita in Help‣About Krita.


	Severity: if you have experienced a crash, select “crash”. If you are making a feature request, select “wish”. Otherwise, “normal” is correct. Do not select “major” or “grave”, not even if you feel the issue you are reporting is really important.


	Platform: select the from the combobox the platform you run Krita on, for instance “Microsoft Windows”


	OS: this probably already correctly preselected. (If you’re wondering why there are two fields that have more or less the same meaning, it’s because “Platform” should allow you to select between Windows Installer, Windows Portable Zip File, Windows Store or Steam”, it’s a bug in bugzilla that it doesn’t have those options.)


	Summary: a one line statement of what happened, like “Krita crashes when opening the attached PSD file”.


	Description: this is the most important field.


Here you need to state very clearly:


	what happened,


	what had you expected to happen instead,


	how the problem can be reproduced.




Give a concise and short description, then enumerate the steps needed to reproduce the problem. If you cannot reproduce the problem, and it isn’t a crash, think twice before making the report: the developers likely cannot reproduce it either.

The template here is used for all projects in the KDE community and isn’t especially suitable for Krita.






	Attachments



	In all cases, attach the contents of the Help ‣ Show system information for bug reports dialog to the bug report.


	In all cases, attach the contents of the Help ‣ Show krita log for bug reports dialog to the bug report.


	Your file


If at all possible, attach your original Krita file (the one that ends in .kra) to the bug report, or if it’s too big, add a link for download. If you do that, make sure the file will be there for years to come: do not remove it. If the problem is with loading or saving a file in another format, please attach that file.






	A video


If you think it would be useful, you can also attach or link to a video. Note that the Krita developers and bug triagers are extremely busy, and that it takes less time to read a good description and a set of steps to reproduce than it takes to watch a video for clues for what is going on.

When making a video or a screenshot, include the whole Krita window, including the titlebar and the statusbar.






	If you are reporting a crash, attach a crash log. On Windows, you will find a kritacrash.log file in the local AppData folder. On Linux, follow your distribution’s instructions to install debug symbols if you have installed Krita from a distribution package. It is not possible to create a useful crash log with Linux AppImages.













After You Have Filed the Report

After you have filed your bug, mail will be sent out to all Krita developers and bug triagers. You do not have to go to the chat channel and tell us you created a bug.

When a developer decides to investigate your report, they will start adding comments to the bug. There might be additional questions: please answer them as soon as possible.

When the developer has come to a conclusion, they will resolve the bug. That is done by changing the resolution status in the bug tracker. These statuses are phrased in developer speak, that is to say, they might sound quite rude to you. There’s nothing that we can do about that, so do not take it personally. The bug reporter should never change the status after a developer changed it.

These are the most used statuses:


	Unconfirmed: your bug has not been investigated yet, or nobody can reproduce your bug.


	Confirmed: your bug is a bug, but there is no solution yet.


	Assigned: your bug is a bug, someone is going to work on it.


	Resolved/Fixed: your bug was a genuine problem in Krita’s code. The developer has fixed the issue and the solution will be in the next release.


	Duplicate: your bug has been reported before.


	Needinfo/WaitingForInfo. You need to provide more information. If you do not reply within a reasonable amount of time the bug will be closed automatically.


	Resolved/Not a Bug: your report was not about a bug: that is, it did not report something that can be fixed in Krita’s code.


	Resolved/Upstream: the issue you observed is because of a bug in a library Krita uses, or a hardware driver, or your operating system. We cannot do anything about it.


	Resolved/Downstream: Only on Linux. The issue you observed happens because your Linux distribution packages Krita in a way that causes problems.




See also our chapter on Bug Triaging [https://docs.krita.org/en/untranslatable_pages/triaging_bugs.html]





            

          

      

      

    

  

  
    
    


    Strokes queue
    

    
 
  

    
      
          
            
  
Strokes queue


Strokes, jobs… What it is all about? (theory)


Structure of a stroke

An abstraction of a stroke represents a complete action performed by a
user. This action can be canceled when it has not been finished yet, or
can be undone after it’s undo data has been added to the undo stack.
Every stroke consists of a set of stroke jobs. Every job sits in a
queue and does a part of work that the stroke as a whole must perform on
an image. A stroke job cannot be canceled while execution and you cannot
undo a single job of the stroke without canceling the whole stroke.

Example: Lets look at how the Freehand Tool works. Every time the
user paints a single line on a canvas it creates a stroke. This stroke
consists of several stroke jobs: one job initializes indirect painting
device and starts a transaction, several jobs paint dabs of a canvas and
the last job merges indirect painting device into the canvas and commit
the undo information.

The jobs of the stroke can demand special order of their execution. That
is the way how they will be executed on a multi-core machine. Every job
can be either of the type:


	CONCURRENT
	concurrent job may be executed in parallel with any other
concurrent job of the stroke as well as with any update job executed
by the scheduler

Example: in Scale Image action each job scales its own layer. All
the jobs are executed in parallel.



	SEQUENTIAL
	if the job is sequential, no other job may interleave with this
one. It means that when the scheduler encounters a sequential job, it
waits until all the other stroke jobs are done, starts the sequential
job and will not start any other job until this job is finished. Note
that a sequential job can be executed in parallel with update jobs
those merge layers and masks.

Example: All the jobs of the Freehand Tool are sequential because
you cannot rearrange the painting of dabs. And more than that, you
cannot mix the creation of the transaction with painting of anything
on a canvas.



	BARRIER
	barrier jobs are special. They created to allow stroke jobs to
synchronize with updates when needed. A barrier job works like a
sequential one: it does not allow two stroke jobs to be executed
simultaneously, but it has one significant addition. A barrier job
will not start its execution until all the updates (those were
requested with setDirty() calls before) has finished their
execution. Such behavior is really useful for the case when you need
to perform some action after the changes you requested in previous
jobs are done and the projection of the image does now correspond the
changes you’ve just done.

Example: in Scale Image action the signals of the image like
sigSizeChanged should be emitted after all the work is done and
all the updates are finished. So it runs as a barrier job. See
KisProcessingApplicator class for details.





Besides one of the types above a job may be defined as EXCLUSIVE.
Exclusive property makes the job to be executed on the scheduler
exclusively. It means that there will be no other jobs (strokes or
updates) executed in parallel to this one.



The queue of strokes

The strokes themselves are stored in a queue and executed one by one.
This is important to know that any two jobs owned by different strokes
cannot be executed simultaneously. That is the first job of a stroke
starts its execution only after the last job of the previous stroke
has finished.

The stroke is just a container for jobs. It stores some information
about the work done, like id() and name(). Alongside storing
this information it can affect the order of execution of jobs as well.
The stroke can be defined exclusive. The meaning of this resembles the
behavior of stroke job’s exclusive property. Exclusive stroke is a
stroke that executes its jobs with all the updates blocked. The
execution of updates will start only after the stroke is finished.




Implementation (practice)


Implementation of a stroke


[image: Overview of stroke classes]

Overview of stroke classes



Each stroke is represented by a KisStroke object. It has all the
basic manipulating methods like: addJob(), endStroke() and
cancelStroke(). The behavior of a stroke is defined by a stroke
strategy (KisStrokeStrategy class). This strategy is passed to the
KisStroke object during construction and owned by the stroke.

Each stroke job is represented by KisStrokeJob object. The queue of
KisStrokeJob objects is stored in every stroke object. This very
object is used for actual running the job (KisUpdateJobItem calls
KisStrokeJob::run() method while running). The behavior of the
stroke job is defined by a strategy (KisStrokeStrategy) and a data
(KisStrokeJobData). Those two objects are passed during the
construction of the KisStrokeJob object.

A stroke can have four types of jobs:


	initialization


	canceling


	finishing


	actual painting (named as ‘dab’ in the code)




During construction the stroke asks its strategy to create strategies
for all the four types of job. Then it uses these strategies on creation
of jobs on corresponding events: initialization, canceling, finishing
and when the user calls addJob() method.

The strategies define all the properties of strokes and stroke jobs we
were talking above. The data class is used for passing information to
the stroke by high-level code.

Example: FreehandStrokeStrategy::Data accepts such information
as: node, painter, paintInformation, dragDistance

Other information that is common to the whole stroke like names of the
paintOp, compositeOp are passed directly to the constructor of the
stroke strategy.



Execution of strokes by KisStrokesQueue

The key class of the strokes’ execution is KisStrokesQueue. The most
important method that is responsible for applying all the rules about
interleaving of jobs mentioned above is
KisStrokesQueue::processOneJob. This method is called by the update
scheduler each time a free thread appears. First it gets the number of
merge and stroke jobs currently executing in the updater context. Then
it checks all the rules one by one.



Canceling and undo information trick

It was stated above that a stroke can be canceled in each moment of
time. That happens when a user calls KisStroke::cancelStroke()
method. When it is requested the stroke drops all the jobs those are
present in its queue and has not been started yet. Then it enqueues a
special kind of job named cancel job that reverts all the work done by
the stroke. This is used for interactive canceling of tools’ strokes.

Taking into account that the strokes can be reverted, we cannot use
QUndoStack capabilities directly. We should add commands to the
stack after they have been executed. This resembles the way how
KisTransactionData works: its first redo() method doesn’t do
anything because everything has already been painted on a device. Here
in strokes this “after-effect-addition” is implemented in general way.
Strokes work with a special kind of undo adapter:
KisPostExecutionUndoAdapter. This adapter wraps the commands in a
special wrapper that puts them into the stack without calling redo()
and controls their threaded undo() and redo() operations. See
information about KisPostExecutionUndoAdapter in a separate
document.



Queues balancing

So we ended up with a solution where our scheduler has two queues that
it should spread between limited amount of threads. Of course there
should be some algorithm that balances the queues. Ideally, we should
balance them by the total area of image the queue should process. But we
cannot achieve that currently. So the formula for size metrics is quite
simple:

updatesMetric = <number of update jobs in the queue>

strokesMetric = <number of strokes> * <jobs in the first stroke>

Balancing formula:

balancingRatio = <updatesMetric> / <strokesMetric>



Starting a stroke

The main entry point to strokes for the user is KisStrokesFacade
interface. This interfaces provides four methods: startStroke(),
addJob(), endStroke() and cancelStroke(). So every time you
work with strokes you should work using this interface.

Note: KisImage and KisUpdateScheduler both implement this interface,
so you can use them as a strokes facade. But please try not to store
pointers to the whole image. Try store a link to interface only, if
possible.

So if you want to start a stroke you should do the following:


	Create a stroke strategy


	Start a stroke with:

KisStrokeId strokeId = strokesFacade->startStroke(myStrategy);

Note: you’ll get a KisStrokeId handle for the stroke you created.
This handle will be used in all the other methods for controlling the
stroke. This handle is introduced, because several users can access
the strokes facade simultaneously, so there may be several strokes
opened simultaneously. It’s important to understand that even when
several strokes are opened simultaneously, only one of them executes
on the cpu. All the other strokes will be delayed until it is
finished.



	Create a data for your stroke job


	Add a job to the execution queue:

strokesFacade->addJob(strokeId, myData);



	You may add as many jobs as you wish


	End or cancel the stroke:

strokesFacade->endStroke(strokeId);

or

strokesFacade->cancelStroke(strokeId);









Strokes public API


Simplified stroke classes

As you might noticed the internal strokes API is quite complex. If you
decide to create your own stroke you need to create at least six new
classes:


	stroke strategy class


	four stroke jobs strategies (init, finish, cancel, dab)


	data that will be passes to a dab-strategy-based job




That is not really a good solution for a public API, so we introduced an
adapter that simplifies all these stuff. The class is called
KisSimpleStrokeStrategy. It allows you to define all the jobs you
need in a single class.


[image: Simple stroke classes]

Simple stroke classes



This class has four virtual methods those you can use as callbacks. When
you need to use one of them just override it in your own class and add
activation of the corresponding callback to the constructor of your
class:

class MyOwnStroke : public KisSimpleStrokeStrategy {
    MyOwnStroke() {
        enableJob(KisSimpleStrokeStrategy::JOB_INIT);
        enableJob(KisSimpleStrokeStrategy::JOB_FINISH);
        enableJob(KisSimpleStrokeStrategy::JOB_CANCEL);
        enableJob(KisSimpleStrokeStrategy::JOB_DAB);
    }

    void initStrokeCallback()
    {
    }

    void finishStrokeCallback()
    {
    }

    void cancelStrokeCallback()
    {
    }

    void doStrokeCallback(KisStrokeJobData *data)
    {
        Q_UNUSED(data);
    }
};





Internally, KisSimpleStrokeStrategy creates all the job strategies
needed for the lowlevel API. And these internal job strategies call the
callbacks of the parental class.

Important: Notice that the job data passed to init, finish and
cancel jobs is always null. It means that these jobs will always be
sequential and non-exclusive. That is done intentionally to simplify
the API. At the same time that is a limitation of the API. But
currently, this is perfectly enough for us.



Unit-testing of the strokes

One of the benefits of using the strokes is that you are able to test
them separately from the UI using a common infrastructure.


utils::StrokeTester class

That is a really simple class that you can use to test your own stroke.
It test the following aspects of your stroke:


	canceling of the stroke


	working with indirect painting activated


	testing updates of the image projection after your stroke


	working with a layer that is not connected to any image




The result of the execution is compared against the reference png files
those you create manually while writing your test.



How to write your own test

You can check examples in MoveStrokeTest and FreehandStrokeTest
tests.


	You need to inherit your tester class from utils::StrokeTester.
The constructor of that class accepts the name of your stroke (it’ll
be used for generating filenames), size of the image and a filename
of the preset for the paintOp.

StrokeTester(const QString &name, const QSize &imageSize,
             const QString &presetFileName = "autobrush_300px.kpp");







	Then you need to override at least two methods:

KisStrokeStrategy* createStroke(bool indirectPainting,
                                KisResourcesSnapshotSP resources,
                                KisPainter *painter,
                                KisImageWSP image);
void addPaintingJobs(KisImageWSP image,
                     KisResourcesSnapshotSP resources,
                     KisPainter *painter);





If you thing you need it you may do some corrections for the image
and active node in the following method:

void initImage(KisImageWSP image, KisNodeSP activeNode);







	Run your test in a testing slot:

void MyStrokeTest::testStroke()
{
    MyTester tester();
    tester.test();
}







	During the first run the test will report you many fails and will
generate you several files with actual result of the test. You need
to check these files, then move them into the tests’ data folder:
tests/data/<your_stroke_name>/


	After you copied the files the tester will compare the actual result
against these very files. That means it’ll catch all the changes in
the work of your stroke, so you’ll be able to catch all the
regressions automatically.







Predefined classes for usage as base classes


KisPainterBasedStrokeStrategy

This class can be used for the strokes those work with the node using a
painter (or painters like in KisToolMultihand). This class accepts
resources snapshot (KisResourcesSnapshot) and a painter (painters).
Initialization, finishing and canceling callbacks of this class do all
the work for dealing with indirect painting support, creation of
transaction, reverting the stroke on canceling. This base class is used
for FreehandStroke mostly.



KisStrokeStrategyUndoCommandBased

It is obvious from the name of the class that it works with undo
commands. In constructor you define which method of undo command should
be used undo() or redo(). Afterwards, you just add commands to the
stroke and they are executed with any the sequentiality constraints.
This stroke strategy does all the work for adding the commands to the
undo adapter and for canceling them if needed.




Example classes


	KisPainterBasedStrokeStrategy


	FreehandStrokeStrategy


	KisStrokeStrategyUndoCommandBased


	MoveStrokeStrategy







Internals of the freehand tool


[image: Freehand tool classes]

Freehand tool classes




Motivation for so many classes

We need to share the codebase between at least four classes:
KisToolFreehand, KisToolMultihand, KisScratchPad. All these
classes paint on a canvas with KisPainter, so they share quite much
common code.



KisResourcesSnapshot

After we introduced the strokes, the moments of time when user paints
with mouse and when the line is actually painted on the canvas do not
coincide. It means that by the time a thread starts actual changing the
device, the contents of KoCanvasResourceProvider might have already
changed. So before we start a stroke we should create a snapshot of all
the resources we have and pass this snapshot to the stroke.

For this purpose we introduced KisResourcesSnapshot class. It solves
two problems at the same time: first it stores all the resources we
might have and second it encapsulates the algorithm of loading these
resources into a KisPainter object. So this class is really easy to
use. You just create the snapshot and then just load all the resources
to the painter when needed.

KisResourcesSnapshotSP resources =
    new KisResourcesSnapshot(image,
                             undoAdapter,
                             resourceManager);
KisPainter painter;
painter.begin(device, selection);
resources->setupPainter(&painter);

// paint something

painter.end();





In our implementation this class is usually created by
KisToolFreehandHelper and passed to the
KisPainterBasedStrokeStrategy class. The latter one creates painters
and initializes them using setupPainter().



KisToolFreehand and KisScratchPad

The freehand tool is split into four classes:


	KisToolFreehand
	highlevel tool class that get the mouse events from the Ko-classes
and distributes events among internal classes.



	KisToolPaintingInformationBuilder
	converts mouse events represented by KoPointerEvent objects into
KisPaintInformation objects.



	KisRecordingAdapter
	stays in charge of adding recording information into the image’s
action recorder. This class has two purposes: first we need to be
able to disable recording for the scratch pad (then we just pass NULL
instead of a recording adapter), second when the strokes are able to
do their own recording, it’ll be easier to port the freehand tool to
it.



	KisToolFreehandHelper
	this is the main class that combines all the classes we were talking
above. It accepts a mouse event, converts it using a painting
information builder into the paint information, notifies recording
adapter, takes the snapshot of resources and finally starts a stroke.
Then it populates the stroke with stroke jobs, when the user moves
the mouse (paint(event) method) and finishes the stroke in the
end.





Such splitting allows us to use the same classes in both
KisToolFreehand and KisScratchPad. The only difference between
them is that the scratch pad doesn’t have a recording adapter at all,
and uses base class KisPaintingInformationBuilder instead of
KisToolPaintingInformationBuilder. The latter differs from the
former one in a way that it supports painting assistants
(adjustDocumentPoint() method), complex coordinate transformations
with KisCoordinatesConverter (documentToImage() method) and
perspective painting (calculatePerspective() method). The rest of
the code is shared.



KisToolMultihand

Multihand tool uses the same classes. The only difference, it has a
couple of modifications in its helper (KisToolMultihandHelper),
those allow it to have several painters at the same time. The tool’s
class inherits the freehand tool’s class and just substitutes the helper
with its own (with resetHelper() method).




Scheduled Undo/Redo


Two ways of working with undo commands

The key problem of designing the undo system for strokes was that there
are two ways of working with undo commands. That is we have two types of
commands actually:


	Qt-like command - command’s redo() method is executed while the
command is added into the undo stack


	Transaction-like command - the command is added to the stack
after its action has already been performed. It means that the
first redo() of this command (the one that is called by undo stack)
does nothing. That is a transaction-like command just saves undo data
for the future and does not perform anything on addition.




You already know that our strokes can be reverted on the go, it means
that the stroke’s undo command should be added to the undo stack only
after all the actions of the stroke have been performed. So it looks
like the stroke’s commands are transaction-like.

But there is another problem: the stroke should be able to execute
regular undo commands those are not transaction-like (like is it done in
KisStrokeStrategyUndoCommand). More than that, undo and redo of for
such strokes should be performed with the same sequentiality properties
(read “undo/redo operations should be threaded as well”).

It follows that the undo commands generated by the stroke should be
wrapped in a special wrapper command, lets call it
KisSavedCommand, that hold the following properties:


	the wrapper skips the first redo(). It means the wrapped command’s
redo() method will not be called on its addition to the stack.
Obviously, it is not needed, because the action has already been
performed by the stroke itself.


	when undo stack calls to undo/redo methods of the wrapper-command,
the command creates a stroke (KisStrokeStrategyUndoCommandBased)
and runs the wrapped command in a context of this stroke.


	a special macro wrapper command, lets call is
KisSavedMacroCommand, should be able to save all the commands
executed by a stroke and undo/redo all of them in the original order
with original sequentiality properties (concurrent, sequential,
barrier, exclusive).




That is exactly what we have: KisSavedUndoCommand skips the first
redo and runs undo()/redo() of an internal command in a separate stroke.
We have KisSavedMacroCommand as well to save the contents of the
whole stroke.


[image: Scheduled commands]

Scheduled commands





New Undo Adapters

Well, it would be quite insane to ask all the users of strokes to wrap
their commands into wrapper, so we introduced a separate undo adapter
for strokes: KisPostExecutionUndoAdapter. This adapter wraps your
command and puts it into the undo stack automatically. This is the only
adapter we can use inside strokes, that is why all the strokes accept
the pointer to it.

For the legacy code we still have KisUndoAdapter, but now we call it
“legacy undo adapter”. It works as usual: it adds a command to undo
stack directly, so it gets executed right in the moment of addition. But
there still is one trick. Stroke’s commands come to the undo stack
asynchronously, so if we try to simply add a command to the stack, we
can catch a race condition easily. That’s why the legacy undo adapter
must guard itself from strokes with locking the strokes system. That is
done with a special kind of lock barrierLock(). This barrier lock
differs from a regular lock in a way that it ways for all the running
strokes are finished, while a regular lock waits for all the running
stroke jobs are done. That’s the only difference.

The same race conditions problem applies to the undo()/redo() signals
from the UI. The user may request the undo operation while the stroke is
adding its commands. This will surely lead to a crash. We solved this
problem in a bit hacky way: we hacked QUndoStack and made it’s
undo()/redo() slots virtual. After that we overridden the stack with our
own, and changed these methods to block the strokes while undo()/redo()
is happening. We use tryBarrierLock() there, because it is easier to
cancel the undo than to wait until all the strokes are finished.



Undo Adapters and Undo Stores

Well, we have two types of undo adapters now (not counting
KisSurrrogateUndoAdapter). It’s obvious that they should share some
code. That is why we split the work with the actual undo stack into a
separate class KisUndoStore. So now the undo store defines “where to
store the undo data”, and undo adapter defines “how to adapt krita’s
commands to qt’s stack”. There are additional types of store classes for
using in tests and for special purposes.


[image: Undo Adapter vs Undo Store]

Undo Adapter vs Undo Store






Processings framework


Motivation

In Krita we have many actions which have common structure of execution.
Take a look at actions like Scale Image, Rotate Image, Change Color
Space - all of them have common phases:


	Lock the image


	Do the processing of nodes


	Unlock the image


	Emit setDirty() calls and update the projection of the nodes


	Wait until all the setDirty()’es are finished


	Emit image’s signals like sigImageSizeChanged




More than that, you should pay attention to the fact that all these
actions should support undo/redo operations. And the last two phases
cannot be implemented as usual qt-commands inside a usual macro, because
they should always be executed in the end of the action (in qt
commands are executed in reverse order during undo operations, that is
not what we want).

And, btw, it would be really good idea to have multithreading support
for such actions, because some of them (like Scale Image) may be quite
slow.

KisNodeVisitor cannot fit all these requirements, because it has
important design limitations: first, walking through nodes is
implemented inside the visitor itself and, second, emitting signals is
put into visitors as well. These two limitations prevent the code to be
shared between actions. That is why we introduced new shiny
KisProcessingVisitor and a separate framework for them.



Processing visitors


[image: Processing framework]

Processing framework



The key class of the processing framework is KisProcessingVisitor.
Its main difference from the old visitor is that it is extremely simple.
It performs one task only, it processes one node. And that is all. It
does no locking, performs no updates, emits no signals. It just
processes (that is, changes the content) a single node. You can look at
the reference implementation of it in KisCropProcessingVisitor and
KisTransformProcessingVisitor. The key idea of this framework is to
keep the processings as simple as possible. So the rest of the work is
done by external classes, those are shared between all the processings.

We have one such class. Its name is KisProcessingApplicator. This
class performs several tasks:


	creates a stroke. So all the actions executed with this applicator
will be undo/redo’able.


	applies a visitor to a requested node.


	applies a visitor recursively to a node and all its children. Note,
that you can choose any sequentiality property for the execution of
your visitor. It means that the visitors can be applied to nodes
concurrently in multithreaded way.


	applies a usual qt-command to the image. Sequentiality properties may
vary as well.


	emits setDirty() calls for all the nodes which need it. It is done in
efficient way, so no nodes are updated twice.


	emits image signals after all the actions and updates are finished.




Lets look at an example:

void KisImage::resizeImageImpl(const QRect& newRect, bool cropLayers)
{
    if(newRect == bounds()) return;

    QString actionName = cropLayers ? i18n("Crop Image") : i18n("Resize Image");

(1) KisImageSignalVector emitSignals;
(2) emitSignals << SizeChangedSignal << ModifiedSignal;

(3) KisProcessingApplicator applicator(this, m_d->rootLayer,
                                       KisProcessingApplicator::RECURSIVE,
                                       emitSignals, actionName);

    if(cropLayers || !newRect.topLeft().isNull()) {
(4)     KisProcessingVisitorSP visitor =
            new KisCropProcessingVisitor(newRect, cropLayers, true);
(5)     applicator.applyVisitor(visitor, KisStrokeJobData::CONCURRENT);
    }
(6) applicator.applyCommand(new KisImageResizeCommand(this, newRect.size()));
(7) applicator.end();
}





In lines (1) and (2) we create a list of signals we should emit after
the execution of the applicator. This list should be passed to the
constructor of the applicator (3) (the list is passed to the
constructor instead of end() function, because we face a limitation
connected with the internals of the implementation of undo for
processings, I doubt it can create any troubles). In the line (3) we
create a recursive applicator. In lines (4) and (5) we create a visitor
and apply it to nodes recursively in a multithreaded way. Warning:
the visitor is shared between all the threads so it should be written in
a thread-safe way. In line (6) we apply a command sequentially, it
means that it’ll be executed right after all the threads with visitors
has finished. Line (7) closes the stroke an tells it to perform all the
updates and emit all the signals.



Implementation of KisProcessingApplicator

The applicator is based on the “undo command”-based stroke
(KisStrokeStrategyUndoCommandBased). It starts the stroke in the
constructor and adds undo commands to it on every user request. The
processings are inernally wrapped into a special command
(KisProcessingCommand). This command has its own undo stack that
collects the transactions executed by the processing. This can be easily
achieved with our undo adapters interface. The command just defines its
own KisSurrogateUndoAdapter and passes it to the processing.
Processing adds its transactions to the fake adapter. And later, the
command just uses the undo stack to undo/redo actions executed by the
transaction.

The applicator defines several internal commands as well:
UpdateCommand and EmitSignalsCommand. These commands are added
to the beginning and to the end of every stroke, so that they can be
executed in the end of both undo and redo operations. The parameter
finalUpdate controls whether the command is executed during its
redo() or undo() operation.



Emission of signals trick

After actions have been moved to separate threads, problems with image
signals appeared. When everything was executed in a single thread the
connection of signals like sigAboutToAddNode and
sigNodeHasBeenAdded worked as Qt::DirectConnection. So these
signals were effectively function calls. After we moved the actions to a
separate thread, all of them became Qt::QueuedConnection. I guess you
know what it means. They simply lost all their sense. So we had to start
to use Qt::BlockingQueuedConnection. But there is another problem with
it. Some of the (old) code is still executed in a context of the UI
thread and they emit signals as well. So all that code causes deadlocks
when using Qt::BlockingQueuedConnection. That is why we had to
introduce KisImageSignalRouter. This class checks which thread emits
the signal and emits it either using Qt::DirectConnection or
Qt::BlockingQueuedConnection. So no deadlocks are possible.



Progress reporting

The fact that a processing visitor does a really simple task (processes
a single node) that is very easy to report progress using progress bars
in the layer box. We just need to use progress proxy of the node we
process (KisNodeProgressProxy). Our processings framework provides
an even easier way of doing this. You just need to instantiate a
ProgressHelper object and ask it to create a KoUpdater object
for you. And all is done. You can see an example in
KisTransformProcessingVisitor class.



Testing

Usage of a common framework makes testing really simple. There is a
separate unittest in image’s tests folder: KisProcessingsTest. To
test a processing you need to write just a couple of lines. Everything
is done by BaseProcessingTest helper class. This class will run your
processing and compare results against reference png files those are
stored in data folder. If there are some problems found, it’ll dump
result files to the current directory.





            

          

      

      

    

  

  
    
    


    Testing Strategy
    

    
 
  

    
      
          
            
  
Testing Strategy


Overview

We’re always working on the next version of Krita. We fix bugs and implement new features. Every change to any software comes with a risk of introducing other issues. That’s where testing comes in. The tester’s job is to uncover defects as early as possible in the development process: a bug caught early enough means easier fixing, better user experience and less load on user support.



The Functional Test Suite

When testing functionality we employ multiple strategies that translate into several layers of the test suite:



	Unit tests are our safeguard against breakage during development.


	End to end tests check that the basic high level workflows function properly.


	Exploratory testing experiments. Unexpected combinations, uncharted workflows.








Test Suite Layers


Unit Tests

Unit tests are the base of our test suite. They are designed to ensure that every individual unit of source code (both backend and UI components) functions as expected. They are fully automated and fast to execute. They are run by developers during development. Also part of nightly testing suite.

In-depth unit testing doc: https://docs.krita.org/en/untranslatable_pages/unit_tests_in_krita.html



End-to-end UI Tests

Formalized high level tests performed on the running application; carried out either by a computer or by a human.

End to end tests cover both the GUI and the command line interface.



Exploratory Testing

While the other layers of the test suite are composed of carefully curated scripted tests, balancing between coverage and efficiency, exploratory testing approaches testing quite differently. It’s purpose is to allow humans to apply their unique tools: learning, creativity, intuition. There are no suites, scenarios, defined steps. Just you and Krita. Explore and experiment. Try basic workflows. Try unexpected combinations. Try to break things. Then report bugs.




When Do We Test


Continuous testing as part of continuous integration

Automatic test suite is run nightly against the last nightly build.



Beta Testing

Beta testing is a type of user acceptance testing, where a subgroup of target users validates the upcoming release.

As a part of the release process, we collect features and bugs (mainly high impact bugs and those that benefit from testing in multiple different conditions) to test in a Phabricator task connected to the release. From that collection we create a survey on survey.kde.org and publicly release the beta version. Link to the survey is available on the welcome page of the beta release.







            

          

      

      

    

  

  
    
    


    Triaging Bugs
    

    
 
  

    
      
          
            
  
Triaging Bugs

There are over 1000 bugs and 350 wishes reported against Krita per year, and that number is rising.
The Krita developers cannot handle that stream on their own! Please consider helping out by triaging bugs. This document gives some simple guidelines to get started, and some common cases that can often be answered with a standard text.

For more details, see also https://community.kde.org/Guidelines_and_HOWTOs/Bug_triaging


Contents


	Triaging Bugs


	Status flow


	Platform


	Version


	Can Reproduce


	Cannot Reproduce


	Importance


	Guidance for using Importance


	Asserts and Crashes






	Canned Answers and Recognizing Common Reports


	Cannot Save


	Broken Canvas


	My stylus has an offset


	Other tablet issues


	Krita lags


	I cannot paint at all, in a particular document














Status flow

A bug begins as UNCONFIRMED. When triaging, only UNCONFIRMED bugs are still relevant.


Platform

If the user has not entered the Platform correctly (i.e., it is “unspecified/Linux”), then ask which platform they are using. Mark the bug as NEEDDINFO/WAITINFORINFO.


Tell the user:

Please indicate your operating system correctly. For Linux, select the distribution, AppImage or compiled from sources and Linux, for Windows, select MS Windows/MS Windows, for macOS or macOS, select macports, disk images or homebrew and macOS.



If the user has selected Windows CE for platform, set it to MS Windows without asking them.



Version

If the user has not entered the version (i.e., the version is unspecified), ask them for the version and mark the bug as NEEDDINFO/WAITINFORINFO.


Tell the user:

Please select the version of Krita you are using. You can find the version in Help/About Krita.





Can Reproduce


	If you can reproduce the bug, add a comment indicating you can reproduce it, maybe with clearer steps to reproduce and anything pertinent that you observed. If you have a backtrace, also add it. Set the bug status to CONFIRMED and add the triaged keyword to the keywords.


	If you can reproduce the bug, and want to go the extra mile, use an older version of Krita to see whether you could reproduce it there as well. If you couldn’t, it’s a regression, so add the regression keyword to the keywords and mark which version of Krita the latest was that did not have the bug.






Cannot Reproduce


	If you cannot reproduce, the user either has not given enough information or the bug is specific to their system.


	If there is not enough information, ask for more information. Depending on the report, the steps to reproduce might need to be described more clearly and/or a screenshot, a screen recording or the original files might be necessary. Set text (ask for what you think is needed):



Ask the user:

I am sorry, I cannot reproduce your issue. Could you specify the steps to reproduce more clearly, and maybe add a screen recording/screenshot/original file




	Mark the bug as NEEDINFO/WAITINGFORINFO.









	If the issue seems to be specific to the user’s system, ask for the output of help/System information for bug reports as well. Set text:




Tell the user:

I am sorry, but I cannot reproduce the bug on my system. Please add the output of help/System Information for Bug reports as well.







	Mark the bug as NEEDINFO/WAITINGFORINFO.













Importance

Importance is a tool for developers, not for bug reports. It’s developers and triagers who decide what the importance is. If a bug reporter complains about a change in importance, use this text:


Tell the user:

I am sorry, but the importance field is a tool for the developers to work with. Please do not change the importance back.



There are the following Importances:


	Critical:
	the bug leads to immediate dataloss. Example: a saved file cannot be opened in Krita



	Grave:
	shouldn’t be used, it doesn’t mean a thing



	Major:
	it’s a bug, but it’s kinda important.



	Crash:
	the bug is about a crash or an assert [1]



	Normal:
	it’s a bug



	Minor:
	it’s a bug, but it’s kinda unimportant



	Wish:
	it’s a feature request



	Task:
	not used.





The main difference is between Wish and the rest: Wishes are feature requests, and don’t need immediate triaging. A wish bug is a bug that asks whether some functionality can be added to Krita, or complains that some functionality is missing.

The rest are bugs, that is, problems in Krita that can be fixed by changing Krita’s code.

However, we also get many reports that are not bugs and not wishes: reports that are basically users asking for help because they do not understand Krita or their computer, or what a file is, or that Krita isn’t the same application as Photoshop. Those reports need to be weeded out, and the status set to INVALID.



Guidance for using Importance


	If you encounter a bug that reports dataloss when loading a saved file, set it to critical.


	If you encounter a bug that reports a crash or an assert but is not set to crash, set it to crash.


	If you encounter a report that asks for functionality that is not currently present, set it to wish.


	If you encounter a report that is a user request, check whether you can reply with a link to the faq (https://docs.krita.org/en/KritaFAQ.html), and maybe a canned answer, and change the status of the bug to INVALID.






Asserts and Crashes



[1]
Crash or assert.

These are different things. A crash happens when Krita spontaneously stops working or hangs. An assert happens when Krita stops working because we, developers, have added some code to detect an invalid state.

Asserts are printed to the terminal or shown in a popup window. You can identify an assert by asking for terminal output, debugview output or by checking the backtrace, if there is one.

If the backtrace contains a line like:

> SAFE ASSERT (krita): "!sanityCheckPointer.isValid()" in file /tmp/nix-build-krita-4.0.0-pre2c.drv-0/krita-1b1695a/libs/ui/KisDocument.cpp, line 490





Or another mention of assert, Q_ASSERT or similar, it’s an assert, not a crash.






Canned Answers and Recognizing Common Reports

We get a lot of duplicate bug reports. Sometimes it’s clear that it’s a duplicate, and you can mark it a such. In all cases, we want to give the reporter useful information so they can solve their problems. Of course, (almost) all solutions are also in the FAQ, but just pointing people to the FAQ is often considered impolite.

So, do never reply to a bug report with:


“Just read the FAQ.”




It takes a bit of experience to recognize a bug from an often incomplete description. Here are a couple of common cases:


Cannot Save

For instance:
“I cannot save/my file doesn’t get saved/it says it cannot copy the file”

This happens most often on Windows, if the user has got any security software installed that doesn’t come with Windows. Examples are Sandboxie, Totaldefender, or others. Mark the bug as NEEDSINFO/WAITINGFORINFO and add this text:


Ask the user:

Are you using Windows? If so, do you have any non-standard security software installed such as Total Defender, Sandboxie or XXX? Please make an exception for Krita in the settings, or uninstall this software. Since Windows 10, it is no longer necessary to have any security software installed other than what comes with Windows.



If the user replies that they are using extra security software, close the bug as RESOLVED/INVALID.



Broken Canvas

This happens on Windows. Symptoms will be: the canvas is black, the canvas stays blank, the canvas only updates when the user clicks outside the canvas. Mark the bug as a duplicate of https://bugs.kde.org/show_bug.cgi?id=360601, and add the following text:


Tell the user:

You probably are using a Windows system with an Intel display chip. Please update to Krita 3.3.3, which enables the Direct3D (Angle) renderer by default. If you do not want to update, check https://docs.krita.org/en/KritaFAQ.html#krita-starts-with-an-empty-canvas-and-nothing-changes-when-you-try-to-draw-or-krita-shows-a-black-or-blank-screen-or-krita-crashes-when-creating-a-document-or-krita-s-menubar-is-hidden-on-a-windows-system-with-an-intel-gpu





My stylus has an offset

This happens on Windows. Symptoms will be: the user reports that the stylus cursor has an offset or moves the cursor on another screen. Usually, the user will have a misconfigured multi-monitor system. Mark the bug as NEEDSINFO/WAITINGFORINFO and ask the user:


Ask the user:

Do you have a multi-monitor setup? If so, this is a configuration issue. Please reset your tablet driver’s configuration and Krita’s configuration (https://docs.krita.org/en/KritaFAQ.html#resetting-krita-configuration). If you have a single-monitor setup, then please calibrate your tablet.



If the user checks back and tells us the problems are solved, mark the bug as RESOLVED/UPSTREAM.



Other tablet issues

Often, the user will tell you that their tablet will work perfectly with another application. This is not relevant.


Tell the user:

Windows tablet drivers often have a special code for different applications. Whether an application works or not depends on whether the programmers have tested their driver with an application or not. Tablet issues are almost always caused by the drivers being broken.





Krita lags

The word “lag” is meaningless. Complaints about “lag” are not bug reports. However, we should help the complainer.

Mark the bug as NEEDSINFO/WAITINGFORINFO and ask the user:


Ask the user:

Have you enabled the stabilizer? Check the tool options panel for the freehand tool. Also check the other possibilities mentioned here: https://docs.krita.org/en/KritaFAQ.html#krita-is-slow





I cannot paint at all, in a particular document

The user probably created, accidentally, a tiny selection, and saved that with the document. Mark as NEEDSINFO/WAITINGFORINFO and ask them:


Ask the user:

Do you have a selection saved with that document? Use select/deselect on your image and check whether you can paint again. If not, please attach the .kra document to this bug report or make it available.








            

          

      

      

    

  

  
    
    


    Unittests in Krita
    

    
 
  

    
      
          
            
  
Unittests in Krita


Contents


	Unittests in Krita


	What is a unit test is and why is it needed?


	Debugging of new code


	Changing/refactoring existing code


	Automated regression testing






	How to build and run tests?


	Building the tests


	Run all the tests


	Run a single test


	Environment variables for running tests






	When to write a unit test?


	What should unit test include?


	How to write a unittest?


	Krita-specific testing utils


	Fetching reference images


	Compare test result against a reference QImage


	QImageBasedTest for complex actions


	MaskParent object














What is a unit test is and why is it needed?


	Wiki:
	A unit test is a piece of code that automatically checks if your class or subsystem works correctly. The goal of unit testing is to isolate each part of the program and show that the individual parts are correct. A unit test provides a strict, written contract that the piece of code must satisfy. As a result, it affords several benefits [1].



	Comment:
	In other words unit testing allows the developer to verify if his initial design decisions has been implemented correctly and all the corner-cases are handled correctly.





In Krita Project we use unit tests for several purposes. Not all of them work equally good, but all together they help developing a lot.


Debugging of new code


	Wiki:
	Unit testing finds problems early in the development cycle. This includes both bugs in the programmer’s implementation and flaws or missing parts of the specification for the unit. The process of writing a thorough set of tests forces the author to think through inputs, outputs, and error conditions, and thus more crisply define the unit’s desired behavior. The cost of finding a bug before coding begins or when the code is first written is considerably lower than the cost of detecting, identifying, and correcting the bug later; bugs may also cause problems for the end-users of the software [1].



	Comment:
	Krita is a big project and has numerous subsystems that communicate with each other in complicated ways. It makes debugging and testing new code in the application itself difficult. What is more, just compiling and running the entire application to check a one-line change in a small class is very time-consuming. So when writing a new subsystem we usually split it into smaller parts (classes) and test each of them individually. Testing a single class in isolation helps to catch all the corner-cases in the class public interface, e.g. “what happens if we pass 0 here instead of a valid pointer?” or “what if the index we just gave to this method is invalid?”







Changing/refactoring existing code


	Wiki:
	Unit testing allows the programmer to refactor code or upgrade system libraries at a later date, and make sure the module still works correctly (e.g., in regression testing). The procedure is to write test cases for all functions and methods so that whenever a change causes a fault, it can be quickly identified. Unit tests detect changes which may break a design contract [1].



	Comment:
	Imagine someone decides to refactor the code you wrote a year ago. How would he know whether his changes didn’t break anything in the internal class structure? Even if he/she asks you, how would you know if the changes to a year-old class, whose details are already forgotten, are valid?







Automated regression testing

Most of our unit tests are run nightly on the CI. You can see the results and coverage reports at https://build.kde.org/job/Extragear/job/krita/.

However, some of the unit tests are not stable enough to be run automatically and therefore are disabled. (They do straightforward
QImage comparisons, so the test results can depend no only on version of the libraries installed,
but also on build options and even type of CPU the tests are run on.) While the overall coverage is decent, this issue limits the ability of the unit test suite to catch regressions in several parts of the codebase. (More information on that in the respective Phabricator task: https://phabricator.kde.org/T11904.)




How to build and run tests?


Building the tests

To enable unit tests, build Krita with an additional cmake flag: -DBUILD_TESTING=ON.

# example build command
you@yourcomputer:~/kritadev/build>cmake ../krita \
  -DCMAKE_INSTALL_PREFIX=$HOME/kritadev/install \
  -DCMAKE_BUILD_TYPE=Debug \
  -DKRITA_DEVS=ON \
  -DBUILD_TESTING=ON






See also


	If you need help with building from source, see Building Krita from Source


	For more information about cmake options, please refer to CMake Settings for Developers






Once built, the tests are run from the build directory. There you can either run the whole suite at once or you can run a single test (or even a single test with a single data row for data-driven tests).



Run all the tests

# change to the build directory
you@yourcomputer:~/> cd kritadev/build
# run the whole suite
you@yourcomputer:~/kritadev/build> make test







Run a single test

Every test class is built into a separate executable file. This executable file resides in the build directory tree. The relative path is the same as the path in source directory.

To run all tests in a single test class, run the executable:

# running all tests in a test class
you@yourcomputer:~/kritadev/build>./libs/ui/tests/KisSpinBoxSplineUnitConverterTest





You can also run a single test method from the class or invoke the test method with a single test data row, if you have a data-driven test. Add the test method name (and optionally the test data row name) as an argument to the test class executable:

# the syntax for running single tests:
# you@yourcomputer:~/kritadev/build>./test-class-executable "test method name":"data row name"

# run a single method in a test class
you@yourcomputer:~/kritadev/build>./libs/ui/tests/KisSpinBoxSplineUnitConverterTest testCurveCalculationTwoWay

# run a single method in a test class with the selected test data row
you@yourcomputer:~/kritadev/build>./libs/ui/tests/KisSpinBoxSplineUnitConverterTest testCurveCalculationTwoWay:"0.5 in (0, 10) = 5"







Environment variables for running tests

Prior to running the tests, you can set several environment variables to change the behavior of the tests.


	Suppress safe assert dialogs:

you@yourcomputer:~/kritadev/build> export KRITA_NO_ASSERT_MSG=1







	Set source directory for QImage-based test data

you@yourcomputer:~/kritadev/build> export KRITA_UNITTESTS_DATA_DIR=<directory>







	Create reference images for QImage-based tests

you@yourcomputer:~/kritadev/build> export KRITA_WRITE_UNITTESTS=1












When to write a unit test?

Ideally a unit test should be written for any new class that implements some logic and provides any kind of public interface. It is especially true if this public interface is going to be used more that one client-class.



What should unit test include?


	corner cases. E.g. what happens if we request merging of two layers, one of which has Inherit Alpha option enabled? What properties and composition mode the final layer should have? Answers to these questions should be given and tested in the unit test.


	non-obvious design decisions. E.g. if a paint device has a non-transparent default pixel, then its `exactBounds()` returns the rect, not smaller that the size of the image, even though technically the device might be empty.






How to write a unittest?

Suppose you want to write a unittest for kritaimage library. You need to perform just a few steps:


	Add files for the test class into ./image/tests/ directory:


kis_some_class_test.h

#ifndef __KIS_SOME_CLASS_TEST_H
#define __KIS_SOME_CLASS_TEST_H

#include <QtTest/QtTest>

class KisSomeClassTest : public QObject
{
    Q_OBJECT
private Q_SLOTS:
    void test();
};

#endif /* __KIS_SOME_CLASS_TEST_H */</syntaxhighlight>





kis_some_class_test.cpp

#include "kis_some_class_test.h"

#include <QTest>

void KisSomeClassTest::test()
{
}

QTEST_MAIN(KisSomeClassTest, GUI)</syntaxhighlight>










	Modify ./image/tests/CMakeLists.txt to include your new test class:


# ...
########### next target ###############
set(kis_some_class_test_SRCS kis_some_class_test.cpp )
ecm_add_tests(${kis_some_class_test_SRCS}
NAME_PREFIX "libs-somelib-"
LINK_LIBRARIES kritaimage Qt5::Test)
# ...










	Write your test. You can use any macro commands provided by Qt (QVERIFY, QCOMPARE or QBENCHMARK).


void KisSomeClassTest::test()
{
    QString cat("cat");
    QString dog("dog");

    QVERIFY(cat != dog);
    QCOMPARE(cat, "cat");
}










	Run your test by running an executable in ./image/test/ folder






Krita-specific testing utils


Fetching reference images

All the testing files/images are usually stored in the test’s data folder  (e.g. ./krita/image/tests/data/). But there are some files which are used throughout all the unit tests. These files are stored in the global folder ./krita/sdk/tests/data/. If you want to access any file, just use TestUtil::fetchDataFileLazy. It first searches the file in the local test’s folder and if nothing is found checks the global folder.

Example:

QImage refImage(TestUtil::fetchDataFileLazy("lena.png"));
QVERIFY(!refImage.isNull());







Compare test result against a reference QImage

There are two helper functions to compare a given QImage against an image saved in the data folder.

bool TestUtil::checkQImage(const QImage &image, const QString &testName,
                           const QString &prefix, const QString &name,
                           int fuzzy = 0, int fuzzyAlpha = -1, int maxNumFailingPixels = 0);
bool TestUtil::checkQImageExternal(const QImage &image, const QString &testName,
                                   const QString &prefix, const QString &name,
                                   int fuzzy = 0, int fuzzyAlpha = -1, int maxNumFailingPixels = 0);





The functions search for a PNG file with path

./tests/data/<testName>/<prefix>/<prefix>_<name>.png
# or without a subfolder
./tests/data/<testName>/<prefix>_<name>.png





The supplied QImage is compared against the saved PNG, and the result is returned to the caller. If the images do not coincide, two images are dumped into the current directory: one with actual result and another with what is expected.

The second version of the function is different. It searches the image in “an external repository”. The point is that PNG images occupy quite a lot of space and bloat the repository size. So we decided to put all the images that are big enough (>10KiB) into an external SVN repository. To configure an external test files repository on your computer, please do the following:


	Checkout the data repository:


# create the tests data folder and enter it
mkdir ~/testsdata
cd ~/testsdata

# checkout the extra repository
svn checkout svn+ssh://svn@svn.kde.org/home/kde/trunk/tests/kritatests










	Add environment variable pointing to your repository to your ~/.bashrc


export KRITA_UNITTESTS_DATA_DIR= ~/testsdata/kritatests/unittests






	Use TestUtil::checkQImageExternal in your unittest and it will fetch data from the external source. If an external repository is not found then the test is considered “passed”.






QImageBasedTest for complex actions

Sometimes you need to test some complex actions like cropping or transforming the whole image. The main problem of such action is that it should work correctly with any kind of layer or mask, e.g. KisCloneLayer, KisGroupLayer or even KisSelectionMask. To facilitate such complex testing conditions, Krita provides a special class QImageBasedTest. It helps you to create a really complex image and check the contents of its layers. You can find the best example of its usage in KisProcessingsTest. Basically, to use this class, one should derive its own testing class from it, and call a set of callbacks, which do all the work. Let’s consider the code from KisProcessingsTest:

// override QImageBasedTest class
class BaseProcessingTest : public TestUtil::QImageBasedTest
{
public:
    BaseProcessingTest()
        : QImageBasedTest("processings")
    {
    }

    // The method is called by test cases. If the test fails, a set of PNG images
    // is saved into working directory
    void test(const QString &testname, KisProcessingVisitorSP visitor) {

        // create an image and regenerate its projection
        KisSurrogateUndoStore *undoStore = new KisSurrogateUndoStore();
        KisImageSP image = createImage(undoStore);
        image->initialRefreshGraph();

        // check if the image is correct before testing anything
        QVERIFY(checkLayersInitial(image));

        // do the action we are trying to test
        KisProcessingApplicator applicator(image, image->root(),
                                        KisProcessingApplicator::RECURSIVE);

        applicator.applyVisitor(visitor);
        applicator.end();
        image->waitForDone();

        // check the result, and dump images if something went wrong
        QVERIFY(checkLayers(image, testname));

        // Check if undo(!) works correctly
        undoStore->undo();
        image->waitForDone();

        if (!checkLayersInitial(image)) {
            qWarning() << "NOTE: undo is not completely identical "
                    << "to the original image. Falling back to "
                    <<"projection comparison";
            QVERIFY(checkLayersInitialRootOnly(image));
        }
    }
};







MaskParent object

TestUtil::MaskParent is a simple class that, in its constructor, creates an RGB8 image with a single paint layer, which you can use for further testing. The image and the layer can be accessed as simple member variables.

Example:

void KisMaskTest::testCreation()
{
    // create an image and a simple layer
    TestUtil::MaskParent p;

    // create a mask and attach its selection to the created layer
    TestMaskSP mask = new TestMask;
    mask->initSelection(p.layer);

    QCOMPARE(mask->extent(), QRect(0,0,512,512));
    QCOMPARE(mask->exactBounds(), QRect(0,0,512,512));
}







[1]
(1,2,3)
https://en.wikipedia.org/wiki/Unit_testing








            

          

      

      

    

  

  
    
    


    Resources
    

    
 
  

    
      
          
            
  
Resources


Brush Packs



	
[image: _images/Resources-mirandaBrushes.jpg]
 [https://drive.google.com/open?id=1hrH4xzMRwzV0SBEt2K8faqZ_YUX-AdyJ]
Ramon Miranda




	
[image: _images/Resources-conceptBrushes.jpg]
 [https://drive.google.com/file/d/1sl8sW7pu7QtGxunLeZapksU1u6Uc9VF5/view?usp=sharing]
Concept art & Illustration Pack




	
[image: _images/Resources-aldyBrushes.jpg]
 [https://www.deviantart.com/al-dy/art/Aldys-Brush-Pack-for-Krita-2-3-1-196128561]
Al-dy






	
[image: _images/Resources-stalcryBrushes.jpg]
 [https://www.deviantart.com/stalcry/art/Krita-Custom-Brushes-350338351]
Stalcry




	
[image: _images/Resources-woltheraBrushes.jpg]
 [https://forum.kde.org/viewtopic.php?f=274&t=125125]
Wolthera




	
[image: _images/Resources-nylnook.jpg]
 [https://nylnook.art/en/blog/krita-brushes-pack-v2/]
Nylnook






	
[image: _images/Resources-raghukamathBrushes.png]
 [https://gitlab.com/raghukamath/krita-brush-presets/-/releases]
Raghukamath




	
[image: _images/Resources-GDQuestBrushes.jpeg]
 [https://github.com/GDquest/free-krita-brushes/releases/]
GDQuest




	
[image: _images/Resources-iForce73Brushes.png]
 [https://www.deviantart.com/iforce73/art/Environments-2-0-759523252]
IForce73






	
[image: _images/Resources-iForce73CityscapeBrushes.png]
 [https://www.deviantart.com/iforce73/art/Environments-2-0-759523252]
IForce73




	
[image: _images/Resources-wojtrybBrushes.png]
 [https://www.dropbox.com/s/nconrhjb6ltai8f/wont_teach_you_to_draw_brushpack_v6.0.zip?dl=1]
wojtryb




	
[image: _images/Resources-rakurribrushset.png]
 [https://github.com/Rakurri/rakurri-brush-set-for-krita]
Rakurri






	
[image: _images/Resources-jackpackBrushes.jpg]
 [https://gumroad.com/l/pPCFg]
Jackpack




	
[image: _images/Resources-razcoreBrushes.png]
 [https://gitlab.com/razcore-rad/rzv-krita-brushkit/-/raw/master/release/RZV.zip]
Razcore




	
[image: _images/Resources-eyeodin.png]
 [https://github.com/EyeOdin/eo_bundle]
EO Bundle by EyeOdin











Texture Packs



	
[image: _images/Resources-deevadTextures2.jpg]
 [https://www.davidrevoy.com/article263/five-traditional-textures]
David Revoy











Vector libraries


20+ Variety of Vector/Symbol Library Packs

Have your pick of a large selection of libraries in many styles, shapes and colors.



	
[image: _images/5_pack_gitlab_thumbnail.png]
 [https://ryosworkshop500.gumroad.com/]
ryosworkshop500











Composition templates

Inside the zip archive you’ll find all composition templates separate and in a form of a vector library, so all the shapes are easy to access after the import.

The composition templates include: rule of thirds, golden ratio, golden spiral, golden triangle 1, golden triangle 2, harmonious triangle, film safe area template, baroque diagonal and centre.

Link: https://gumroad.com/l/CHhlx



Feather icons

A set of open source icons from https://feathericons.com but in a Vector Library form, so it can be easily accessed from inside Krita after the import. Each icon is designed on a 24x24 grid with an emphasis on simplicity, consistency, and flexibility.

Link: https://github.com/MiAlmeida/krita-feather




Templates

Templates are .kra files that you can base your new documents on. To learn more see Templates:.


Storyboard template

The layout and layer setup is inspired by traditional Studio Ghibli storyboards, and Tony Gaddis’ storyboarding process.

Link: https://gumroad.com/l/PtMtm




User-made Python Plugins

This list describes only plugins that are not available in Krita, so you need to download and install the ones you’d like to use.


See also

If you want to check descriptions of a plugin available in Krita by default (without a need to download), see Pre-installed Python plugins.



To learn how to install and manage your plugins, see Managing Python plugins.

If you want to know more about an individual plugin, you can access the plugin’s manual by going to Settings ‣ Configure Krita… menu, and then choosing the Python Plugin Manager tab. Then you can click on a specific plugin and the manual will appear in the bottom text area.


Caution

Custom Python plugins are made by users of Krita and the Krita team does not guarantee that they work, that they are useful or that they are safe. Note that a Python plugin can do everything that Krita can do, which means for example access to your files. Krita team isn’t responsible for any damage you might suffer from a custom plugin, this list is informational purposes only and you install any of the custom plugins on your own risk.

If you have information that any of the plugins below is dangerous for the user, please contact Krita team on kimageshop@kde.org.




Usability

Direct Eraser


Plugin to switch to an eraser preset and back using one shortcut.

https://www.mediafire.com/file/sotzc2keogz0bor/Krita+Direct+Eraser+Plugin.zip




ThreeSlots


This plugin creates three brushtool shortcuts that remembers last used brush preset for each slot independently from each other. It also remembers the size of the brush. One of the slots is for the eraser and it has the eraser mode permanently turned on, while the other two slots have it turned off.

https://github.com/DarkDefender/threeslots




QuickColor


Plugin that adds actions to switch the foreground color to a desired color from a specified palette. The number of actions, which means colors as well, is limited.

https://github.com/JonasLW/QuickColor




BrushColorSwitch


This plugin adds an action/shortcut to switch both a brush and foreground/background color at once.

https://github.com/rkspsm/BrushColorSwitch




Tablet Controls Docker (TabUI)


https://github.com/tokyogeometry/tabui




On-screen Canvas Shortcuts


Plugin that adds an onscreen button bar with shortcuts for Krita.

https://github.com/qeshi/henriks-onscreen-krita-shortcut-buttons/tree/master/henriks_krita_buttons






Workflow improvements

AnimLayers (Animate with Layers)


With this plugin you can animate a specific range of layers by prefixing the layer name with the same letters.
Then in the AnimLayers dialog you can enter the prefix in the Key field.

https://github.com/thomaslynge/krita-plugins




Reference Image Docker (old style)


Docker for reference images, modeled after the old Reference Images Docker in Krita. Alternative to Reference Images Tool.

https://github.com/antoine-roux/krita-plugin-reference




Rogudator’s Comic Panel generator


Docker to create simple comic panels faster.

https://rogudator.gumroad.com/l/UbPzz




Rogudator’s Speech Bubble Generator


Docker to create speech bubbles for comics.

https://rogudator.gumroad.com/l/bvvnn




Mirror Fix


This plugin allows to quickly correct symmetry errors done by non-symmetrical edits.

https://github.com/EyeOdin/mirror_fix




ToggleRefLayer


This plugin lets you assign a keyboard shortcut to toggle the visibility of a reference layer named “reference”.

https://drive.google.com/file/d/11O8FiejleajsT_uHd4Q4VBrCrYX9Rh5v/view?usp=sharing




Shotgun Toolkit Engine for Krita


This plugin allows working in a managed way, loading/saving/publishing artwork, keeping it up to date and publishing your projects and layers into Shotgun Toolkit Engine.

https://github.com/diegogarciahuerta/tk-krita




Photobash Images Docker


Simple Krita Plugin that lists the images you have on a folder you specify, with the ability to filter by words in the path. After setting the references directory in Photobash Images docker you can:


	Filter images by words. Using multiple words like “rock marble” will show all the images that have rock OR marble in the name.


	Scroll the pages to access more results.


	Click on an image to create a layer, with the scale that you specify.




https://github.com/veryprofessionaldodo/Krita-Photobash-Images-Plugin




Animator Reference Plugin


This plugin allows you to load videos into Krita. You can then import frames to use as reference images.

https://github.com/scottpetrovic/animator-video-reference




Spritesheet Plugin


This plugin lets you export animations as spritesheets.

https://github.com/Falano/kritaSpritesheetManager




Imagine Board


This plugin displays and organizes images to inspire the artists imagination.


	Directory images can be filtered by Keywords then displayed in Preview, Grid or Slide-Show.


	Reference board uses Pins from various sources and can bind them to the KRA save file.


	Function>> can preform File Management operations using a standard nomenclature.


	Includes other small utilities and support to KRA, GIF/WEBP and SVG file formats.




https://github.com/EyeOdin/imagine_board






File management

Art Revision Control (using GIT)


This plugin helps managing multiple versions of the artwork.

https://github.com/abeimler/krita-plugin-durra




Spine File Format Export


This plugin exports the document in a format compatible with Spine. The README describes what kind of structure the document needs to have to be exported properly. Besides exported images, the plugin creates spine.json file.

https://github.com/chartinger/krita-unofficial-spine-export




Key Enter


This plugin helps to quickly organize images using a standard nomenclature through the usage of Keywords. These keywords are used for file filtering purposes. Key Enter has a custom version of Photobash Images.

https://github.com/EyeOdin/key_enter






Color selectors

Pigment.O - Color Picker


Universal advanced color picker.

https://github.com/EyeOdin/Pigment.O






Interface

UI Redesign


Plugin that modifies the overall look and feel of the Krita UI Interface. Enables the Toolbox and Tool Options to be toggled, similarly to Blender’s UI.

Features a flat theme that can be seen in the repository’s README.md section. To give feedback, either create an issue, or join the discussion the thread on Krita Artists.

Krita Artists Thread: https://krita-artists.org/t/call-for-krita-ui-redesign-plugin-testers/9604

Repository Link: https://github.com/veryprofessionaldodo/Krita-UI-Redesign




Subwindow Organizer


Helps with handling multiple documents in subwindow mode. Introduces responsive fullscreen with other subwindows opened, dynamic snapping of subwindows to canvas borders, drag and drop switching between subwindows, and more.

https://github.com/wojtryb/kritaSubwindowOrganizer




KanvasBuddy


This is a small dialog that floats on top of the canvas packed with enough features to let you spend as much time in Canvas-Only mode as possible.
The idea behind KB was to provide the 20% of tools used 80% of the time in the most out-of-the-way GUI possible.

Source, main page and download link: https://github.com/Kapyia/KanvasBuddy

Krita-artists thread: https://krita-artists.org/t/kanvasbuddy-a-minimalist-toolbar/549




Tela


This plugin can display the canvas in real time and create a extra window that helps with OBS recording (ignoring camera transforms). Also acts as quick settings for Krita’s Brush, Canvas and Document values. Tela can also expand the Canvas temporarily and has Guide management options and formatting.

https://github.com/EyeOdin/Tela






Miscellaneous

Timer Watch


This plugin is a time management tool. Clock shows the current local time. Stopwatch shows a aim work goal that is flexible and can use a silent alarm. Information displays file stats like original creator, time spent editing and others.

https://github.com/EyeOdin/timer_watch




Post images on Mastodon


With this plugin you can post images on Mastodon from inside of Krita.

https://github.com/spaceottercode/kritatoot




Bash Action (works with macOS and Linux)


Plugin that allows you execute Bash commands and programs as actions on your current Krita images.

https://github.com/juancarlospaco/krita-plugin-bashactions#krita-plugin-bashactions







Other resources

Krita Plugin Generator


An extension to VSCode that generates a Plugin Template for Krita (like Krita Script Starter, but directly in VSCode).

Available here: https://github.com/cg-cnu/vscode-krita-plugin-generator




Python auto-complete for text editors


If you have the Krita source code, you can use this Python script to generate the auto-complete file for Python. Many Python editors need a .py file to read for auto-complete information. This script reads the C++ header files from Krita’s source code and creates a Python file that can be used for auto-completion.

Available here: https://github.com/scottpetrovic/krita-python-auto-complete






External tutorials



	
[image: _images/simon_pixel_art_course.png]
 [https://www.udemy.com/learn-to-create-pixel-art-from-zero/?couponCode=OTHER_75]
Simón Sanchez’ “Learn to Create Pixel Art from Zero” course on Udemy











See Something We Missed?

Have a resource you made and want to share it with other artists? Let us know on Krita Artists or visit our chat channel to discuss getting the resource added to here.


Note

We have curated a list of community created resources for Krita. These resources will be hosted on external website, which is not under the control of Krita or KDE. Please report any error or corrections in the content to the Krita developers.







            

          

      

      

    

  

  
    
    
    Index
    

    
 
  

    
      
          
            

Index



 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z
 


Symbols


  	
      	!


      	$P[ n ]


      	$u, $v


      	$w, $h


      	&&


      	*.bmp


      	*.csv


      	*.exr


      	*.gbr


      	*.gif


      	*.gih


      	*.jpeg


      	*.jpg


      	*.jxl


      	*.kpl, [1]


      	*.kra


      	*.krz


      	*.ora


      	*.pbm


      	*.pdf


      	*.pgm


      	*.png


      	*.ppm


      	*.psd


      	*.svg


      	*.tif


      	*.tiff


      	*.webp


      	*/ %


      	+-


  

  	
      	
    --canvasonly

      
        	krita command line option


      


      	
    --dpi

      
        	krita command line option


      


      	
    --export

      
        	krita command line option


      


      	
    --export-filename

      
        	krita command line option


      


      	
    --export-sequence

      
        	krita command line option


      


      	
    --file-layer

      
        	krita command line option


      


      	
    --fullscreen

      
        	krita command line option


      


      	
    --nosplash

      
        	krita command line option


      


      	
    --template

      
        	krita command line option


      


      	
    --workspace

      
        	krita command line option


      


      	->


      	<> <= >=


      	== !=


      	?:


      	[a,b,c]


      	\*.avif


      	\*.heic


      	\*.heif


      	^


      	||


      	~


  





A


  	
      	About


      	Accessibility


      	Actions


      	Active Keyframe


      	Active Layer:


      	Addition (Blending Mode)


      	Additive Subtractive


      	Adobe Brush Library


      	Adobe Style Library


      	Advanced Color Selector


      	Airbrush, [1]


      	Al.Chemy


      	Allanon


      	Alpha channel


      	Alpha Darken


      	Alpha Inheritance, [1], [2], [3]


      	Alpha Lock, [1]


  

  	
      	AND


      	Angle


      	Animation, [1], [2], [3], [4], [5], [6], [7], [8]


      	Animation Curves


      	Animation Playback


      	Arcus Tangent


      	Artistic Color Selector


      	ASC CDL


      	ASL


      	Audio


      	Audio Menu:


      	Author Profile


      	Automatic Healing


      	Autosave, [1]


      	AV1 Image Format


      	AVIF


      	Axonometric


  





B


  	
      	Backtrace, [1]


      	Backup


      	Basic Concepts


      	Basic Smooth


      	Behind


      	Bezier Curve, [1]


      	Binary


      	Bit Depth


      	Bitmap


      	Bitmap Fileformat


      	Black and White


      	Blank Keyframe


      	Blending Mode, [1]


      	Blending Modes!


      	Blur


      	BMP


      	Border Selection...


      	Brightness, [1], [2], [3]


  

  	
      	Bristle Brush Engine


      	Bristle brushes


      	Brush


      	Brush Engine, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]


      	Brush Mask, [1]


      	Brush Preset


      	Brush Preset History


      	Brush Presets


      	Brush Settings, [1]


      	Brush Tip


      	Brush tip


      	Brushes, [1]


      	Bucket, [1]


      	Bug


      	Bumpmap

      
        	(Blending Mode)


      


      	Bundles


      	Burn


      	burn


  





C


  	
      	Cached Frames


      	Cage


      	Calibration


      	Calligraphy


      	Canvas Border


      	Canvas Color, [1]


      	Canvas Graphics Acceleration


      	Canvas Input Settings


      	Canvas Only Mode


      	Channel Separation


      	Chroma


      	Circle, [1]


      	Clear


      	Clear Thumbnail


      	Clipping Masks, [1]


      	Clone


      	Clone Brush Engine


      	Clone frames


      	Clone Layer


      	Clone Tool


      	Clones Array


      	Close, [1]


      	Close All


      	Color, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]


      	Color Adjustment Curves


      	Color Balance


      	Color Bit Depth


      	Color Burn


      	color ccellnoise ( vector v )


      	color ccurve ( float param, float pos0, color val0, int interp0, float pos1, color val1, int interp1, [...] )


      	color cfbm ( vector v, int octaves=6, float lacunarity=2, float gain=0.5 )


      	color cfbm4 ( vector v, float time, int octaves=6, float lacunarity=2, float gain=0.5 )


      	Color Channels, [1]


      	color cnoise ( vector v)


      	color cnoise4 ( vector v, float t)


      	color cturbulence ( vector v, int octaves=6, float lacunarity=2, float gain=0.5 )


      	color cvoronoi ( vector v, int type=1, float jitter=0.5, float fbmScale=0, int fbmOctaves=4, float fbmLacunarity=2, float fbmGain=0.5)


      	Color Dodge


      	color hsi ( color x, float h, float s, float i, float map=1 )


      	color hsltorgb ( color hsl )


      	Color Islands


      	Color Label


      	Color Management, [1]


      	color midhsi ( color x, float h, float s, float i, float map, float falloff=1, int interp=0 )


      	Color Mixing, [1], [2]


      	Color Models


      	color rgbtohsl ( color rgb )


      	Color Sampler


  

  	
      	Color Selector, [1], [2], [3], [4], [5], [6], [7], [8]


      	Color Sliders, [1]


      	Color Smudge Brush Engine


      	Color Space


      	Color Spaces


      	Color to Alpha


      	Colorize Mask


      	Colors


      	Combine Normal Map


      	Comma Separated Values


      	Command Line


      	communication


      	community


      	Compass


      	Compositions


      	compression


      	Contiguous Selection


      	Contrast


      	CONVERSE


      	Convert


      	Convert Color Space


      	Convert Shapes to Vector Selection


      	Convert to Raster Selection


      	Convert to Shape


      	Convert to Vector Selection


      	Copy, [1]

      
        	(Blending Mode)


        	(Sharp)


      


      	Copy Blue


      	Copy Green


      	Copy Layer


      	Copy Merged


      	Copy Red


      	Create Copy from Current Image


      	Create Template from Image...


      	Crop


      	Cross Channel Color Adjustment


      	CSV


      	Cumulate Undo


      	Current Selection


      	Current Time Scrubber:


      	Cursor


      	Curve and Color curve


      	Curve Brush Engine


      	Curves Filter


      	Cut, [1]

      
        	(Sharp)


      


      	Cut Layer


  





D


  	
      	Darken


      	Darker Color


      	Debug, [1], [2], [3]


      	Deep Color


      	Deform


      	Deform Brush Engine


      	Desaturation


      	Deselect


      	Detach Canvas


      	Difference


      	Digital Color Mixer


      	Dimetric


      	Display


  

  	
      	Display Selection


      	Dissolve


      	Dithering


      	Divisive Modulo


      	Divisive Modulo - Continuous


      	Dockers


      	Document


      	Document Information


      	Document Storage


      	Dodge, [1]


      	Driving Adjustment by channel


      	Dual Brush


      	Duplicate keyframe


      	Dyna


  





E


  	
      	Easy Burn


      	Edge Detection


      	Edit


      	Edit Selection


      	Edit State (Or layer Locking)


      	Ellipse, [1]


      	Elliptical Select


      	Emboss


      	EOTF


      	Equivalence


  

  	
      	Erase (Blending Mode)


      	Exclusion


      	Experiment Brush Engine


      	Export, [1], [2]


      	Export Advanced...


      	Export...


      	EXR


      	External File


      	Eye Tracker


      	Eyedropper


  





F


  	
      	FAQ


      	Feather Selection...


      	File Dialog


      	File Layers


      	Fill, [1], [2]


      	Fill Layer


      	Fill with Background Color

      
        	(Opacity)


      


      	Fill with Foreground Color

      
        	(Opacity)


      


      	Fill with Pattern

      
        	(Opacity)


      


      	Filter Brush Engine


      	Filters, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]


      	Finger


      	Flat Color


      	Flatten


      	float abs ( float x)


      	float acos ( float x )


      	float acosd ( float x )


      	float acosh ( float x )


      	float angle ( vector a, vector b )


      	float asin ( float x )


      	float asind ( float x )


      	float asinh ( float x )


      	float atan ( float x )


      	float atan2 ( float y, float x)


      	float atan2d ( float y, float x )


      	float atand ( float x )


      	float atanh ( float x )


      	float bias ( float x, float b)


      	float boxstep ( float x, float a )


      	float cbrt ( float x )


      	float ceil ( float x )


      	float cellnoise ( vector v )


      	float cellnoise1 ( float x )


      	float cellnoise2 ( float x, float y )


      	float cellnoise3 ( float x, float y, float z )


      	float choose ( float index, float choice1, float choice2, [...] )


      	float clamp ( float x, float lo, float hi )


      	float compress ( float x, float lo, float hi )


      	float contrast ( float x, float c )


      	float cos ( float x )


      	float cosd ( float x )


      	float cosh ( float x )


      	float curve ( float param, float pos0, float val0, int interp0, float pos1, float val1, int interp1, [...] )


      	float deg ( float x )


      	float dist ( vector a, vector b )


      	float dot ( vector a, vector b)


      	float E


      	float exp ( float x )


      	float expand ( float x, float lo, float hi )


      	float fbm ( vector v, int octaves=6, float lacunarity=2, float gain=0.5 )


      	float fbm4 ( vector v, float time, int octaves=6, float lacunarity=2, float gain=0.5 )


  

  	
      	float fit ( float x, float a1, float b1, float a2, float b2 )


      	float floor ( float x )


      	float fmod ( float x, float y )


      	float gamma ( float x, float g)


      	float gaussstep ( float x, float a, float b )


      	float hash ( float seed1, [float seed2, ...] )


      	float hypot ( float x, float y )


      	float invert ( float x )


      	float length ( vector v )


      	float linearstep ( float x, float a, float b )


      	float log ( float x )


      	float log10 ( float x )


      	float max ( float a, float b )


      	float min ( float a, float b )


      	float mix ( float a, float b, float alpha )


      	float noise ( float x, float y )

      
        	( float x, float y, float z )


        	( float x, float y, float z, float w )


        	( vector v )


      


      	float PI


      	float pnoise ( vector v, vector period )


      	float pow ( float x, float y )


      	float printf ( string format, [param0, param1, ...] )


      	float rad ( float x )


      	float rand ( [float min, float max], [float seed] )


      	float remap ( float x, float source, float range, float falloff, int interp )


      	float round ( float x )


      	float sin ( float x )


      	float sind ( float x )


      	float sinh ( float x )


      	float smoothstep ( float x, float a, float b )


      	float snoise ( vector v)


      	float snoise4 ( vector v, float t)


      	float spline ( float param, float y1, float y2, float y3, float y4, [...] )


      	float sqrt ( float x )


      	float tan ( float x )


      	float tand ( float x )


      	float tanh ( float x )


      	float trunc ( float x )


      	float turbulence ( vector v, int octaves=6, float lacunarity=2, float gain=0.5 )


      	float voronoi ( vector v, int type=1, float jitter=0.5, float fbmScale=0, int fbmOctaves=4, float fbmLacunarity=2, float fbmGain=0.5)


      	float wchoose ( float index, float choice1, float weight1, float choice2, float weight2, [...] )


      	Floating Point Color


      	Flow


      	Fog Darken


      	FPS


      	Frame


      	Frame Timing Header


      	Framerate


      	frames


      	Freehand, [1], [2]


      	Freehand Brush


      	Freeze Blending Mode


      	Frequently Asked Questions


  





G


  	
      	G'Mic


      	Game


      	Gamma


      	Gamma Dark


      	Gamma Illumination


      	Gamma Light


      	Gamut Mask


      	Gamut Mask Docker


      	Gamut Masks


      	Gaussian Blur


      	GBR


      	Generator


      	Geometric Mean


      	Getting started


      	GIF


      	GIH


  

  	
      	Gimp Brush


      	Gimp Image Hose


      	Glossing


      	Gradient, [1], [2], [3]


      	Gradient Brush Tips


      	Gradient Map


      	Gradients


      	Grain Extract


      	Grain Merge


      	Gray


      	Greater (Blending Mode)


      	Grid, [1], [2]


      	Grid Brush Engine


      	Groups


      	Grow Selection...


      	Guides, [1], [2]


  





H


  	
      	Hairy Brush Engine


      	Halftone, [1], [2], [3]


      	Handbook


      	Hard Light


      	Hard Mix

      
        	(Photoshop)


      


      	Hard Mix Softer (Photoshop)


      	Hard Overlay


      	Harmony Brush Engine


      	Hatching, [1]


      	Hatching Brush Engine


      	HD Index Painting


  

  	
      	HDR, [1]


      	hdr


      	HDR display


      	HDR Fileformat


      	HEIC


      	HEIF


      	Height Map, [1]


      	High Dynamic Range, [1]


      	High Efficiency Image Format


      	High Pass


      	Histogram, [1]


      	History


      	Hue, [1], [2], [3]


  





I


  	
      	ICC Profiles


      	Image, [1]


      	Image Hose


      	IMPLICATION


      	Import, [1]


      	import


      	Import Animation Frames...


      	Import Video Animation...


      	Indexed Color


      	Installation


  

  	
      	Instant Preview


      	int cycle ( int index, int loRange, int hiRange )


      	int pick ( float index, int loRange, int hiRange, [ float weights, ... ] )


      	Integers and Floats


      	Intensity, [1], [2]


      	Interpolation, [1]


      	Interpolation2x


      	Invert


      	Invert Selection


      	Isometric


      	Isometric Grid


  





J


  	
      	JPEG


      	JPEG XL


      	JPEG-XL


  

  	
      	JPEGXL


      	JPG


      	JXL


  





K


  	
      	Keyframe


      	Kinetic Scrolling


      	KPL, [1]


      	KRA


      	Krita Archive


      	
    krita command line option

      
        	--canvasonly


        	--dpi


        	--export


        	--export-filename


        	--export-sequence


        	--file-layer


        	--fullscreen


        	--nosplash


        	--template


        	--workspace


      


  

  	
      	Krita Palette, [1]


      	KRZ


  





L


  	
      	Label


      	Lag, [1]


      	Language


      	Layer Effects


      	Layer FX


      	Layer Menu:


      	Layer Style, [1], [2]


      	Layer Styles


      	Layers, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]


      	Lazybrush


      	Levels Filter


      	Lightness, [1], [2], [3]


      	Lightness Map


      	Line


      	Linear


      	Linear Burn


  

  	
      	Linear Color Space


      	Linked Clone


      	Liquefy


      	Liquify, [1]


      	Load, [1]


      	Load Existing Thumbnail


      	Load Image


      	Locked Brush Settings


      	Log


      	Log Viewer


      	Look and Feel


      	Look Up Table


      	lossless


      	lossy


      	Luma, [1], [2]


      	Luminosity, [1], [2]


      	LUT Management


  





M


  	
      	Macro, [1]


      	Macrocell


      	Magic Wand


      	Magnet


      	Magnetic Selection


      	Mandala


      	Masked Brush


      	Masks, [1], [2], [3], [4], [5], [6]


      	Mass Tagging


      	Maths


      	Maximum Brush Size


      	Measure


      	Memory Storage


  

  	
      	Memory Usage


      	Mesh


      	Metadata, [1], [2], [3]


      	Metamerism


      	Mirror, [1], [2]


      	Modulo, [1]


      	Modulo - Continuous


      	Modulo Shift


      	Modulo Shift - Continuous


      	Move


      	Multibrush


      	Multigrid


      	Multithreading


      	MyPaint Brush Engine


  





N


  	
      	Name


      	NAND


      	Navigation, [1]


      	Negation


      	Negative, [1]


      	New, [1], [2]


      	New File


  

  	
      	No Smoothing


      	NOR


      	Normal (Blending Mode)


      	Normal Map, [1], [2], [3]


      	Normalize


      	NOT CONVERSE


      	NOT IMPLICATION


  





O


  	
      	OCIO, [1]


      	Offset


      	Offset and Power Curves


      	Onion Skin, [1], [2]


      	Opacity, [1]


      	Open


      	Open existing Document as Untitled Document...


      	Open or Close Layers


      	Open Raster Archive


      	Open Recent


  

  	
      	Open...


      	OpenEXR


      	OpenGL


      	Optimising Images


      	OR


      	ORA


      	Orthogonal Grid


      	Orthographic


      	Outline Select


      	Overlay (Blending Mode)


      	Overview


  





P


  	
      	Paint Layer


      	Painting Assistants, [1], [2]


      	Paintop Presets, [1]


      	PaintTool SAI


      	Palette


      	Palettes


      	Palettize


      	Pan, [1]


      	Parallel


      	Particle Brush Engine


      	Pass-through mode


      	Passthrough Mode, [1]


      	Paste, [1]


      	Paste as Reference Image


      	Paste at Cursor


      	Paste into Active Layer


      	Paste into New Image


      	Paste Layer


      	Paste Shape Style


      	Path, [1], [2]


      	Pattern, [1]


      	Patterns, [1], [2]


      	PBM


      	PDF


      	Pen, [1]


      	Penrose


      	Penumbra A


      	Penumbra B


      	Penumbra C


      	Penumbra D


  

  	
      	Performance, [1]


      	Perlin Noise


      	Perspective, [1], [2]


      	Perspective Projection


      	PGM


      	Photoshop


      	Photoshop Document


      	Physical Disability


      	Pixel Brush Engine


      	Pixel Grid


      	Play/Pause


      	Plugin, [1]


      	plugin, [1]


      	PNG


      	Polygon, [1]


      	Polygonal Selection


      	Polyline


      	Pop up palette


      	Pop-up Palette, [1], [2], [3]


      	portable network graphics


      	PPM


      	Preferences, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]


      	Preset


      	Presets


      	Pressure Curve


      	Prewitt


      	Profiling


      	Projection, [1], [2], [3]


      	PSD


      	Python, [1], [2], [3], [4]


      	Python Scripting, [1], [2]


  





Q


  	
      	Quadratic


      	Quasicrystal


  

  	
      	Quick Brush Engine


      	Quit


  





R


  	
      	RAM


      	Random Noise


      	Raster, [1]


      	Ratio


      	Real Color


      	Recorder


      	Rectangle, [1]


      	Rectangular Selection


      	Redo, [1], [2]


      	Reference, [1]


      	Render Animation


      	Render Animation...


      	Render Script to Thumbnail


  

  	
      	Reselect


      	Resize


      	resource, [1]


      	Resource Bundle


      	Resource Cache


      	Resource Folder


      	Resources, [1], [2], [3], [4], [5], [6], [7]


      	Reusable Vector Shapes


      	RGB Curves


      	Rhombs


      	Rosemåling


      	Rotate


      	Rotational Symmetry


  





S


  	
      	SAI


      	Saturation, [1], [2], [3], [4]


      	Save, [1], [2], [3]


      	Save As...


      	Save Incremental Backup


      	Save Incremental Version


      	Saving


      	Scalable Vector Graphics Format


      	Scale


      	Scale...


      	Scene Linear


      	Scene Linear Painting


      	Scene Referred


      	Screen


      	Screen Cell


      	Screen Grid


      	Screentone


      	Scripting, [1]


      	Scripts, [1]


      	Scumbling


      	SeExpr, [1], [2]


      	Select All


      	Select from Color Range...


      	Select Opaque


      	Selection, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]


      	Selections


      	Separate Image


      	Sessions, [1], [2]


      	Settings, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]


      	Shade


      	Shape Brush Engine


      	Shape Edit


      	Shape Selection


      	Sharpen


      	Sharpness


      	Shortcuts


      	Show Global Selection Mask


      	Shrink Selection...


      	Similar Selection


      	Simplex Noise


  

  	
      	Sketch Brush Engine


      	Slope


      	Small Color Selector


      	Small Tiles


      	Smart Patch


      	Smooth


      	Smudge, [1]


      	Snap


      	Snapshot


      	Sobel


      	Softproofing, [1]


      	Sound


      	Source Over


      	Spacing


      	Specific Color Selector


      	Speed


      	Speedpaint


      	Split Channels


      	Splitting, [1]


      	Spot Function


      	Spray Brush Engine


      	Stabilizer


      	Stacked Brush


      	Storyboard, [1]


      	Storyboarding


      	Straight Line


      	String


      	string sprintf ( string format, [double|string, double|string, ...] )


      	Stroke


      	Stroke Selected Shapes


      	Stroke Selection


      	Subwindow Documents


      	Sumi-e


      	SVG, [1]


      	SVG Symbols


      	Swatch


      	Swatches


      	Symbol Libraries


      	Symbol Library


      	Symmetry, [1]


  





T


  	
      	Tabbed Documents


      	Tablet, [1]


      	Tablet UI


      	Tablets, [1], [2]


      	Tagged Image File Format


      	Tagging


      	Tags


      	Tangent Normal Brush Engine


      	Task Sets


      	Technical Drawing


      	Template, [1], [2], [3]


      	Text


      	Texture


      	Theme


      	Themes


      	Threshold


  

  	
      	Thumbnail Image


      	TIF


      	TIFF


      	Tiles


      	Time lapse


      	Timeline, [1]


      	Tone Response curve


      	Toolbar


      	Tools, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37]


      	Touch


      	Transfer Curve


      	Transform, [1], [2], [3], [4], [5]


      	Transparency, [1], [2]


      	Transparency Checkers


      	Trim, [1]


      	Tweening


  





U


  	
      	Undo, [1], [2]


  

  	
      	Undo History Docker


      	User Interface


  





V


  	
      	Value, [1], [2], [3]


      	Variable Width Stroke


      	Vector, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]


      	vector cross ( vector a, vector b )


      	Vector Library


      	vector norm ( vector v )


      	vector ortho ( vector a, vector b )


      	vector pvoronoi ( vector v, float jitter=0.5, float fbmScale=0, int fbmOctaves=4, float fbmLacunarity=2, float fbmGain=0.5)


      	vector rotate ( vector v, vector axis, float angle )


  

  	
      	vector up ( vector v, vector up )


      	vector vfbm ( vector v, int octaves=6, float lacunarity=2, float gain=0.5 )


      	vector vfbm4 ( vector v, float time, int octaves=6, float lacunarity=2, float gain=0.5 )


      	vector vnoise (vector v )


      	vector vnoise4 (vector v, float t )


      	vector vturbulence ( vector v, int octaves=6, float lacunarity=2, float gain=0.5 )


      	video import


      	View, [1], [2]


      	Viewing Conditions


      	Visibility


  





W


  	
      	Warp


      	Wavelet Decompose


      	WebP


      	Weighted Smoothing


      	Welcome Screen


  

  	
      	Wide Gamut Color Selector


      	Window, [1]


      	Window Layouts


      	Workspace


      	Workspaces


      	Wrap Around Mode


  





X


  	
      	XNOR


  

  	
      	XOR


  





Z


  	
      	Zoom, [1]


  

  	
      	Zoom Handle:


      	Zoomable Scrollbar


  







            

          

      

      

    

  
_images/bilinear.png





_images/projection_image_10.png
© File Edit View Image Layer Select Fitter Jools Settings Window Help

(A e - e - e o o WS

To.. 8% AdvancedC... | SpecificC... | Co.
NT @ Advanced Color Selector & x
@
=] 2
S/
oo
(o2
nT
29
i3
N
&2 Lay.. | BrushPres..  Tool Optio...
~ @ Layers ax
[E] Normal -la
G : 51% <
guide-lines L e-1)
- BTop Tax
Top-slices 5 Aol
Top-slices 4 Taa
Top-slices 3 Taax
Top-slices 2 Taax
. Top-slices 1 Taax
G Top-slices 0 Tax
frontview Tax
sideview T
<« 3 ~E v A= .
~ @ Timeline &% Animation | Onion Skins
= o0 3 6 9 215 1 A 2 27 30 336 39 42 gl e
quideines ® = i ¢ [l 23 q start: 0 3
» )
Top-siices 5 ® m i ¢ [l = B

fontview @ m ok o [l]
deview ®moie[l]

|
‘

LA R S N T

Play Speed: 100 2|

Frame Rate: 24 2

B RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc 1280 x 1568 (19M) FitPage —0) -]





_images/projection_image_11.png
© File Edit View Image Layer Select Filter Jools Settings Window Help
=[S Il & [ opacity: 100 |2~ [ Sbe: 2500px =~ [N (B2 =]

58] [Normat

AdvancedC... | SpecificC... | Co.
NT @ Advanced Color Selector &
/4

=]

S/

oo

or

AT

27

=3

N
Lay. Brush Pres... | Tool O]
L Xd @ Tool Options
[E] o Rotate
——— scale
-, Shear
x o &
y: o &
z 450 3
oo [ Reset | | Apphs

Animation | Onion Skins
~ @ onion skins

KR EEPERERIE

—————NE 50%

« m [ | Previous frames Next frames |

3 6 9 12 15 18 2 u 2 30 33 3% 30 4

o

B RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc 1280 x 1568 (19M) FitPage —0) -]





_images/projection_image_12.png
® File Edit View Image Layer Select Filter Jools Settings Window Help

(A e - e Ce n o WS

To.. 8% AdvancedC... | SpecificC... | Co.
NT @ Advanced Color Selector & x
/4
=] B
rive
oo
or
AT
27
=3
N
Lay..  BrushPres..  Tool Optio...
~ @ Tool Options
L X4 ) P
o Basic Smoothing =

Assistant:
snap single: v

¢ o
~ @Timeline 8% | pnimation | Onion skins
= zo 3 & o 5 1w o2 2w om % om @ goi s
animation_® m o ¢ [l
tadaneaaasd REALERA LA

Topsiices s ® m ok ¢ ]
frontview @ ml O
BN « ullllimlii

[ |
o 51 [ | Previous frames  Next frames

B RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc 1280 x 1568 (41M) 3% =0 -]





_images/blue-and-green-selections.png





_images/projection_image_13.png
© File Edit View Image Layer Select Filter Jools Settings Window Help

(A e - e - e o o WS

To.. 8% AdvancedC... | SpecificC... | Co.
NT @ Advanced Color Selector & x
/4
=] B
rive
oo
or
AT
27
j=Ro
+ N

Lay..  BrushPres..  Tool Optio...
& ~ ool Options 5
o Basic Smoothing =

Assistant:

Snap single: v

< D

~ @ Timeline & X animation | Onion Skins

= o0 3 6 9 215 1 2 % 27 30 336 39 42 gl e

animation® @ o ¥ [l 0 Start: 0 3
11 £ End: 23 B

LA I S I T

Play Speed: 100 2|

Frame Rate: 24 2

‘<

[Z] inking_brush_new RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc 1280 x 1568 (59M) 33% = -]





_images/brush_tip_modes.png





_images/projection_image_14.png
© File Edit View Image Layer Select Filter Jools Settings Window Help

PE®

23 |Normal

Bl T

<

¥ @Timeline
= o0 6 9 2 15 18 o2
animation @ m O ¥

guide-ines 2w (K ¢
Top-slices 5 ® w OX¥H ¢
Top-slices0 ® m OCEN ¢

frontview  ® @ XM ¥

sideview  ®m oo [l

‘

B RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc

MICIIL e B - B oo -

2

&x

27 0 33 3% 30 4

>
1280 1568 (33M)

>

Animation
~ @ onion skins

[
& x

Advanced

Specific C..
~ @ Advanced Color Selector

2

| Lay.. | Brushpres..
@ Layers

Normal

Tool Optio...

animation

guide-lines
- ETop

Top-slices 5

“Top-slices 4

Topslices3 @
“Topslices2  Bm

Topslices1  ® @
OTopslices 0 ®m X
frontview Taa
sideview Tax

TE-O v A=

Onion skins
ax

R ERPERRRIMMECREEEREED

____E] <
| Previous frames Next frames
50% — [}





_images/brush_painting_mode.png
v General [] Painting mode
Brush Tip
Blending Mode Build up
Opacity

Flow © Wash
Size
Ratio Painting mode: Krita offers a choice between two painting modes: buildup and wash. The
Spacing first choice builds up color while painting in one stroke, the Second choices gives you an
Mirror even color in one stroke even if you go over the same place again and again.

] Softness

[ Rotation

(] sharpness
] Lightness str.
O scatter

2 Color
Source

] parken

L] Mix

] Hue

] saturation
O value

(] Airbrush

] Rate

Texture
Pattern
Strength

v Masked Brush
] Brush Tip

] opacity

O size

] Flow

] Ratio

] Rotation






_images/projection_image_15.png
© File Edit View Image Layer Select Filter Jools Settings Window Help

D new Plopen [ swe 7. [28] [Nomat

B RGB (16-bit integer/channel) sRGB-elle-V2-gl0.icc

1280 %1024 (10.0M)

Tool Options | Toolbox

N LTS, BE

S /70002 RT2
204N 20E

N

Normal

= B7 tayer2
@1 tayer





_images/brushengine_paint_thickness_strength.png





_images/brushengine_smudge_hue_variance.png





_images/projection_image_06.png
L) splitlayer-kita 2 v A @

v Butall new layers in a group layer
Put every layer in its own, separate group Layer
Alpha-lock every new Layer

v Hide the original Layer

v Sort layers by amount of non-transparent pixels

v Disregard opacity.

Fuzzness: CENE

Split a layer according to color

Creates a new layer for every color in the active
layer.

©Cancel






_images/projection_image_07.png
® Layer Properties — Krita ?2vAaAQ

v ‘ame: [Top| Properties Active Channels
Opacity: 100% £ v ® visible v Blue
Composite mode: | Normal - @ Locked v Green
Color space: RGB (8-bit integer/channel) 6 Inherit Alpha v Bed
Profile: sRGB-elle-V2-srgbtrcicc P E— 7
Colorlzbel:  mEEEEEEEE
VoK ©cancel
Opacity: 100% E

< lC

B rops - o
WP rops et
| EACE et
WP o2 et
| EACH et
BEC topo T
ED frontview = ol

O sideview sl
8 Transformmask 1 @

0 v A=






_images/projection_image_08.png
~ @ Layers
Normal
Opacity: 100%

W © Top-siices 5
M © Topsiices 4
Il © Top-siices 3
I © Top-siices 2
Il © Top-siices 1
W C ropiceso

@ IE © frontview

® B O sideview

&

8 Transform mask 1

O v A=






_images/projection_image_09.png
© File Edit View Image Layer Select Filter Jools Settings Window Help BE®

El R

F wlQO% @
¢ 3AVON

N
LW
[E]

¥ @Timeline

2] & 0
fonview ® a i@ ¢ [l]
sideview ®m ot il

7<) W S [ omay

Advanced C... | SpecificC.. | Co.
~ @ Advanced Color Selector & x

=]

Lay.. | BrushPres..  Tool Optio...
~ @ Layers ax
Normal ~ 2

~ “ETop Tax

Top-slices 5 Tax

Top-slices 4 Tax

Top-slices 3 Tax

Top-slices 2 Tax

. Top-slices 1 Tax

& Top-slices 0 Tax

frontview Tax

sideview T

5 0 v A= &
& X animation | Onion Skins

6 9 21 1 2 #2730 336 39 42 gl ax
| ] 2q - e E
| M End: 24 g

LU IR S TR

Play Speed: 100 2|

Frame Rate: 24

o

RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrcicc 1280x 1568 (16M) FitPage = -]





_images/projection_image_21.png





_images/projection_image_22.png





_images/projection_image_23.png





_images/White_point_mixup_ex1_03.png





_images/projection_image_24.png
Layers | Brush Presets  Tool Options

opb-Be s Free Transform

Filter:  Bilinear [

B Rotate
lalal
Scale

Shear






_images/advanced-settings-tablet.png
Select area your tablet s mapped to:

© Use information provided by tablet
Map to entire virtual screen (0, 0 3840 x 1080)
Map to custom area
wadth:  3840pc 3| Xoffset: Opx

Height: 1080px 2| Yoffset: Opx





_images/projection_image_25.png
<






_images/advanced-color-selector.png
‘Advanced Color Selector o x






_images/antialias_threshold.png
T T ——

e
Ty Ty ™ —





_images/animation_walkcycle_2021_4_frames.gif
\{/\

~_

Q/\\/
L





_images/autosave_named_restore.png
A Do you want to open the autosaved file instead?

Yes No Cancel





_images/autosave_unnamed_restore.png
Recover Files - Krita 2vAQ

ving autosave file can be recovered:

v Krita-1254

ument_i-autosave.kra (24-04-2019 13:13)

If you select Cancel, all recoverable files will be kept.
If you press OK, selected files will be recovered, the unselected files discarded.

Discard Al | voK || ©gancel





_images/projection_image_16.png





_images/projection_image_17.png
Layers | Brush Presets  Tool Options
crop

g 0P~ ] @ 2619px 3

& opx [ ]
Center & wsepx I
v Grow a9 B
Applies to: Image -

Decoration: Thirds -
Crop





_images/projection_image_18.png
Layers | Brush Presets Tool Options

op-Be s Free Transform

Filter: [Bilinear ~ Position
o Rotate
scale

Shear






_images/projection_image_19.png
® Rotatkita ? v A @

Orientation
Dleft o € Right
Angle

90 degrees
180 degrees

270 degrees

o custom: [30,00°

voK || ocancl |






_images/projection_image_20.png





_images/controls_overview.png
b) Basic-5 Size 2
@ Ficlengine (@ A

The list of PaintOp's options it e 2
(KisPaintOpOption) (KisCurveOptionData)
v General =) -
Brush Tip o stenghnoon

Blending Mode
e v Enable pen Settings ZNENEREEE
— o
Rati |viPressure
Spacing Pressurein
Mirror Tangential pressure
] Softness Drawing angle
] Rotation X-Tilt
[ sharpness Y-Tile % 2
Lightness Str Tilt direction
] scateer Tit elevation
v color Rotation
Source Fuzzy Dab
] Darken Fuzzy Stroke
] mix Speed &
(] Hue Fade
] saturation Distance 00 % = 10
] value Time
[ Airbrush Perspective v Share curve across all settings
] Rate -
Painting Mode Curves calculation mode: |multiply -
v exture
Pattern
Strength
¥ Masked Brush
H gt e Sensors
] size (KisSensorData)
] Flow I
[ Ratio
] Fotation &






_images/Krita_filling_lineart15.png
iew Image Layer Select Filter Tools Settings Window Help
/. B8 L- I New layer from visible

Tool Options  Toolbox

AT °E s

and Gui LUT Manat

A onMa

© B ° Layervipasted)
C B Layer2

RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc 807 x1018 (6.





_images/colorize-lock-icon.png





_images/projection_image_32.png





_images/colorize-edit-key-strokes-icon.png





_images/projection_image_33.png
Layers | Tool Options

~ @ Tool Options

Rotation

x o0

=






_images/Krita_filling_lineart17.png
Fill_circle

RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc

NulE

Dl

807x1018 (9.9M)

New layer from visible

Options  Toolbox
* + @Toolbox
AT B
B/ O00O0»RT>2
OeEN &SI N

R LU

Grid and G LUT Managem..

~@Layers






_images/colorize-update-icon.png





_images/projection_image_34.png





_images/Krita_filling_lineart16.png
i

Fill_circle

RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc

»
807 x1018 (6.6M)

Tool Options | Toolbox
¥ @Toolbox

AT ° B
B/ooor»nT>7
O¢EON & L@ N

R AU






_images/colorize-show-output-icons.png





_images/projection_image_35.png





_images/Krita_filling_lineart2.png





_images/Krita_filling_lineart18.png
Edit View Image Layer Select

BL |~ 22 INormal

o
g
o

MIOOM

MEOOM

[ paint_opaque_round

Filtler Tools Settings Window Help

EI@_

200 400

RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc

- 3845px o- A ¥

500 600

807 x 1018 (12.2M)

New layer from visible L
Tool Options  Toolbox
&x
B/ooor»nT>7
DHEON 2T N
K24 AU
Grid and Gu LUT Manage
ayers &x
v
® B ¥ Layer 7(pasted) a
* Bl Y tayer2
® w  green ]
®  v| 7 skin ]
® ™ hai a »
[
— -]





_images/Krita_filling_lineart8.png





_images/conical.png





_images/Krita_filling_lineart7.png





_images/compact_stop_gradient_editor.png





_images/Krita_filling_lineart_color_to_alpha.png
Layers

Normal

Opacity: 100% <
© @Y lineart

\\

Filter: Color to Alpha — Krita

2V

L
_ [J Use last preset | Edit Presets XML

Hv O v A

Color Picker:

lThresho\d: e 100

O W Preview

o

Create Filter Mask v OK © Cancel





_images/Krita_filling_lineart9.png
‘. B8 Normal - [Siz8! 50.00 px

400






_images/conical_symmetric.png





_images/projection_image_26.png
Layers | Brush Presets  Tool Options

opb-BCe s Free Transform

Filter: [Bilinear ~ Position
Rotate
scale

o Shear






_images/Krita_filling_lineart_mask_1.png





_images/projection_image_27.png





_images/projection_image_28.png





_images/projection_image_29.png
Advanced Color Sel...  Specific Color Sele...  Color Sli...

“ v @ advanced Color selector & x

2

¥ @ Toolbox

AN LTES ° e

S,oO000rRT27 04N

Grid and Guides | Layers | Tool Options

~ @ Layers

Opacity: 19%






_images/projection_image_30.png





_images/projection_image_31.png





_images/recorder_docker.png
Recordings directory: .

/homefwolthera/KritaRecorder =]
Capture interval: ‘ 1 sec. )
[ 1

Format: | JPEG i

. [ 1

Resolution: | Half (620x876) v

[] Record in isolate mode

[ Record automatically

| @ Record | = Export... |





_images/recorder_docker_snapshot_manager.png
9 Clean up Recordings — Krita v Q9

Please select recordings to remove

Select All

Preview ~ Name Size Last Modified

(m] 20210501224307  19.62 MiB 06-05-2021 15:20

(] 20210506211408  276.53 MiB  07-05-202101:18
20210507213059  1.32 GiB 09-05-2021 19:26

Space to be freed: 0B

Close Clean U





_images/brushengine_smudge_radius.png
N/A






_images/brushengine_smudge_length_smear_alpha.png





_images/bugzilla_simple.png
Before reporting a bug, please read the KDE bug reporting instructions, please look at the list of most frequently reported bugs, and
please search for the bug.

Show Advanced Fields

* Product:

Component:

* Version:

* Summary:

Description:

Attachment:

krita

*
Filters

(* = Required Field)

Reporter:

Component Description —|

G'Mic for Krita Filter plugins

General |

HDR

Instant Preview

Layer Stack

layer styles

43.0 Severity:  pormal v

4.4.0 .

i 05 Linux @

4.4.3-betal
We've made a guess at your operating system and platform.
Please check them and make any corrections if necessary.

Comment Preview

EXPECTED RESULT

SOFTWARE/0S VERSIONS
Windows :

mac0s:

Linux/KDE Plasma:
(available in About System)
KDE Plasma Version:

Add an attachment

Submit Bug






_images/color-lineart.png





_images/color_dodge.png





_images/color_burn.png





_images/projection_image_36.png





_images/projection_image_37.png





_images/projection_image_38.png





_images/projection_image_39.png





_images/projection_image_40.png





_images/radial.png





_images/Tut_Clipping_7.png
[CINC NG )

O 9

[CINCINCINC]

L]

Opacity: 100%
M 7 eye-whites
B Clipping Group 11
B9 E Layerts
B ¥ darkerbits
B erasela...

R %





_images/Vector-pixel-selections.jpg
Tool Options

Rectangular Selection

woce: ||






_images/Tut_clip_blur.gif
ooy S~
Opacity: 100% B

® R P cipping Group 11 =

® B © bluriayer @ o

® 8 Layer16 s

® B ¥ darkerb... & €€

. B e

® B ¥ basesh

® BT sy 3

) Y s &«

® [ 3

® B ® nigh-iig

® 9 hair

<

W ¥ lightgreen

B © ciipping Group 10
P Mask Layer &«
B skin

WS ayers

)

o

® o

[§)

Oov A= &






_images/Vectorguides.png





_images/Vector-right-click-menu.png
Bring to Front

Rai

Lower






_images/Wavelet_decompose.png
Visible: Yes -

Alpha Locked: No






_images/Vectorlayer.png





_images/White_point_mixup_ex1_02.png





_images/snapshot-docker.png
‘Snapshot Docker B
Snapshot 1
Snapshot 2
anotherone |






_images/solution1_roundup_buffer_size.png
oufter of 10 pixels
actually has 16
vixels allocated

_mm256_mul_ps _mm256_mul_ps

multiplies unused pixels
reads first 8 pixels v )
at the end of the buffer





_images/solution2_rounding_artifacts1.png
[Not Saved] (78.3 MiB) * — Krita

subtle rounding artifacts!

Opacity: 68%

P paint Layer 2






_images/solution2_two_versions_of_the_algorithm.png
buffer ot
10 pixels | | ‘ l

[

_mm256_mul_ps

X A
_mm_mul_ss

rends st il using_

vector instructions.

“scalar’ way





_images/spiral.png





_images/square.png





_images/stop_gradient_editor_breakdown.png





_images/storyboard_SVG_layout.png
file1.pdf

PPV A TN
|Action : Bella lies down on the
sofa, tired. The room is dimly

/Action : Bella puts all the money that | ;¢

she has on the table. It is only a dollar Dialogue : | like sleeping so

and 27 cents. Bella gets sad. much.

Dialogue : Bella (to herself) : This is so

little. What would | get with this?

Kcene 3

/ | ¢ - 4
L RENAN B — N\

|Action : Bella looks out the /7 ~ / p

window absent-mindedly. // ]/ %A J ‘a7 /)

Suddenly she turns around. / LS /7S

Dialogue : IAction : Bella looks at her hairs in the
mirror. Deciding to give away her hairs
for money.
Dialogue :

Layout in SVG file Exported PDF document

Export Storyboard as PDF - Krita

Frame number of first item to render: 0

Frame number of last item to render: 30|

Rows per page :

Columns per page :

Font Size :

Page Size :

Page Orientation :

v Specify Layout Using SVG file

SVG file for specifying layout :

Jownloads/sb.svg B

Export File Name : >wnloads/filel.pdf B

Export Cancel






nav.xhtml

    
      Table of Contents


      
        		
          Welcome to the Krita 5.2 Manual!
        


        		
          User Manual
          
            		
              Getting Started
              
                		
                  Installation
                


                		
                  Starting Krita
                


                		
                  Basic Concepts
                


                		
                  Navigation
                


              


            


            		
              Introduction Coming From Other Software
              
                		
                  Introduction to Krita coming from Photoshop
                


                		
                  Introduction to Krita coming from Paint Tool SAI
                


              


            


            		
              Drawing Tablets
              
                		
                  What are Tablets?
                


                		
                  Supported Tablets
                


                		
                  Drivers and Pressure Sensitivity
                


                		
                  Where it can go wrong: Windows
                


                		
                  Wacom Tablets
                


              


            


            		
              Loading and Saving Brushes
              
                		
                  The Brush settings drop-down
                


                		
                  Making a Brush Preset
                


                		
                  Sharing Brushes
                


              


            


            		
              On-Canvas Brush Editor
            


            		
              Mirror Tools
              
                		
                  Mirroring along a rotated line
                


              


            


            		
              Painting with Assistants
              
                		
                  Types
                


                		
                  Setting up Krita for technical drawing-like perspectives
                


              


            


            		
              Working with Images
              
                		
                  What do Images Contain?
                


                		
                  Metadata
                


                		
                  Image size
                


                		
                  Author and Description
                


                		
                  Cropping and resizing the canvas
                


                		
                  Resizing the canvas
                


                		
                  Saving, Exporting and Opening Files
                


              


            


            		
              Saving, AutoSave and Backup Files
              
                		
                  Saving
                


                		
                  AutoSave
                


                		
                  Backup Files
                


              


            


            		
              Templates
              
                		
                  Animation Templates
                


                		
                  Comic Templates
                


                		
                  Design Templates
                


                		
                  DSLR templates
                


                		
                  Texture Templates
                


              


            


            		
              Introduction to Layers and Masks
              
                		
                  Managing layers
                


                		
                  Types of Layers
                


                		
                  How are layers composited in Krita?
                


                		
                  Inherit Alpha or Clipping layers
                


                		
                  Masks and Filters
                


              


            


            		
              Selections
              
                		
                  Creating Selections
                


                		
                  Editing Selections
                


                		
                  Removing Selections
                


                		
                  Display Modes
                


                		
                  Global Selection Mask (Painting a Selection)
                


                		
                  Selection from layer transparency
                


                		
                  Pixel and Vector Selection Types
                


                		
                  Common Shortcuts while Using Selections
                


              


            


            		
              Python Scripting
              
                		
                  Managing Python plugins
                


                		
                  Introduction to Python Scripting
                


                		
                  How to make a Krita Python plugin
                


              


            


            		
              Tag Management
              
                		
                  Adding a New Tag for a Brush
                


                		
                  Assigning an Existing Tag to a Brush
                


                		
                  Changing a Tag’s Name
                


                		
                  Deleting a Tag
                


              


            


            		
              Soft Proofing
              
                		
                  Out of Gamut Warning
                


              


            


            		
              Vector Graphics
              
                		
                  What are vector graphics?
                


                		
                  Tools for making shapes
                


                		
                  Arranging Shapes
                


                		
                  Editing shapes
                


                		
                  Working together with other programs
                


              


            


            		
              Snapping
            


            		
              Animation with Krita
              
                		
                  Workflow
                


                		
                  Introduction to animation: How to make a walk cycle
                


              


            


            		
              Japanese Animation Template
              
                		
                  Basic structure of its layers
                


                		
                  Its layer contents
                


                		
                  Basic steps to make animation
                


              


            


            		
              Gamut Masks
              
                		
                  Selecting a gamut mask
                


                		
                  In the color selector
                


                		
                  Editing/creating a custom gamut mask
                


                		
                  Importing and exporting
                


              


            


          


        


        		
          General Concepts
          
            		
              Colors
              
                		
                  Bit Depth
                


                		
                  Color Managed Workflow
                


                		
                  Mixing Colors
                


                		
                  Color Models
                


                		
                  Color Space Size
                


                		
                  Gamma and Linear
                


                		
                  Profiling and Calibration
                


                		
                  Scene Linear Painting
                


                		
                  Viewing Conditions
                


              


            


            		
              File Formats
              
                		
                  Compression
                


                		
                  Metadata
                


                		
                  Openness
                


                		
                  Contents
                


              


            


            		
              Perspective Projection
              
                		
                  Orthographic
                


                		
                  Oblique
                


                		
                  Axonometric
                


                		
                  Perspective Projection
                


                		
                  Practical
                


                		
                  Conclusion and afterthoughts
                


              


            


          


        


        		
          Reference Manual
          
            		
              Audio for Animation
              
                		
                  Importing Audio Files
                


                		
                  Using Audio
                


                		
                  Exporting with Audio
                


              


            


            		
              Blending Modes
              
                		
                  Favorites
                


                		
                  Hotkeys associated with Blending modes
                


                		
                  Available Blending Modes
                


              


            


            		
              Brushes
              
                		
                  Brush Engines
                


                		
                  Brush Settings
                


              


            


            		
              Clones Array
            


            		
              Create New Document
              
                		
                  Custom Document
                


                		
                  Create From Clipboard
                


                		
                  Templates:
                


              


            


            		
              Pre-installed Python plugins
              
                		
                  Usability
                


                		
                  Workflow Improvements
                


                		
                  Image/Document Actions
                


                		
                  File Actions
                


                		
                  Python Scripting
                


              


            


            		
              Dockers
              
                		
                  Add Shape
                


                		
                  Advanced Color Selector
                


                		
                  Animation Curves Docker
                


                		
                  Animation Docker
                


                		
                  Animation Timeline Docker
                


                		
                  Arrange
                


                		
                  Artistic Color Selector Docker
                


                		
                  Preset Docker
                


                		
                  Brush Preset History Docker
                


                		
                  Channels
                


                		
                  Color Sliders
                


                		
                  Compositions
                


                		
                  Digital Color Mixer
                


                		
                  Gamut Masks Docker
                


                		
                  Grids and Guides Docker
                


                		
                  Histogram Docker
                


                		
                  Layers
                


                		
                  Log Viewer
                


                		
                  LUT Management
                


                		
                  Onion Skin Docker
                


                		
                  Overview
                


                		
                  Palette Docker
                


                		
                  Patterns Docker
                


                		
                  Recorder Docker
                


                		
                  Reference Images Docker
                


                		
                  Shape Properties Docker
                


                		
                  Small Color Selector
                


                		
                  Snapshot Docker
                


                		
                  Specific Color Selector
                


                		
                  Storyboard Docker
                


                		
                  Task Sets Docker
                


                		
                  Touch Docker
                


                		
                  Undo History
                


                		
                  Symbol Libraries
                


                		
                  Wide Gamut Color Selector
                


              


            


            		
              Dr. MinGW Debugger
              
                		
                  Using the Debug Package
                


                		
                  Getting a Backtrace
                


              


            


            		
              Filters
              
                		
                  Adjust
                


                		
                  Artistic
                


                		
                  Blur
                


                		
                  Color
                


                		
                  Edge Detection
                


                		
                  Emboss
                


                		
                  Enhance
                


                		
                  Map
                


                		
                  Other
                


                		
                  Wavelet Decompose
                


              


            


            		
              HDR Display
              
                		
                  Configuring HDR
                


                		
                  Painting in HDR
                


                		
                  Exporting HDR
                


                		
                  HDR Metadata
                


              


            


            		
              Image Split
            


            		
              Import Animation
              
                		
                  Import Frames
                


                		
                  Import video file
                


              


            


            		
              Instant Preview
              
                		
                  Activating Instant Preview
                


                		
                  Tools that benefit from Instant Preview
                


              


            


            		
              Krita 4 Preset Bundle Overview
              
                		
                  Erasers
                


                		
                  Basics
                


                		
                  Pencils
                


                		
                  Inking
                


                		
                  Markers
                


                		
                  Dry Painting
                


                		
                  Dry Painting Textured
                


                		
                  Chalk, Pastel and Charcoal
                


                		
                  Wet painting
                


                		
                  Watercolors
                


                		
                  Blender
                


                		
                  Adjustments
                


                		
                  Shapes
                


                		
                  Pixel
                


                		
                  Experimental
                


                		
                  Normal Map
                


                		
                  Filters
                


                		
                  Textures
                


                		
                  Stamps
                


              


            


            		
              Layers and Masks
              
                		
                  Clone Layers
                


                		
                  File Layers
                


                		
                  Fill Layers
                


                		
                  Filter Layer
                


                		
                  Filter Masks
                


                		
                  Group Layers
                


                		
                  Layer Styles
                


                		
                  Paint Layers
                


                		
                  Selection Masks
                


                		
                  Split Alpha
                


                		
                  Transform Masks
                


                		
                  Transparency Masks
                


                		
                  Vector Layers
                


              


            


            		
              Linux Command Line
              
                		
                  Export
                


                		
                  PDF export
                


                		
                  Open with Custom Screen DPI
                


                		
                  Open template
                


                		
                  Start up
                


              


            


            		
              The List of Supported Tablets
            


            		
              Main Menu
              
                		
                  Edit Menu
                


                		
                  File Menu
                


                		
                  Help Menu
                


                		
                  Image Menu
                


                		
                  Layers Menu
                


                		
                  Select Menu
                


                		
                  Settings Menu
                


                		
                  Tools Menu
                


                		
                  View Menu
                


                		
                  Window Menu
                


              


            


            		
              Maths Input
              
                		
                  Possible Functions
                


                		
                  Order of Operations.
                


                		
                  Errors
                


              


            


            		
              Pop-up Palette
            


            		
              Preferences
              
                		
                  Author Profile Settings
                


                		
                  Canvas Input Settings
                


                		
                  Canvas Only Mode
                


                		
                  Color Management Settings
                


                		
                  Color Selector Settings
                


                		
                  Display Settings
                


                		
                  G’Mic Settings
                


                		
                  General Settings
                


                		
                  Performance Settings
                


                		
                  Pop-up Palette Settings
                


                		
                  Python Plugin Manager
                


                		
                  Shortcut Settings
                


                		
                  Tablet Settings
                


              


            


            		
              Render Animation
              
                		
                  General
                


                		
                  Export as Image Sequence
                


                		
                  Export as Video
                


                		
                  Setting Up Krita for Exporting Animations
                


              


            


            		
              Resource Management
              
                		
                  Resource Libraries
                


                		
                  Managing Resources
                


                		
                  Filtering
                


                		
                  Resource Types in Krita
                


              


            


            		
              SeExpr Quick Reference
              
                		
                  Variables
                


                		
                  Control Structures
                


                		
                  Operators (listed in decreasing precedence)
                


                		
                  Assignment Operators
                


                		
                  Comments
                


                		
                  Logging Functions
                


                		
                  Color, Masking, and Remapping Functions
                


                		
                  Noise Functions
                


                		
                  Selection Functions
                


                		
                  General Mathematical Constants and Functions
                


                		
                  Trigonometry Functions
                


                		
                  Vector Functions
                


                		
                  Vector Support
                


                		
                  Curve Functions
                


                		
                  Custom Plugins
                


              


            


            		
              Separate Image
            


            		
              Getting Krita logs
              
                		
                  Quick access
                


                		
                  Krita Usage Log
                


                		
                  System information related to Krita
                


                		
                  Crash log and backtrace
                


                		
                  Krita’s text output
                


              


            


            		
              Split Layer
            


            		
              SVG Storyboard Export Templates
              
                		
                  Krita’s Default SVG Storyboard Export Template
                


                		
                  Vector Editing with Inkscape
                


                		
                  Designing Your Own SVG Storyboard Export Template
                


              


            


            		
              Stroke Selection
            


            		
              Tools
              
                		
                  Shape Selection Tool
                


                		
                  Shape Edit Tool
                


                		
                  Text Tool
                


                		
                  Gradient Editing Tool
                


                		
                  Pattern Editing Tool
                


                		
                  Calligraphy Tool
                


                		
                  Freehand Brush Tool
                


                		
                  Straight Line Tool
                


                		
                  Rectangle Tool
                


                		
                  Ellipse Tool
                


                		
                  Polygon Tool
                


                		
                  Polyline Tool
                


                		
                  Bezier Curve Tool
                


                		
                  Freehand Path Tool
                


                		
                  Dynamic Brush Tool
                


                		
                  Multibrush Tool
                


                		
                  Crop Tool
                


                		
                  Move Tool
                


                		
                  Transform Tool
                


                		
                  Fill Tool
                


                		
                  Enclose and Fill Tool
                


                		
                  Gradient Tool
                


                		
                  Color Sampler Tool
                


                		
                  Colorize Mask
                


                		
                  Smart Patch Tool
                


                		
                  Assistant Tool
                


                		
                  Reference Images Tool
                


                		
                  Measure Tool
                


                		
                  Rectangular Selection Tool
                


                		
                  Elliptical Selection Tool
                


                		
                  Freehand Selection Tool
                


                		
                  Polygonal Selection Tool
                


                		
                  Contiguous Selection Tool
                


                		
                  Path Selection Tool
                


                		
                  Similar Color Selection Tool
                


                		
                  Magnetic Selection Tool
                


                		
                  Zoom Tool
                


                		
                  Pan Tool
                


              


            


            		
              Welcome Screen
            


          


        


        		
          Tutorials and How-tos
          
            		
              Clipping Masks and Alpha Inheritance
            


            		
              Common Workflows
              
                		
                  Speed Painting and Conceptualizing
                


                		
                  Colorizing Line Art
                


                		
                  Painting
                


                		
                  Preparing Tiles and Textures
                


                		
                  Creating Pixel Art
                


              


            


            		
              An Example Setup for Using Krita with an Eye Tracker
              
                		
                  Requirements
                


                		
                  Starting Krita
                


                		
                  Layout
                


                		
                  Summary
                


              


            


            		
              Flat Coloring
              
                		
                  Understanding Layers
                


                		
                  Preparing your line art
                


                		
                  The Multiply Blending Mode
                


                		
                  Using Selections
                


                		
                  Using Masks
                


                		
                  Using Color to Alpha
                


                		
                  Fill Tool
                


                		
                  Selections
                


                		
                  Geometric tools
                


                		
                  Colorize Mask
                


                		
                  Conclusion
                


              


            


            		
              Inking
              
                		
                  Pose
                


                		
                  Stroke smoothing
                


                		
                  Bezier curves and other tools
                


                		
                  Presets
                


                		
                  Preparing sketches for inking
                


                		
                  Super-thin lines
                


              


            


            		
              Krita Brush Tips
              
                		
                  Animated Brushes
                


                		
                  Brush Tips: Bokeh
                


                		
                  Heightmap Bristle Brush Tips
                


                		
                  Brush Tips: Caustics
                


                		
                  Painting fur
                


                		
                  Gradient Map Brush Tips
                


                		
                  Brush-tips:Hair
                


                		
                  Brush-tips:Outline
                


                		
                  Brush-tips:Rainbow Brush
                


                		
                  Brush-tips:Sculpt-paint-brush
                


              


            


            		
              Making An Azalea With The Transformation Masks
              
                		
                  Let’s get to drawing!
                


                		
                  Clone Layers
                


                		
                  Enter Transform Masks!
                


              


            


            		
              Saving For The Web
              
                		
                  JPG
                


                		
                  PNG
                


                		
                  GIF
                


              


            


            		
              Introduction to SeExpr
              
                		
                  What is SeExpr?
                


                		
                  Background
                


                		
                  Writing a script
                


                		
                  Managing your script using widgets
                


                		
                  Creating your first preset
                


                		
                  Changing existing presets
                


                		
                  Bundling your presets
                


              


            


          


        


        		
          Krita FAQ
          
            		
              General
              
                		
                  What is Krita?
                


                		
                  Is it possible to use Krita in my own language, not English?
                


                		
                  I have a problem, how to get support for Krita?
                


                		
                  Does Krita have layer clip or clipping mask?
                


                		
                  Where are the configuration files stored?
                


                		
                  Resetting Krita configuration
                


                		
                  Why does Krita’s configuration reset on its own?
                


                		
                  Where are my resources stored?
                


                		
                  Krita tells me it can’t find some files and then closes, what should I do?
                


                		
                  What Graphics Cards does Krita support?
                


                		
                  I can’t edit text from PSD files created by Photoshop
                


                		
                  How much memory does my image take?
                


                		
                  Why do I get a checkerboard pattern when I use the eraser?
                


                		
                  Can krita work with 8 bit (indexed) images?
                


                		
                  Where can I find older versions of Krita?
                


                		
                  On Windows, the Krita User Interface is too big on my screen
                


                		
                  Windows: In full-screen mode, why is there a thin gap at the bottom of the window?
                


                		
                  Windows: OBS can’t record the Krita OpenGL canvas
                


                		
                  Windows: Can I use Krita with Sandboxie?
                


                		
                  Windows: Krita cannot save
                


                		
                  Windows: Krita cannot open my file anymore
                


                		
                  How to recover my files?
                


                		
                  Krita crashes on Windows 7 on start-up
                


                		
                  Krita freezes randomly on my Windows system
                


                		
                  Windows: How can I produce a backtrace?
                


                		
                  Windows: Krita’s window is semi-transparent
                


                		
                  Why are there ampersand (&) characters in some docker titles?
                


              


            


            		
              Tablets
              
                		
                  What tablets does Krita support?
                


                		
                  What if your tablet is not recognized by Krita?
                


                		
                  How to fix a tablet offset on multiple screen setup on Windows
                


                		
                  Microsoft Surface Pro and N-Trig
                


                		
                  Weird stuff happens on Windows, like ripples, rings, squiggles or poltergeists
                


                		
                  Touch doesn’t seem to work on Windows
                


              


            


            		
              Toolbox
              
                		
                  Toolbox missing
                


                		
                  Tool icons size is too big
                


                		
                  Krita can’t get maximized
                


              


            


            		
              Resources
              
                		
                  Is there a way to restore a default brush that I have mistakenly overwritten with new settings to default?
                


                		
                  How do I set favorite presets?
                


                		
                  Can Krita load Photoshop Brushes?
                


              


            


            		
              Krita is slow
              
                		
                  Slow start-up
                


                		
                  Slow Brushes
                


                		
                  Slowdown after I’ve been working for a while
                


              


            


            		
              Animation
              
                		
                  Why is my animation black in my video player
                


              


            


            		
              Tools
            


            		
              Shortcuts
              
                		
                  Some shortcuts become useless after drawing for a while
                


              


            


            		
              License, rights and the Krita Foundation
              
                		
                  Who owns Krita?
                


                		
                  Who and what is Kiki?
                


                		
                  Why is Krita Free?
                


                		
                  Why isn’t Krita on Steam and in the Windows Store Free?
                


                		
                  Can I use Krita commercially?
                


                		
                  Can I get Krita for iPad or for Android?
                


                		
                  Who translates Krita
                


              


            


            		
              Reference
            


          


        


        		
          Contributors Manual
          
            		
              The Krita Community
              
                		
                  Internet Relay Chat
                


                		
                  Mailing List
                


                		
                  GitLab (KDE Invent)
                


                		
                  Phabricator
                


                		
                  Krita Artists
                


                		
                  Bugzilla: the Bug Tracker
                


                		
                  Sprints
                


              


            


            		
              Mark-up conventions for the Krita Manual
              
                		
                  Meta data
                


                		
                  Headings
                


                		
                  Linking
                


                		
                  Images
                


                		
                  In-text Markup
                


                		
                  Substitution References
                


                		
                  Lists
                


                		
                  Tables
                


                		
                  Admonishments and asides
                


                		
                  Code Snippets
                


                		
                  Other preformatted text
                


                		
                  Glossaries, Terms and Index
                


                		
                  Quotes
                


                		
                  Text for Non-English Translations Only
                


                		
                  Notes for Translators
                


              


            


            		
              Krita Manual Contribution Guide
              
                		
                  For first timers
                


                		
                  General philosophy
                


                		
                  Protocol
                


                		
                  Other
                


              


            


            		
              Images for the Manual
              
                		
                  Tools for making screenshots
                


                		
                  The appropriate file format for the job
                


                		
                  Optimising Images in quality and size
                


                		
                  Editing the metadata of a file
                


              


            


            		
              Introduction to User Support
              
                		
                  Tablet Support
                


                		
                  Animation
                


                		
                  Onion skin issues
                


                		
                  Crash
                


                		
                  Other possible questions with quick solutions
                


                		
                  Advices for supporters
                


                		
                  How to share a file
                


              


            


            		
              Technical Pages
              
                		
                  Automated Krita builds on CI matrix
                


                		
                  Brush GUI Design with Lager
                


                		
                  Building Krita from Source
                


                		
                  CMake Settings for Developers
                


                		
                  Enable static analyzer
                


                		
                  How to patch Qt
                


                		
                  Introduction to Hacking Krita
                


                		
                  The Krita Palette format KPL
                


                		
                  Krita SVG Extensions
                


                		
                  Modern C++ usage guidelines for the Krita codebase
                


                		
                  Developing Features
                


                		
                  Optimize Image Processing with XSIMD
                


                		
                  Optimizing tips and tools for Krita
                


                		
                  Google Summer of Code
                


                		
                  Advanced Merge Request Guide
                


                		
                  Python Developer Tools
                


                		
                  Introduction to Quality Assurance
                


                		
                  Making a release
                


                		
                  Reporting Bugs
                


                		
                  Strokes queue
                


                		
                  Strokes public API
                


                		
                  Internals of the freehand tool
                


                		
                  Scheduled Undo/Redo
                


                		
                  Processings framework
                


                		
                  Testing Strategy
                


                		
                  Triaging Bugs
                


                		
                  Unittests in Krita
                


              


            


          


        


        		
          Resources
          
            		
              Brush Packs
            


            		
              Texture Packs
            


            		
              Vector libraries
              
                		
                  20+ Variety of Vector/Symbol Library Packs
                


                		
                  Composition templates
                


                		
                  Feather icons
                


              


            


            		
              Templates
              
                		
                  Storyboard template
                


              


            


            		
              User-made Python Plugins
              
                		
                  Usability
                


                		
                  Workflow improvements
                


                		
                  File management
                


                		
                  Color selectors
                


                		
                  Interface
                


                		
                  Miscellaneous
                


              


            


            		
              Other resources
            


            		
              External tutorials
            


            		
              See Something We Missed?
            


          


        


      


    
  

_images/storyboard_custom_options.png





_images/storyboard_export_file.png
Export Directory : /dude/Downloads B

Export File Name : Yownloads/file.pdf ‘B
SVG file base name svgfile

Export  Cancel

Export  Cancel

File name for SVG ex File name for PDF Export





_images/storyboard_export_template.png
w2 B

v w oz oo

S KRITA






_images/strokes_queue_internals.png
KisStrokesFacade

KisUpdaterContext

[FstartStroke(strategy) - Kisstrokeld
[+addjob(d, data)

[+hasSpareThread()  bool
| +isjobAllowed(walker - KisBaseRectsWalker)

endrokei akdlbtmalkr - Kssaseheqsae R UpEatelbien
encesu okt it Baneo Faccesiect: Qret
[ rangenec Qe
[+unlock() [*+run0
KisUpdateScheduler
1. numThreads '
) (4 —
I — RStokelbrateay KeSiokelobsiateqy, e~ ReSiokoB0w)
o
Sprocesnson
[rem - SSeauanialg ool
e oo
. i e
T SroTesaue _
[+startStroke(strokeStrategy) -m_jobsQueve *| 0.+ B
idonder
[vendstroke() i !
el <t
|+processQueue(context) <<Interface>> KisStrokeJobData
|+needsExclusiveAccess() : bool 4 KisStrokeJobStrategy [+isSequential(
[+isEmpty() : bool [+run(data : KisStrokejobData) |+isBarrier() : bool
e : o0
St abehameo - asirng pET—
- s
o A KisStrokeStrategy RIS
T ot FoemeniSimien)

[+KisStroke strokestrategy - KisStrokeStrateay)
|vaddjob(data : KisstrokelobData)
[vendstroke()

[+cancelstroke()

[+name( - string

[ +hasjobs( - bool

[+numjobs() - int

[+popOnejob() - Kisstrokelob
[+isExclusive() - bool

[ +prevjobSequential() - bool
[+nextjobsequential() : bool
[+nextjobBarrier - bool

1 [pareatefinishstrateay)
& FareateCanceistrateay)
|+createDabStrategy()
[createinitata()
[+createFinishData()
|+createCancelData()
[+isExclusive() - bool
|+needsindirectPainting()
[+id0 - Qstring
[+name( - string

bool

Exclusivity

<<Constant> > +NORMAL
< <Constant> > +EXCLUSIVE

<<emumertion>>
Sequentiality

<<Constant> > +CONCURRENT
< <Constant> > +SEQUENTIAL
< <Constant> > +BARRIER.






_images/strokes_simplified_api.png
KisStroke
[+KisStroke strokestrategy - KisStrokeStrateay)

<<Interface>>
KisstrokeJobData,

|vaddjob(data : KisstrokelobData) [+issequential)
[vendstroke() L [wisBarrier0 - bool
[+cancelstroke() [+isBxclusive()

T

1 s

<<Tterfaces>
KisStrokeStrategy

<<teraces>
KisStrokeJobStrategy.

[Fereateinitstrategy()
[+createFinishStrateay)

[Fun(data : KisStrokejobData)

|+createCancelStrategy()
|+createDabStrategy()
[createinitata()
[+createFinishData()
|+createCancelData()
[+isExclusive() - bool
|+needsindirectPainting()
[+id0 : QString
[+name(: @string

bool

<<instantiate>>

SimplestrokejobStrategy

[¥SimplestrokejobStrategy(type : JabType, parentStroke : KisSimplestrokeStrategy)

KisSimplestrokeStrategy

[Fenablejob(type - JobType, enable - bool)
[+initStrokeCallback()

[+cancelstrokeCallback()

[ +finishstrokeCallback()

| +dostrokeCallback(data : KisstrokeJobData)

| +KisSimplestrokeStrategy(id - Qstring, name : Qstring)

<<emumertions>
JobType

<<Constant>> +JOB_INIT

< <Constant> > +JOB_CANCEL

< <Constant> > +JOB_FINISH

<<Constant>> +JOB_DOSTROKE

_parentsiroke






_images/subtract.png





_images/Blending_modes_Pin_Light_Light_blue_and_Orange.png





_images/Blending_modes_Q_Freeze_Light_blue_and_Orange.png





_images/Blending_modes_Pin_Light_Sample_image_with_dots.png





_images/Blending_modes_Q_Glow_Heat_Light_blue_and_Orange.png





_images/Blending_modes_Q_Freeze_Reflect_Light_blue_and_Orange.png





_images/Blending_modes_Q_Heat_Glow_Freeze_Reflect_Light_blue_and_Orange.png





_images/Blending_modes_Q_Glow_Light_blue_and_Orange.png





_images/Blending_modes_Q_Heat_Light_blue_and_Orange.png





_images/Blending_modes_Q_Heat_Glow_Light_blue_and_Orange.png





_images/Blending_modes_Q_Reflect_Freeze_Light_blue_and_Orange.png





_images/scatter_option_graph_updates.png
I we replace root value
with the new one that differs
only in “pressureSensor’,
only leafs of pressureSensor’
wil be updated
scatterOptionData
scatterAxisX
scatterAxisY
curveOption

The value is actually changed,
50 the update is passed down
the tree

The value has **not+*

changed, so no update
is forwarded! ‘ id <=4





_images/scheduled_undo_redo.png
Kis DocumentUndostore Legacy users H

Kisimage Kis LegacyUndoAdapter

- Strokes users 1\,

KisPostExecutionUndoAdapier
[+addCommand(cmd - QUndoCommandsP)
|createMacro(name : QStiing)  KisSavedMacroCommand *
|+addMacro(macro - KisSavedMacroComand *)

RisSavedCommand KisSavedMacroCommand
[+KisSavedCommand(command, strokesFacade) | ~ [+KisSavedMacroCommand(name, strokesFacade)
|+addCommand(command, sequentiality, exclusivity)

|+performCancel(strokeld, strokeUndo - bool)

[SKips the first redo0 and starts
a stroke on every undog/redo)
operation

_ [ KisSavedCommandase

KisStrokeStrategyUndoCommandBased
[+KisStrokeStrategyUndoCommandBased(name, undo, undoAdapter, initCommand, finishCommand)






_images/reverse_spiral.png





_images/sample.png





_images/save_incremental_backup.png
Fle Edit View Go

< >

P Dropbox

Rem:

B Network
Devices

B 762,1 GiB Hard Drive
B, Windows

Tools  Settings  Help

> Home > test

blakra blakra~ bla~000.kra
bla~001.kra bla~002kra bla~003.kra
bla~004.kra bla~005.kra bla~006.kra

bla~006.kra .., 481,6 KiB) s

m— 46,6 GIB free






_images/save_incremental_version.png
File

< >

Edit

View

Go

P Dropbox

Rem:

B Network
Devices

B 762,1 GiB Hard Drive
B, Windows

Tools  Settings  Help
> Home > test
bla_001.kra bla_002.kra bla_003kra
bla_004.kra blakra
5 Files (2.9 MiB) e— — 146, GiB free






_images/scatter_option_graph.png
scatterOptionData

tterAxisX
The whole GUI is SCEHEA SY
epresented as  graph |~ SCALLETAXIS
curveOption
—isChecked
\-strength
pressureSensor
cach node remembersts | -1d
crrentvate ncucee | Leurve
(o check Fupdates actualy |- rotationSensor
change anything id
curve
fuzzySensor
id

curve





_images/Blending_modes_Overlay_Sample_image_with_dots.png





_images/Blending_modes_OR_Gradients.png





_images/Blending_modes_P-Norm_B_Sample_image_with_dots.png





_images/Blending_modes_P-Norm_A_Sample_image_with_dots.png
*
el
o
.
%
A
o
L





_images/screenshot_editmode.png
Websites > @ Krita Documentation > Repository | ~€——  Make sure you're in the official repository

R T yp— Qrindfle  slane  Hisory  pernaink

Add links, Formatting, fix minor Spacing issues - 6fsadsds
Yuri Chornoivan authored 2 months ago

Make sure you're on the correct branch

A —

3 communityrstsarke @ @» B D B @

. meta: /
Make sure you're using the Edit mode

«description:
Guide to the Krita community






_images/Blending_modes_Penumbra_A_Sample_image_with_dots.png





_images/Blending_modes_Parallel_Sample_image_with_dots.png





_images/Blending_modes_Penumbra_C_Sample_image_with_dots.png





_images/Blending_modes_Penumbra_B_Sample_image_with_dots.png





_images/Blending_modes_Pin_Light_Gray_0.4_and_Gray_0.5.png





_images/Blending_modes_Penumbra_D_Sample_image_with_dots.png





_images/selections-right-click-menu.png
Deselect

Select All

Cut Selection to New Layer
Copy Selection to New Layer

Convert !o Vector Selection

Transform >
Trim to Selection

v Display Selection
v Show Global Selection Mask





_images/segment_gradient_editor_general_breakdown.png
Name: unnamed

< > segment#1 @ A ¥ O

—

Left Color
Right Color:

Interpolation:

3

Opacity: 100.00%

Opacity: 100.00%

RGB

Position: 61.18%






_images/segment_gradient_editor_midpoint_handle_breakdown.png
Name: unnamed






_images/segment_gradient_editor_segment_handle_breakdown.png
Name: unnamed

< > segment#1

fecolor:  Cla ln @

Right Color:  Cla [ @

Interpolation: |Linear

3
Opacity: 100.00%
Opacity: 100.00%

RGB

Position: 61






_images/segment_gradient_editor_stop_handle_breakdown.png
Name: unnamed

Gy (m @ MEEE | Opacity: 100.00%

Right Color: Ca Fn @ WM [Gpacity100.00%






_images/selections-elliptical-selection-options.png
Tool Options
Elliptical Selection

Mode: s B
Action: m & % T &

v Anti-aliasing

Size
Width: 180 px *
Height 200 px 2

Ratio! 0.90






_images/selections-freehand-selection-options.png
Tool Options
Outline Selection

Mode: e B
Action: m & % T &

v Anti-aliasing






_images/selections-polygonal-selection-options.png
Tool Options
Polygonal Selection

Mode: e B
Action: m & % T &

v Anti-aliasing






_images/selections-rectangular-selection-options.png
Tool Options
Rectangular Selection

Mode: e B
Action: m & % T &

v Anti-aliasing

Size
Width: 402 px 2
Height 201px 2

Ratio 2,00 2
Round X: 4px 2

Round Y: 4px ¢





_images/selections-similar-color-selection-options.png
@ Tool Options

action [ E @ G

Selection extent

[ ] Threshold: 15

Adjustments

v Anti-aliasing

Feather: 0 px

Reference [ /& @

px

& X





_images/shape-selection-menu-fill.png
Tool Options

R,
ES B B Gradient
Type: [Linear -
Repeat: |None -
Preset: e






_images/shape-selection-menu-geometry.png
Tool Options

R Geometry
703 px 3 876 px =,
497 px 3 640px 3¢

Anchor Lock
v Scale Styles
v Global Coordinates

]






_images/shape-selection-menu-stroke.png
LU






_images/shaped.png





_images/shaped_image_bounds.png





_images/shapes-selection-properties.png





_images/sharpness_bristle_brushes_shapes.png





_images/sharpness_bristle_examples_0.png





_images/sharpness_bristle_examples_1.png





_images/sharpness_bristle_examples_2.png





_images/sharpness_bristle_examples_3.png





_images/sharpness_gradient_example.png





_images/sharpness_lightness_examples.png





_images/simon_pixel_art_course.png





_images/GamutMasks_Selectors.png
Advanced Color Sel






_images/Floodfill-krita.png





_images/Generating_custom_patterns1.png
Patterns | Custom Pattern

01_canvas.png (512 x 512)






_images/Gaussian-blur.png
9 A Filter: Gaussian Blur — Krita

v Uselastpreset |EditPresets | XML

Horizontal Radius: [0 5.00 px e
Vertical Radius: [0 5.00 px £

| [ cancel

Default

IO v Preview Create Filter Mask = 7 OK





_images/Generating_custom_patterns3.png
800 X800 (5.3M)

inﬂwr~%viﬂwr~viﬂwri~
D «’vvb‘ﬁuV\WM‘W&A«’?"%WM‘W&A«’W"MWM‘W&A«O
DULaL SRR
R4 S0 B Sl G BB 8 B S 0 B Sl &
SR G
S R et
G

S SRR A

i

e.«av. 0 e.«ov VC e.«ov
Bl et

Shift brush color hue clocky

o

o
SR

B
83,

oo
=
e

e

959,959
2
e

oo

A

w
%

o
2

e

e
5
i

o
A
g

el

o
R
en

S

3

o
3

)

o
o

o
5.0

w

i
it
108
i

R

e
e
2

w
o4

c5

S
*

et
w

o
9

A
o0
w

o
S

i

w

B
B

o

©
s

o

3

e
1+ 9:5:9:8:5:8:8.0: 8.0

0
G
e

ﬂt7v
e di

et
w&wnww 5
S35

..
0 ﬂ.
35

&
2
>

U
w

.
:
Ak
Sk
-

o

&
=
5
=
5

s
4
e
w

S

o

©

W
5
©

s
1502068585
integer/channel) SRGB-elle-v2-srgbtr

o
5

e
s
>
R
o
w©

049

)

o4
o
7

SR
T
R
»
5ol
o
A
o

o0

W
S
o

17

oo
W

o
85,
a5

198
98

$:9:9:5,
o
w©

w
o4

0
el
Siors i
3 Mmu«m. o b Q.Mm.,?
IRIRIRID IR

S
oS
o

w°
s
S

o4

SooeE
S8

DI B0 D
SIS R R S R S S S
DD SO DD DL 0 1)

B

wolthera,





_images/Generating_custom_patterns2.png
Patterns = Custom Pattern

Source: |Current Layer ~

Update

use as Pattern

Add to Predefined Patterns






_images/Global-selection-mask.png
‘Layers

Mask

- . " Sele

N





_images/Gih-examples.png





_images/Gradient_Toolbar_Panel.png
82 ‘Normal

Gradients

Foreground to Transparent





_images/Gradient-pixelart.png





_images/Fish-eye.gif





_images/Desaturate-filter.png
L Filter: De

te — Krit

Default ~ | Uselastpreset [EditPresets = XML
Desaturation method:
o Lightness

Luminosity (ITU-R BT.709)

Luminosity (ITU-R BT.601)

Average

Min

Max

O v Preview Create Filter Mask

&
[}
=

X Cancel





_images/Dockers.png
Tool Options
Brush smoothing Weighted
Distance: 50.0
stroke Ending:

Smooth Pressure:

Scalable Distance:

Snap to Assistants

Advanced Color Selector

Layers

Normal

Opacity: 100%
=Wl  coloureffects

* W7 raintiayera
oWl raintlayers

* WS inear

® W7 raintiayer2
oWl raintlayer1
® B ° sackground






_images/Digi_colormixer.png
Digital Colors

igital Colors Mixer






_images/Emboss-variable-depth.png
® A Filter: Emboss with Variable Depth —Krita v ~ X

Default ~  Uselastpreset [EditPresets | XML

|| 30 3

Deptl

X Cancel

IO v Preview





_images/Dodge-filter.png
o A Filter: Dodge... — Krita VoA x
Default ~  Uselastpreset [EditPresets | XML
Mode

Shadows
© Midtones

Highlights

X Cancel

IO v Preview Create Filter Mask ~ +7





_images/Fill_Layer.png
X VoA Krita, A

Layer Name: ‘ Layer 1 ‘
|
Pattern = Transform

simplex Noise

[an v H 0 Tag

search ‘ M filter by tag
[ =

o

v 0K “@Cancel‘





_images/Filtermask-button.png
Default

Horizontal Radius:

Vertical Radius:

IO v Preview

Filter: Gau:

Muttirame

n Bl

Use last preset

5.00 px

Kri

Edit Presets

XML





_images/Cumulative_Undo_General_Settings.png
* General

ndow | Tools | FileHanding | Pasting = Miscelineous | Resources

Cursor
When Kritastarts: | Open default window -
Save session when Kiita closes
Onimporting images as layers, convert to the image colorspace
Undostacksize: 0 5
. v Use cumulative undo . Adyanced...

V' Enable Logging for bug reports






_images/Cumulative_Undo_Advanced_Settings.png
Wait before merging strokes: 5,00 sec

Exclude last strokes from merge: 10

Max interval of grouped strokes: 1,00 sec

Max group duration: 500sec

Cumulative Undo allows Krita to merge undo actions and make undo history cleaner. Krita
will til keep a few latest actions unmerged according to "Wait before merging strokes'
and "Exclude last strokes from merge” options. Whenever an action gets outdated using
the time limit and this action is not excluded using "Exclude last strokes from merge”, Krita
will ry to merge this action into a group. The groups are formed using "Max group
strokes delay” and "Max group duration” options.

Defaults oK Cancel





_images/Hue-saturation-filter.png
Default - Use last preset | Edit Presets XML

Type: Hue/Saturation/Lightness. -
we O
Colorize
Legacy mode (before Krita 4.3) Reset

KO v Preview  Multiframe  Create Filter Mask | OK Cancel





_images/Histogram_docker.png





_images/Index-color-filter.png
9 A Filter: Index Colors — Krita VoA x
Default ~ | Uselastpreset [EditPresets = XML
Ramps

Bright
Light

Base

aaga

Shadow

Diagonal Gradients

Gradient Steps

In-between ramps 28
Light o Bright 4%
Base o Light 43
Shadow o Base 43
Color count: 16

Limit to 2

Indexing Factors
L
a

b*
Other

Alpha Steps 1%

IO v Preview Create Filter Mask | «?OK X Cancel





_images/Inbetweening.png
b

[
ORI (3 4 I 3






_images/Infinite-canvas.png
9 File Edi

g
o

4AVON 94

W B WIIQOMN AT
+

Normal

RGB/Alpha (8...-srgbtrc.icc

Filter Tools Settings Wi

dow Help

RN - o) Opacity: 100%

1,000 x 1,000 (4.0 MiB)

Size: 40.00 px A F OE
Advanced Color Selec Tool Opti
3 Tool Options & X
Brush Smoothing Weighted
Distance: 50.0
Stroke Ending 0.15
Smooth Pressure
Layers & X
Normal v
Opacity: 100% =
+<l° Paintlayerl o
= l° Background a

i}

0~ A

Brush Presets

.Y

v Filter in Tag

0.00° 708% — [l





_images/Index-color-filter1.png
X v A Filter: Index Colors

Default v | | ditpresets
Ramps

Bright ) = O

Light = = O

Base [ = O

Shadow = O (m]

(] Diagonal Gradients

0000

Gradient steps

In-between ramps 4 S
Light - Bright 4

Base - Light 4

Shadow - Base 4 <
Color count: E

(] uimitto

Indexing Factors

Other

Alpha steps | 1

O [ Preview Create Filter Mask oK Cancel





_images/Inherit-alpha-krita.jpg
Inherit Alpha Outside Group Inherit Alpha Inside Group





_images/Inherit-alpha-02.png
©
<
=3
<
o}
<
£






_images/Ink_fill_circle.png
v Share curve across all settings

7 Pressure
Pressureln 100%
XTilt

Tilt direction
Tilt elevation

Speed v\
Drawing angle

Rotation
Distance

Time
Fuzzy Dab
Fuzzy Stroke 0%
(i Low High
Perspective
Tangential pressure
N





_images/Ink_convex.png
v Share curve across all settings
v Pressure

Pressureln 100%

Tilt direction

Tilt elevation

Speed

Drawing angle

Rotation

Distance

Time

Fuzzy Dab

Fuzzy Stroke 0%
Fade

Perspective
Tangential pressure

Low High






_images/Greaterblendmode.gif





_images/Hero_faq.jpg





_images/Grid_sudvision.png
Grid and Guides
Grid Guides
showar
Rectar >
Xspi 20p 3
Y spacing P
subdiision as

Main Style: | Lines v

Div style:

Grid Offset






_images/Hero_getting_started.jpg





_images/Hero_general.jpg





_images/Hero_reference.jpg





_images/Hero_index.jpg





_images/Hero_tutorials.jpg





_images/Hero_resources.jpg





_images/Hero_userManual.jpg





_images/Krita_2_9_brushengine_brushtips_soft.png
-9 A

O i
® 5 A

(Round, no spikes)

(Round, no spikes)

(Round. 4 spikes)

W . "a\a\a\s

L2 R A A\ ZK X
(Square, 4 spikes)

=Y 72 .. PR L L

o\

—

(square, 2 spikes)






_images/Krita_2_9_brushengine_brushtips_ratio.png





_images/Cmyk_black_differences.png





_images/Krita_2_9_brushengine_brushtips_spikes.png
++ H®





_images/Chaos2.jpg





_images/Krita_2_9_brushengine_brushtips_spacing.png
oo 0
..uc..j.......‘






_images/Color-adjustment-03.png
X v~ Fiter:Color Adustment A

Defauit © | Edpresess

Inpu € &y

ouput 255

eateFierMask | 0K Gancel






_images/Krita_2_9_brushengine_locking_01.png





_images/Color-adjustment-02.png
X v~ Fiter: Color Adjustment

Default ~ | | Edit Presets

Channel: Red v

Input| 255 <

IO (W] Preview  Create Filter Mask oK Cancel





_images/Krita_2_9_brushengine_darken_01.png
arken STYessuve

S 477, W

Distance @
TFad Drawmg 73
Angle .\\\\





_images/Color-adjustment-curve.png
o A Filter: Color Adjustment — Krita VoA x
Default ~  Uselastpreset [EditPresets | XML

Channel: RGBA ~  Logarithmic Reset

Input:
Output:

IO v Preview Create Filter Mask | «?OK X Cancel





_images/Krita_2_9_brushengine_locking_03.png
Painting Mode (e

¥ Texture

Unlock (Drop Locked)
Unlock (keep locked)





_images/Color-adjustment-04.png
Edit Presets

Lightne

Luminosity (ITU-

ity (ITU-

Create Filter Mask






_images/Krita_2_9_brushengine_locking_02.png





_images/Brushtip-Rainbow_2.png
Y oo

3N~ 28 Normal RS © | Opacity: 1.00 |, - | Size! 50.00px o
, 4 pixel
> @ color smudge
= — Name:F!ILﬂrtIe Overwrite Preset | Reload
E 7 eristle

] Shape v General — L
> Brush Tip reng X -
> Q Sy Blending Mode
: W Hatchin

| R opacity P —

F+4 G
i . v Size v
o curve . < e Share curve across all settings

1 oy Mirror — 100%
> S by: Softness Pressureln W hue
=1 Particle Sharpness X-Tilt

1 < clone Rotation -Tile

] e Tilt direction

] ® Tangent Normal Source UBCSEED
; Darken Speed
] ©) Filter Mix
= ey : Drawing angle
y ey

Vb Hue Distance
b Airbrush Time. 0%
1 :amtmg ?sg;m Fuzzy CCW hue
(50% is active color)
= pattern Fade ¢ )
i v Strength Perspective Low High
Tangential pressure
.
>
S,
.
> |
3
Default preset v Temporarily Save Tweaks To Presets  Eraser switch size v Instant Preview






_images/Krita_2_9_brushengine_brushtips_gaussian.png





_images/Brushtip-Rainbow.png
s, |B3 Normal ~ & @ O | opacty:1.00 |- | sizet so.00px -- Ak
NSO 10N

-0 Tag. &

' 7~
L
Fill_circle - Tags: [Favorite Presets]






_images/Krita_2_9_brushengine_brushtips_density.png





_images/Burn-filter.png
9 A Filter: Burn... — Krita VoA X
Default ~ | Uselastpreset |EditPresets | XML
Mode

Shadows
© Midtones

Highlights

IO v Preview Create Filter Mask | «?OK | X Cancel





_images/Brushtip-Rainbow_3.png
*, B8 Normal

-le

Opacity: 1.00

Size: 50.00px o -

Brush engines

v
+ pixel
@ color Smudge
Sketch
7 eristle
Shape
spray
W Hatching
Grid
§ curve
Dyna
Particle
< clone
Deform
@ Ttangent Normal
) Filter

& chak

ﬂﬂ%ﬁ!ﬁ%ﬂ'ﬂ.gﬂ-ﬂ

Name: Fill_circle

v General
Brush Tip)
Blending Mode
Opacity

Flow,

v Size
Spacing
Mirror
Softness
Sharpness
Rotation
Scatter

v Color

Source
Darken
Mix

7 Hue
Saturation
Value
Airbrush

Painting Mode

v Texture
Pattern

v strength

strength:

v Enable Pen Settings

Pressure
Pressureln

X-Tilt
Y-Tilt

Tilt direction
Tilt elevation

Speed

Drawing angle
Rotation
V| Distance

Tim&
Fuzzy
Fade

7 repeat

Length:

200

px

Default preset| v Temporarily Save Tweaks To Presets

1.00

Overwrite Preset| Reload

v Share curve across all settings

opx

Eraser switch size

100%
W hue

0%
CCW hue
(50% is active color)

200 px

7 Instant Preview






_images/Krita_2_9_brushengine_brushtips_randomness.png





_images/Canvas-krita.png
9 A (4.0 MiB) * - [ [Not Saved] *] — Krita v oA X
@ File Edit View Image Layer Select Filter Tools Settings Window Help <
il scilllss = K RN - =) A->-5@E
“  Advanced Color Selec...  Tool Opti
N T @ Advanced Color Selector & X
I 5] /9\
s
8o i
o»r [s) ]
nT @ Layers & X
29 Normal v
o+ Opacity: 100% B=
3
o < @7 PaintLayerl
e = l° Background a
%%
+-OvAaA= [ ]
@ Brush Presets & X

n n v Filter in Tag

a RGB/Alph...btrc.icc 1,000 x 1,000 (4.0 MiB) — 000 55.5% [





_images/Krita_2_9_brushengine_HSV_01.png
ent
We

e
=0
g

\

x





_images/Blending_modes_XNOR_Gradients.png





_images/Krita_2_9_brushengine_airbrush.png





_images/Krita_2_9_brushengine_HSV_02.png





_images/Blur-filter.png
Filter: Blur — Krita

A
Default v Uselastpreset |EditPresets | XML
Horizontal Radiu: 5 i

Vertical Radius: [ 5 g
Strength: 0 =
Angle: — cIORD

Shape: Circle -

IO v Preview Create Filter Mask | 70K X Cancel





_images/Krita_2_9_brushengine_brushtips_default2b.png
o)
oo
\ u
>

oo
(R
>





_images/Blending_modes_XOR_Gradients.png





_images/Krita_2_9_brushengine_brushtips_angle.png





_images/Brushpreset-filters.png





_images/Krita_2_9_brushengine_brushtips_default_3.png
N N N N





_images/Blur.png





_images/Krita_2_9_brushengine_brushtips_default_2.png





_images/Blending_modes_Subtract_Sample_image_with_dots.png





_images/Krita_2.9_brushengine_sketch_density.png
oY,
24, PX

25
LY





_images/Blending_modes_Subtract_Light_blue_and_Orange.png





_images/Krita4_z-brush-family.jpg
*+ ,,,r/
: ,/ 2 |






_images/Posterize-filter.png
Filter: Posterize — Krita

Edit Presets






_images/Blending_modes_Tint_Sample_image_with_dots.png
.
Ve i
s

.
%
e
“n_0
L





_images/Krita_29_brushengine_brushtips_default.png





_images/Blending_modes_Super_Light_Sample_image_with_dots.png





_images/Krita_2.9_brushengine_sketch_offset.png
R CONEE.

25].

Ia

:

"J

so7. I1Qosz. 1507,





_images/Blending_modes_Vivid_Light_Sample_image_with_dots.png





_images/Blending_modes_Value_Sample_image_with_dots.png
o

e i
g ¥
°

»

4 [

.. s . @

.





_images/Krita_2_9_brushengine_spacing_02.png
Prsors  Dier  Sped oy





_images/Krita_2_9_brushengine_spacing_01.png
Arisolrapic Isobropic.
i|>o<inj ‘V‘"""S






_images/Composition-docker.png
Compositions

)

+

AV O 0 v






_images/Krita_2_9_brushengine_texture_02.png





_images/Color_smudge.gif





_images/Krita_2_9_brushengine_texture_01.png
Mutrply Subteact





_images/Configure_Toolbars_Brushes_and_Stuff_Custom.png
Current actions:

Gradients
Patterns

— separator —
Color

— separator —
Painter's Tools

Brush option slider 1
Brush option slider 2
Brush option slider 3

— separator —
Apply GMic Action
Color to Alpha

select Opaque

split Layer
Expanding Spacer

Workspaces






_images/Krita_2_9_brushengine_texture_04.png
Norwal OfCset.  Random OFeset





_images/Composition_animation.gif





_images/Krita_2_9_brushengine_texture_03.png
Mt pl





_images/Creating-bundle.png
Bundie Name:

Descripton:

Authr.
Emait
Website:
License:

Save o

hitpis
ccavsa

(256x256)
Ihome/raghu/Documents

Type: Brushes

Avlable

Bl 2 e Gran 20

3.brush

3_dotted-flat

Selected

Cancel





_images/Krita_2_9_brushengine_texture_06.png
Puttern Normal Pocktern

invarded.





_images/Configure_Toolbars_Krita.png
Toolbar:

BrushesAndStuff <krita>

Ayailable actions:

Emboss with Variable Depth..
Enhance
Expanding Spacer

Q) Fill Layer.
Fill Tool

Fill with Background Color

Fill with Background Color (Opacity)
Fill with Foreground Color

Fill with Foreground Color (Opacity)
Fill with Pattern

Fill with Pattern (Opacity)

) Filter Layer...

Y Fiter Mask...

DA

‘

0-Defaults

Current actions:

Gradients
Patterns

— separator —
Color

— separator —
Painter's Tools

Brush option slider 1
Brush option slider 2
Brush option slider 3
— separator —
Mirror
— separator —
Apply GMic Action
Color to Alpha
split Layer
Expanding Spacer
Workspaces

v oK

~ App!

Scancel





_images/Krita_2_9_brushengine_texture_05.png
Sale =10 Sk =20





_images/Csv_tvp_csvexport.png
Export Footage

Project: Display _Clip: Display

Clip: Layers structure.

Biowse | MvpainiUrtited.csv.

Format | CSV
ExportAlllmages
Csvonly
Expostre Label

ustom Brush: Display.
Urtited





_images/Krita_2_9_colormanagement_blending_1.png





_images/Csv_spreadsheet.png
] TS Ol A <22 EEEE






_images/Krita_2_9_brushengine_texture_07.png
33880 13
38835.527
5833335
2583832





_images/Color_scumble.gif





_images/Color_mix.gif





_images/Krita_2_9_brushengine_softness.png
(.





_images/Color_scumble2.gif





_images/Krita_2_9_brushengine_mix_01.png
FPlomr Geardient
Glor  Grosluad





_images/Color-transfer.png
9 A Filter: Color Transfer — Krita

Default ~ | Uselastpreset [EditPresets = XML
Reference image:
(=]

IO v Preview

X Cancel





_images/Krita_2_9_brushengine_opacity-flow_02.png





_images/Krita_2_9_brushengine_mix_02.png





_images/Color_gloss.gif





_images/Krita_2_9_brushengine_rotation.png





_images/Color_Dropper_Tool_Options.png
Tool Options. & X
Color Sampler

Sample All Visible Layer: ~
v Update color

Add to palette: Default -

Radius: Tpx %

Show colors as percentages

Channel Value
Red 43
Green 81

Blue 97






_images/Krita_2_9_brushengine_opacity-flow_03.png
Tainting wiode =" Buld up*

Py 205  Flow=05  Bothz0S





_images/Color_gloss_example_2.png





_images/Krita_2_9_brushengine_size_01.png





_images/Color_gloss_example_1.png





_images/Krita_2_9_brushengine_scatter.png





_images/Color_gloss_example_4.png





_images/Krita_2_9_brushengine_sketch_linewidth.png
S





_images/Color_gloss_example_3.png





_images/Krita_2_9_brushengine_size_02.png
RS AN





_images/Color-balance.png
D A Filter: Color Balance — Krita VoA x

Default ~ | Uselastpreset [EditPresets = XML
Shadows Reset Shadows
Cyan ————————— Red 0%
Magenta ———— Green 0%
Yellow —— Blue 0%
Midtones Reset Midtones
Cyan ————————— Red 0%
Magenta ———— Green 0%
Yellow —— Blue 0%
Highlights Reset Highlights
Cyan ————————— Red 0%
Magenta ———— Green 0%
Yellow —— Blue 0%

v Preserve Luminosity

IO v Preview Create Filter Mask | 70K X Cancel





_images/Krita_2_9_brushengine_mirror.jpg
LLLLLLLLLLLLLLLLLLLL K
IARLOINIAONINLEONLEONCO





_images/Color-adjustment-cw.png





_images/Krita_2_9_brushengine_locking_04.png
“Raelare |°°k'lv\‘_ ACtey (oc.l(wg






_images/Color-to-alpha.png
@ A Filter: Color to Alpha — Krita v oA
Default ~ | Uselastpreset [EditPresets = XML
Color Sampler:

Threshold: 100 >

O v Preview Create Filter Mask|| <?OK | [ X Cancel





_images/Color-slider-docker.png
@
X

¥ @ Color Sliders.
o T
Sotrato: I 70 3
lowess: N 50 3





_images/400px-Krita_Reference_Images_Browse_Docker.png
¥ (@ Reference Images & x

Browse. Images

@ Mome M PN

Heme

semin i prg
Ieita2s:spash.0d prg

mascot 20131006 ki cover notext clean png
mascot 20131006 ki cover notextpn,

mascot 20131006 ki cover_old png

mascot 20140623 Kki_wide_crop3 prg






_images/400px-Krita_Reference_Images_Image_Docker.png
'%

F)*)a”‘






_images/24_12_and_8_drawing_per_sec.png
ML=k w0

BTk 15 EISI

5

50 s o s o
Eamorrey BN e BE N |

ERr YT 1)






_images/3trcsresult.png
_Linear frc LAB L¥ Tvc






_images/Add_Timeline_1.png
[CINCINCINC ()

TOFA ().
LAT—2EALY)--

XEEEEEESN

SALSA YRR





_images/Add_Timeline_2.png
MELETEES Blue

| Shadow

[ ety 77

A
v BALSAICER

1

= U

Red





_images/5_pack_gitlab_thumbnail.png





_images/Mingw-explorer-path.png
FeLocalAppData?] Search Computer.

Search for "LocalAppData%’ - -
Organize v Go to "SiLocalAppData%s’

Favorites 4 Hard Disk Drives (3)





_images/600px-BSE_Predefined_Window.png





_images/Mingw-dbg7zip.png
— » Downloads »kita_unstable »_ kit earch k-
lbrary (CAUsers\— \Downloads\rta-30.92-x64-dbg.zip\
Neme Gt i,
[ bin |- - - -
[0 i Conyte
share C\User\—\Dowrioads et rstabieNgta 10 92268
| sh ]
ks

Folders:2 (1845555 944 bytes )
C:\Users\—\Dowrioads\kta-3.0.92:x64dbg 2o\
bin\

b\






_images/Krita-tutorial8-A.I.2.png
Antialiased
Lines on

Sub-pixel
precision on

Color background
(red background
color here)





_images/Motion-blur.png
9 A Filter: Motion Blur — Krita VoA x

Default ~ | Uselastpreset [EditPresets = XML

Angle:  — cI®®

Length: [l 5 B

IO v Preview Create Filter Mask | «?OK X Cancel





_images/Krita-tutorial8-A.I.1.png
Brush tip = area in which the hatching gets rendered

Default brush 100% Randomness Predefined
50% density brush





_images/Mirror-tool.png





_images/Animation_Curves_Docker.png





_images/Krita-tutorial8-A.I.3-2.png
No Perpendicular -4s°plane then  -45° plane then =
crosshatching plane only +45°plane +45°plane Moire
Crosshatching

dynamics set to
Speed: | drew faster
i the center

Moire is the only case where
seting the crosshatching
dynamic produces a dfferent
- pattern than without. =






_images/Multi-window.png
Select Filter Tools Settings Window Help
o O WD

Opacity: 100%

Size: 40.00 px AP HE
Advanced Color Selec Tool Opti

kT
s (4.0 MiB) - [ [Not Saved] ] — Krita
"V Filter Tools Settings Window| Help
T E noma £ New Window Size: 40.00 px A->-5E
or 7 Advanced Color Selec... | Tool Opti
" T AT @ Advanced Color Selector & X
22 [oXd =]
1+ s/ +Shift+W
o oo
a2 or o °®
: AT @ Layers & X
>7 A Normal Y.
o3 1 Opacity: 100% E
i +l® Paintlayerl &
me2 = l° Background a
+-OvA= L]
@ Brush Presets x

[ b) Basi

[ b) Basic-1 / 1,000 x 1,000 (4.0 MiB)





_images/Animation_Timeline_Docker.png
ey T






_images/Krita-tutorial8-A.I.3-1.png
(note: because | resized the pictures, the lnes may not look
a5 nice a5 their actual output n Krta)
(Al values with Separation 10 unes stated otherwise)

N
N
Angle -90 Angle 45 ‘Angle 0 Angle 45 Angle
=== —— T
S i -

: e

Input-based intervals 7 2 one

iy -

(st to about 800 pixls)
Perpendicular hatching

Intenval7  intevals  IntervalS  Intervald Intenval3 interval 2





_images/Movetool_coordinates.png





_images/Krita-tutorial7-B.I.1.png
Default

Randomness 100%
Brush tip density 50%

Predefined brush

L





_images/Mingw-crash-log-end.png
itacrash.log - Notey

Eile Edit Format View Help

e 6 200. 1649
api-11-1-0.d11 ). 1649
fon-11-1-0.d11 6. 649!
11-1-0.d11
6.
fertutil.dll 11.0.
in-d

Fvpucint.dll
binet i1

‘

gl i






_images/Krita-tutorial6-I.2-4.png
s N





_images/MeshGradients-corner-moving.png





_images/Krita-tutorial7-B.I.2-2.png
Unwanted Ful-sized dab at the beginning :-(
i Hopefully this willbe fixed.

Mouse
pressure

Connect
hairs






_images/Mingw-crash-screen.png
(S -

Q) Kritaexe has stopped working

Windows can check online for a solution to the problem.

2 Check online for a solution and dlose the program
+ Close the program

# Debug the program

©) Ve






_images/Krita-tutorial7-B.I.2-1.png
Scale 1 Scale 4 Scale 10

offset 0 offset 2 offset 10

Shear 0

Density 10% Density 50% Density 100%





_images/Mingw-crash-log-start.png
7 kitacrash.og - Notepad

Ele Edit Format View Help

dhepesve. DLL 6.1.7600. 16385
rasadhlp.dll 6.1.7600. 16385
npuproxy.dll 6.1.7600. 16385
fwpuclnt.dll 6.1.7601.18283
Comct132.d11 6.10.7601. 18837
Cabinet.dl1 6.1.7601.17514

Windows 6.1.7601
Drifingv 0.8.1






_images/Krita-tutorial7-B.I.3-2.png





_images/Krita-tutorial7-B.I.3-1.png
1024






_images/Mingw-dbg7zip-dir.png
srowse For o S, W

pp— B
> i kita-308164
[ kito-3092:64

> bn
> 0 share

> i ta-s64-6997aBe-appreyor-0.1.1.13
> [ Favories

3 ks u
o]






_images/Krita-tutorial7-C.png





_images/Animation_docker.png
* @ Animation 8x

12

M4 4> >

=N =1] Play Speed: 1,00
“Com Frame Rate: 24 5






_images/Animation_set_everything.png
06 Kita

Lay.. | Brush Pres.

/home/krita/male_walkeycle. Order = -
Jhome/krita/male_walkcycle @Tool Options
Thome/krita/male_walkcycle: Ascending - ;
home/krita/male_walkeycle. 8asic smoothing -
home/krita/male_walkeycle. Numerical Assistant: 1000 S
home/krita/male_walkeycle. e

/home/krita/male_walkcycle: Timing
/home/krita/male_walkcycle:

/home/krita/male_walkcycle: Startat 0
Step 3
Source fps: 8

*cancel | JOK

Addimages...

>

Animation | Onion Skins
~ @ Animation ax

4 sem o 3
0o

21 24 27 30 33 36 39 42 45 48 51 54 57

5 End: 100 <

LU IR S TR

Play Speed: 1,00 %

=]
y @

nel) sRGB-elle-V2-srabtrc.icc 64 x 64 (16.0K) Fit Page

Frame Rate: 24 3






_images/Animation_split_spritesheet.png
© © Image Split - Krita

Horizontal Lines 0

Vertical Lines 8
Autosave on Split.

prefix  male_walkcycle_2

File Type ' Windows BMP i

+ Apply Close






_images/Animation_import_done.png
@ File Edit View Image Layer Select Filter Window Tools Settings Help

18 o8 ~/38 creater - @ @ o | opadty: 054 - |'Size: 1208px - A\ B shiftbrush color hue clockwise =
To...@ % Advanced C. Specific C.
3 * v @ advanced Color Selector &x
T -
= =]
2 °
Vé o
S/
oo
o 1 Lay. Brush Pres. Tool Opti.
AT ~ @ Tool Options &
297
Basic Smoothing -
o Assistant:
&N Snap single: v
LW
m
e ol
~ @Timeline @ X | Animation | Onion Skins
o0 3 6 o 122 15 18 21 22 27 30 33 3 39 42 45 48 51 54 57
2o ~ @ Animation &x
wes sacell W0 B | | o = start: 0 9
End: 100 =
LU IR S A TR
[m} ) Play Speed: 1,00 »
« y o Frame Rate: 24 5

7] Basic tip default

RGB (8-bit inteaer/channel) sRGB-elle-V2-srabtrc.icc

64 x 64 (16.0K)

Fit Page





_images/Animation_import_sprites.png
® File Edit View Image Layer Select

N

i

3
o
x

>

PR

He LE WEQO% NN@EA

7% £+ 2AVON
|

D Timeline

20

Layer2 ® @ OB

] Basic tip default

B8 Greater

Filter Window Tools Settings Help

~ & @ O | oOpadity: 054 .- | Size:

Open Images

£

Places

Q search
Recently Used

krita

B Desktop

2 File System

[ Documents
Music

@ Pictures
i@ videos
Downloads

12 15 18 21

RGB (8-bit integer/channel) sRGB-elle-V2-srabtrc.icc

1208px S~ A B

* male_walkcycle_2_1.png
01 male_walkeycle_2_2.png
01 male_walkeycle_2_3.png
01 male_walkeycle_2_4.png
01 male_walkeycle_2_5.png
(1 male_walkeycle_2_6.png
(1 male_walkeycle_2_7.png
01 male_walkeycle_2_8.png
(1 male_walkeycle_2_9.png

shift brush color hue clockwise

+ size

64 x 64 (16.0K)

1,0kB
1,0kB
992 bytes
988 bytes
1,0kB
1,1kB
995 bytes
987 bytes
1,0k

Advanced

Modified

19:21
19:21
19:21
19:21
19:21
19:21
19:21
19:21
19:21

Play Speed
Frame Rate

Fit Page

Specific €

]

1.00

24

Tool Opti.

b





_images/Assistants_2_point_perspective.png





_images/Assistants_2_pointperspective_02.png





_images/Ants-displayMode.jpg





_images/Mask-displayMode.jpg
‘

Pl





_images/Assistants_1_point_perspective.png





_images/Krita-tutorial6-I.2-1.png
AAO0ON ¥ <«

0
N
&
N =

Control Mass & Drag
in Tool Option Docker





_images/Masking-brush2.jpg
Multiply Darken

Hard Mix  Hard Mix Softer  Subtract

Y






_images/Masking-brush1.jpg





_images/Assistants_2_pointperspective_03.png





_images/Krita-tutorial6-I.2-3.png
Line width set to Speed ~Line width set to Speed et B ne

~Normal mode ~Draw Dynamically mode
Curves Opacity 0 ~Curves Opacity 0 without turing off curves

- Draw Dynamically mode
- Curves opacity 100





_images/Merge_Request_Label_Workflow.png
Needs Changes

Preparing changes Approved Mertg(;nn%acshtzcges

H‘ Author
—— > Reviewer/Merger





_images/Krita-tutorial6-I.2-2.png
cpots o 8 el e s
3 Pressure
o [—
Sendng Vo
o e "
v A van

Tit direction

it elevat

Speed





_images/Meisje_met_de_parel_viewing.png
ol o o





_images/Krita-tutorial5-III.3-1.png
Defaut 50% Density +1.00 Color Rate.
100 Smudge Rate + Rotation -> Fuzzy.

SYER

Default  Rotation -> Fuzzy Size. \ Rotation -> Fuzzy <~
settings 100 Smudge Rate  dynamics 100 Smudge Rate
'1.00 Color Rate "1.00 Color Rate






_images/Levels-filter-autolevels.png
Shadows and Highlights

Method: {Adjust monochromatic contrast ~ |
Shadows clipping: | 0.10% 7
Highlights clipping: | 0.10% 7

o

Shadows color:

Highlights color: IR

Midtones

Method: |Use the median to adjust the midtones






_images/freehand_tool_internals.png
KisRecordingAdapter KisPaintinginformationBuilder

[+startStroke(image, resoursessnapshon) | [+startstroke(event - KoPointerEvent *, timeElapsed - int)

[endstroke(
[+addpointpi)
[vaddLine(pi1, pi2)

[+startpoint() - QPoint
|#adjustDocument~Point(point : QPointF) : QPointF

[+addCurve(pi1, control1, control2, pi2) | |#documentTolmage(point : QPoint) : QPointF-

[¢calculateperspective(documentPoint : QpointF) : qreal

KisToolFrechand

|+continueStrokelevent : KoPointerEvent *, previmagePoint : QPointF, timeElapsed : int)

Kis ToolPaintingInformationBuilder

|¢adjustDocumentpaint(point - QPointF) - QPointF
|¢documentTolmage(point - QPointF) : QPointr
[¢calculateperspective(documentPoint : QPointr) : areal

[+KisToolPaintinginformationBuilder(tool - KisToolFreehand )

RisToolBrush

Ris ToolFrechandHelper

[+KisToolFreehandHelperinfoBuilder, recordingAdapter)
[+setsmoothness(smooth - bool, smoothness - qreal)

[ +initpaint(event, resourceManager, image, strokesFacade, undoAdapter, overrideNode)
[+paint(event)

[+endpaint)

[ currentpaintop() : KisPaintop *

[¢createpaintersi(painters - Quector<KisPainter*> &)

[¢paintatpainters, pi)

[¢paintLine(painters, pil, pi2)

RisScraichPad

JO

[#paintBezierCurve(painters, pil, control1, contral2, pi2)

Ris ToolMulihand

RisScratchPadEvent Filler

Ris ToolMulthandrielper

[+setupTransformations(iransforms - QVector<QTransform>)
|¢createpaintersi(painters - Quector<KisPainter*> &) . <<instan
[¢paintatpainters, pi) R

tiate>>

|¢paintLine(painters, pil, pi2)

KisResourcesSnapshot

[#paintBezierCurve(painters, pil, control1, contral2, pi2)

FrechandStrokeStraiegy






_images/Krita-tutorial5-III.2-2.png
10

20

Smearing

Dulling





_images/Lens-blur-filter.png
9 A Filter: Lens Blur — Krita

Default ~ | Uselastpreset [EditPresets = XML
Iris
Shape:

Pentagon (5) -
Radius: [ =
Rotation:  —

@R ¢

IO v Preview Create Filter Mask | «?OK X Cancel





_images/Krita-tutorial5-III.3-3.png





_images/Lod_position.png
-lmage Layer Select Filter Tools

[ D show Canvas Only Tab
O
[J  Detach canvas

[J & wrap Around Mode Shift+w

Full Screen Mode Ctri+Shift+F

Soft Proofing ctrivy

oo

Out of Gamut Warnings  Ctrl+Shift+Y.
Canvas >
Show Rulers

Rulers Track Pointer

Show Guides

Lock Guides

Show Status Bar

Show Grid Ctrl+shift+

EO0mO00®®

Show Pixel Grid
Snap To >

Show Painting Assistants

= @

Show Assistant Previews

Show Reference Images





_images/generic_composite_case2.png
src

dst l:

f alignment

16

stage 1: scalar
“read until dst
is aligned"

stage 2b: vector
“read dst aligned,
src unaligned”

16

stage 3: scalar





_images/Krita-tutorial5-III.3-2.png





_images/Levels-filter.png
All Channels






_images/generic_composite_case1.png
{ : .
sre [7 T T T T T T T T]
ost [ T T T T T TTTT]

0

stage 1 scalar stage 2a: vector stage 3: scalar





_images/Krita-tutorial5-III.5.png
Fiter >
Gaussian biur 20

Selection
Then Selection -> Feather 20 Gaussian blur 60,





_images/Manageresources.png
) Manage Resources - Krita AAPNY )

Brush Presets - 1D: 1324

Pixel
bundles/Wolthera_Inking_Pack 2 3.bundl - e

Al 7 7 B - &

Filename: inking_brush_soft.kpp

Show deleted resources

Name:  inking_brush_soft
Location: bundles/Wolth...ck_2_3.bundle
Tags: Ink X

Wolthera_Inking_Pack X
+

Delete Resources

Import Resources  Open Resource Folder
CreateaBundle  Save Tags to Folder

@ Close






_images/Krita-tutorial5-III.4.png
SmudgelColor rates 0.50 + Rotation -> Fuzzy + size > Fuzzy
Opacity 0.70 + Scatter 060
Gradient > Fuzzy

Various predefined brushes
100 Smudge rate, Color rate and Opacity
Size and Rotation > fuzzy

Some rotation ffects with ellptcal brush





_images/Lod_position2.png
Shape: Angle:
circe - Spikes: 2
Randomness: 0 E
Antialias
Densiy: 100% B

Spacing:  Auto

Auto precision:

V Instant Preview

aks To Presets v Eraser swich size





_images/Krita-tutorial6-I.1-2.png
@ (@ (&

Width 1 Width 5 Width 10

History size 0 History size 20 History size S0 History size 100
Curves Curves. Curves Curves

opacity 0.00 opacity 0.15 opacity 0.50 opacity 1.00

Paint Connection
Line off





_images/Krita-tutorial6-I.1-1.png
— cuvelines not
Viible with
straight lne "\ |

Curve lines

Close-up

Curve lines

Connection
e

Fast =
wider curves

Stow
thinner curves.






_images/Assistants_3_point_perspective.png





_images/Assistants_dimetric.png





_images/Assistants_oblique.png





_images/Assistants_trimetric.png





_images/Assistants_ellipse_in_perspective.png





_images/Assistants_fish-eye_2_02.png





_images/Assistants_vanishing_point_logic_03.png





_images/Passthrough-mode_.png
PASS THROUGH






_images/Azelea_01_trunk-.png
Select Fiter Window Tools Settings Help

Normsl v & mC [Eoox - JOREEEN % ™M R e M A4

Unnamsd ) dvanced Coor Selector _ paette

0 a
“T%Pr

\NOoazrrmeIN
H+OY 9 B Ao

& x
Ve om

E

Basic_tip_default RGB (8-bit integer/channel) sRGE-elle-V2-sre

17542480 Fitpage v B





_images/Palette-docker.png
eye-desat_dark

eye-desat
eye-desat_dark
eye_dark
eye_middark

M eye_pale

I eyebags

M eyebagslight





_images/Assistants_vanishing_point_logic_01.png





_images/Krita4_u-brush-family.jpg
Pixel Art





_images/Pepper_tonecurves.png





_images/Assistants_vanishing_point_logic_02.png





_images/Krita4_t-brush-family.jpg
e’ ‘
<2
@ ShapeM
Bt
, g Shapes Rounded

. [ Shapes Spikes

y Shapes Square






_images/Pepper-speedpaint-deevad.jpg





_images/Blending_modes_Soft_Light_Photoshop_Sample_image_with_dots.png





_images/Krita4_w-brush-family.jpg
TextureNormaJMap N o e ==





_images/Pixelize-filter.png





_images/Blending_modes_Soft_Light_PEGTOP_Sample_image_with_dots.png





_images/Krita4_v-brush-family.jpg
Clone Tool +

o “wuu
> N\
T






_images/Perspectivegrid.png





_images/Blending_modes_Subtract_Gray_0.4_and_Gray_0.5_n.png





_images/Krita4_y-brush-family.jpg
D Texture Random Particles
- e i






_images/Pointcurvemanip.png





_images/Blending_modes_Soft_Light_SVG_Sample_image_with_dots.png





_images/Krita4_x-brush-family.jpg
@O

Filter Blur

IFiltef Sherhert |
5] ngm o
]
=)

oo oo

8]
(8]
[m]

[}





_images/Pixels-brushstroke.png
BRUSH STROKE

. Eachpixelis
assigned a color






_images/Blending_modes_Saturation_Sample_image_with_dots.png





_images/Krita4_i-brush-family.jpg





_images/Painter-sculpt-brush-06.png
¥ Brush engines ” 0,/, T 2% >
# Pixel < [ . i 0 -~ =

9 Color Smudge

= Name: Basic_wet Overwrite Preset | Reload
7 eristle
Shape v General — Too
ren X B
— Brush Tip o
Blending Mode
W Hatchint
} 44 Grid o
e pacing v
& cunve Spacin preccure Share curve across all settings
v Smudge Length 360°
Dyna Pressurein
Samy Smudge Radius
Particle v _Color Rate XTilt
Clone 7 Rotation | Y-Tilt
et Scatter Tilt direction
s m . SEETED Tilt elevation
Tangent Normal
. v Texture =
©) Fiter Pt v Drawing angle
& chaik v Strength Rotation =
v Lock
o
o 360°
Angle Offset
o g

Default preset| v Temporarily Save Tweaks To Presets  Eraser switch size 7 Instant Preview






_images/Blending_modes_Saturation_HSV_Sample_image_with_dots.png





_images/Krita4_h-brush-family.jpg





_images/Painter-sculpt-brush-05.png
¥ Brush engines
# Pixel
/7 eristle
% Shape v General enath
Brush Tip rength:
Spray Blending Mode
R Hatchi
Wietching CEy Enable Pen Settings
8o
i S
g7 Curve Mirror
v Smudge Length
o
o Smudge Radius
rartice |+ RColor Rate - m
¢ clone Rotation
e
Overlay Mode
@ Tangent Normal Gradient
o T e
©) Fitter Pattern
& chaik v Strength

Default preset| v Temporarily Save Tweaks To Presets

Eraser switch size

Overwrite Preset| Reload

7 Instant Preview






_images/Blending_modes_Screen_Light_blue_and_Orange.png





_images/Krita4_k-brush-family.jpg
‘ p Blender Basic
) / Blender Blur R
6

) \






_images/Blending_modes_Screen_Gray_0.4_and_Gray_0.5.png





_images/Krita4_j-brush-family.jpg
; ik Behg, 5

"% Watercolgrf&:_upg\e @Zgifr, ! A,%r :
2 i L

: e o SN AR

A e ra QN






_images/Painter-sculpt-brush-07.png
[ Paint_like_scultpurer

RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc

2048 x 2048 (30.0M)

Advanced Color S... | Specific Color ...
~ @ Advanced Color Selector & x

=]

Tool Qptions | Toolbox
~ @Toolbox

NTE S
B/ooornT>2
OEHeN T2 N

: X @

Gridand Gu... | LUT Manage..

@Layers
Normal

FitPage —





_images/Blending_modes_Shade_Sample_image_with_dots.png





_images/Blending_modes_Screen_Sample_image_with_dots.png





_images/Krita4_l-brush-family.jpg





_images/Blending_modes_Soft_Light_IFS_Sample_image_with_dots.png





_images/Azelea_03_filling-flowers.png





_images/Azelea_04_finished-setup.png
Layer Select Filter Window Tools Settings Help
Behind v % B Cl | ser100p - [OREEEEHC % ™ k< r> M A 4

tvanced ColorSelector | alete

2 o EvEvAd@A=SE

Shape_fill RGB (8-bit integer/channel) SRGB-e

V2-srgbircice 17542480 25%v ]





_images/Azelea_02_drawing-flowers.png
le Edit View Image Layer Select Filter Window Tools Settings Help
ETH LN Normal v % B C [ 1298px v

W % ™ ek M A
atvanced Color Selector | paette

J r‘,. ¥ @ Bevenced Colo Sekctor 8 x

“

ot gptons
v ) 8
1 o “T%#D
3 L] % \“sNDoazma>w
i S meONesERen

RN 7]

S =~ & \{:‘% | v
- ; W e
W . P

PO\ |

RGB (8-bit integer/channel) SRGB-elle-V2-srgbtrc.icc

<






_images/Azelea_07_clusters.png
aleas - screencast_azaleas.kra






_images/Azelea_08_leaves.png





_images/Azelea_05_clonelayer.png
screencast_azaleas - s¢ L3ers || Brush Presets
v @ Laers
Normal

ginal

om

Tlower 7

]

i »
4 im S
avilv AZ == W






_images/Azelea_06_transformmask.png
screencast_azaleas - s¢ ¥

Layers






_images/Azelea_11_alphainheritance_2.png
screencast_azale:

Normal

273 g
S OvATA=T






_images/Onion_skin_01.png
o>

N -

E Vo QLO% X M
X £d AAVON

Vo el

ow q

@ Timeline

22|

15 21

1 2
EEERNR

5 s s om
seorre R BB B B BB |





_images/Azelea_09_paintingoriginals.png





_images/Krita4_c-brush-family.jpg





_images/Onion_skin_docker.png
~@onion skins &x

0ss JRERREIMENz3 56780900

© Previous frames  Next frames |






_images/Azelea_10_alphainheritance_1.png





_images/Onion_skin_02.png
~ @ onion skins &x

FPERRERERRMNORRRERDRED

Tint 50%

Previous frames  Next frames






_images/Blending_modes_Q_Reflect_Light_blue_and_Orange.png





_images/Krita4_e-brush-family.jpg





_images/Painter-sculpt-brush-02.png
¥ Brush engines 7 AR &
# Pixel < P S _

Sketch Name: Basic_wet Overwrite Preset | Reload
7 eristle
Shape v General S
Brush Tip reng B
R Blending Mode
i\ pteting Opacty e
P = v Enable Pen Settings
F+4 Grid size
b pacing
& curve Mirror _ ¥ share curve across all settings
g v Smudge Length Pressure opaque
Dyna
©or o R\ ar Pressurein
FaniEE v Color Rate X-Tile
< clone got;lmn Y-Tile
catter
Deform e Tilt direction
@ tangent Normal Gradient Tilt elevation
) Filter v Teime Speed
4 - e, Drawing angle
& chak Strengtt )
Distance
Time
Fuzzy
|v Fademm— Transparent
A= yo 0 1000
repeat

Length: | 1,000 3

Default preset| v Temporarily Save Tweaks To Presets  Eraser switch size 7 Instant Preview






_images/Krita4_d-brush-family.jpg
Ink-1 Precision @\
VMW \%&@,%\

T e
Inh 2 Flﬂ/{ﬁer
(8 q » L'_“@L,
EI
Y . g 0

HBES

s






_images/Painter-sculpt-brush-01.png
¥ Brush engines 7 n 7 A4 V4 / V4 VA &le ¥
I | & L] I / & & / -
4 Pixel = et -~ =

9 Color Smudge
Name: Basic_wet

Sketch
7 eristle
Shape Y Auto Predefined Text
rush Tip
spray Blending Mode
Hatching Opacity Diameter: 50.00 px
size
Grid Sty Ratio! 100 B
curve Mirror
- v Smudge Length Fade
Smudge Radius
Particle v Color Rate Horizontal 100 <
Clone Rotation ]
Scatter Mask Type: Vertical 100 ) ®
Deform Overlay Mode et
® Tangent Normal Gt
v ‘exture Shape: Angle: 0° B
©) Fitter Pattern o 3
& chak v Strength circle - Spikes 2 e
v Antialias  Randomness: 0 E
Density: 100% 5
L3
Spzenm EAmo 050 =
v Auto Starting Brush Size: 50.00 px 3| Delta: 25.00 px | Precision:l

Default preset| v Temporarily Save Tweaks To Presets  Eraser switch size ¥ Instant Preview






_images/Blending_modes_Saturation_HSL_Sample_image_with_dots.png





_images/Krita4_g-brush-family.jpg
f Dry Bristles Eroded






_images/Painter-sculpt-brush-04.png
¥ Brush engines
/# Pixel

Sketch
/7 eristle
£ shape
spray
\ Hatching
P44 Grid
Hermo
©oyma

Particle

¢ Clone

@ Tangent Normal
©) Fiter
& chak

- 4 Y 4 AN J| &
< (5 & &
<

Name: Basic_wet

>

Overwrite Preset | Reload

v General
Brush Tip Strength: g
Blening uce
Size 7 Enable Pen Settings
predhg v Share curve across all settings
Luny Pressure B
v Smudge Length opae
Smudge Radius Pressurein
v Color Rate x-Tilt
Rotation o
Scatter
S il direction
Gradient Tilt elevation
v Texture Speed
| Datten Drawing angle
= Rotation
Distance
Time
Fuzzy
|v Faden Transparent
o o o 500
repeat

Length: | 500 %

Default preset| v Temporarily Save Tweaks To Presets  Eraser switch size 7 Instant Preview






_images/Blending_modes_Saturation_HSI_Sample_image_with_dots.png
& o
e
-
3
A
. . 0
L





_images/Krita4_f-brush-family.jpg





_images/Painter-sculpt-brush-03.png
¥ Brush engines

# Pixel

19 Color smudge

* sketch

/7 eristle
Shape

& oyna
Particle
¢ clone
Deform
® Tangent Normal
) Filter

& chak

Name: Basic_wet

v General
Brush Tip
Blending Mode
opacity
size
Spacing
Mirror
v Smudge Length
Smudge Radius
v Color Rate
Rotation
Scatter
Overlay Mode
Gradient
v Texture
Pattern
v strength

Default preset| v Temporarily Save Tweaks To Presets

Auto Predefined Text

A_Angular_church_HR (100 x 100)

Al

A P A A A WA A P A I e A
AW R A % -

Overwrite Preset| Reload

size: 200.00 px
Rotation: o
Spacing:  Auto 0.05

v Auto Starting Brush Size: 50.00 px 3| Delta

Eraser switch size

Reset Predefined Tip

25.00 px 2| Precision:1

7 Instant Preview






_images/On_canvas_brush_editor.png
[ b)_Basi. Opacy @) =

Size: 40.00 px
Opacity: 1.00

— Angle:360' 3| =






_images/Krita-tutorial8-A.II.png
Normal hatching
(tyawn®) Draw over areas where you y.
want thicker lines faster 100% randomness, Fade 0

Buid-up + Multiply modes

Brush tip: Density 60%, Fade 0.00 Same as left with
Crosshatching -> Fuzzy  Moire, Separation and Thickness 5 Thickness 1 and
Crosshatching fuzzy Size -> Fuzzy

“450plane then +45°plane  -45%lane then +45° plane Moire
Blue grid, Origins XIY 0 Separations -> Fuzzy Separations -> Fuzzy
Red grid, Origins X/Y 1





_images/Oilpaint-filter.png
aint — Krita

Edit Pre:






_images/Krita4_0_brushes.jpg
L
A

122 2 7
o

g

N
A 7

il

EE

77

A A
2

A
%(,

S

é

7|,

|
g7 7
497

77

2

fl\(/ $

44
'€¢)

b4
i
7|
7

0 5
1 “&’"\; ¢






_images/On_canvas_brush_editor_3.png
[ b)_Basi...Opacity

Size: 40.00 px

Opacity: 1.00

- Angle: 360"
Flow: 1.00

Auto Spacing






_images/Krita-view-dependant-lut-management.png
LUT Management
v Use OpenColorlO

Color Engine:  OCIO
Configuration:

raw

SRGB

Raw

None
Components: | Luminance

Exposure:

Gamma:

character_paladin_face_fine - character_paladin_face_fine.kra






_images/On_canvas_brush_editor_2.png
Brush HUD configuration — Krita

Available properties: Current properties:

Flow Size
Auto Spacing Opacity

Spacing Angle
LightnessStrength






_images/Krita4_b-brush-family.jpg
Basic-6 Details

A "\

0

)5

)
\

N0
7‘) g

W






_images/Krita4_a-brush-family.png
’ sl
e
e

v.-.‘
N

vy
r o
v

.
n





_images/ffmpeg_screenshot_path.png
Firstframe: 0 % width: 1280px +
Lastframe: 20  %| Height: 720 px

Video Options
FFMpeg:  C:/ffmpeg/bin/ffmpeg.exe

Render as: | MPEG-4 video

FPS:

24

o





_images/eyetracker_layout_screenshot.png
2018-07-29_17-30-54.kra (256,0 KiB) - Krita






_images/Krita_scenelinear_cat_01.png





_images/file_config_page.png
General

Cursor  Window  Tools | File Handling | Miscellaneous | Resources

= v Enable Autosaving
Keyboard Shortcuts
':: Autosave Interval:  Every 15 min

v Unnamed autosave files are hidden by default
[T 2

Setti

R v Create a Backup File on Saving

- Backup Flo Losation Sams Foidar as Original Flle -
Dy

. Backup File Suffix: ~

Number of Backup Files Kept: 1
Color Management Cba BanoLss

gf Kra File Compression
Performance Compress .kra files more (slows loading/saving)

Use Zip64 (for very large files: cannot be opened in versions of Krita older than 4.2.0)

Tablet settings Trim files before saving

Cd

Canvas-only
settings

Pop-up Palette

Color Selector
Settings

]

Python Plugin
Manager Restore Defaults oK Cancel





_images/Krita_newfile.png
[CCHGRBSEE]  oimansons  coment

[5} Create from Cii....

Image Size
Animation Tem...  Predefined: z om
(2 Gormic Templates Width: 2480 2 Pixels (o)~
Design Templa... Height: 3508 2 Pixels (px)  ~
(5] DSLR Tempiates Resolution: 300.00 4 Pixels/inch  ~
Texture Templ... Save Image Size as: Save
Color
Model: ‘RGB/Alpha -
Depth: 8-bit integer/channel -

Profile: SRGB-elle-V2-srgbtrc.icc (Default) |75

Color Space Browser

This document will be 2,480 pixels by 3,508 pixels in RGB/
Alpha (8-bit integer/channel), which means the pixel size is
32 bit. A single paint layer will thus take up 33.2 MiB of RAM.

Create | Cancel






_images/file_and_backup_file.png
hin

File Edit View Go Tools Settings Help

< > B/ Q

> Home > test

e

B Network blakra bla.kra~

Device:

B 762,1 GiB Hard Drive
B, Windows

blakra~..47,7 KiB) e —146,6 GiB free






_images/Krita_halftone_filter.jpg
L

Filtr: Halftone — Krita

~ (D=t o=t il presets XL
Independent Channels v
Cyan | Magenta  Yellow Black

Screen Generator | Postprocessing

Screentone v

Screentone Type | Transformation Postprocessing

Pattern: | Dots v
Shape: | Round v
Interpolation: | Sinusoidal v

O (W] Preview  Create Filter Mask v 0K © cancel






_images/enclose_and_fill_potential_areas.png





_images/Krita_gradient_segment_mid_position.png





_images/enclose_and_fill_basic_usage.png





_images/Krita_mouse_left.png





_images/enclose_and_fill_potential_areas_fill_all_except.png





_images/enclose_and_fill_potential_areas_fill_all.png





_images/Krita_mouse_right.png





_images/enclose_and_fill_potential_areas_fill_surrounded.png





_images/Krita_mouse_middle.png





_images/enclose_and_fill_potential_areas_fill_area.png





_images/Krita_multiple_views.png
9 A clonelayer-transformmasks_azaleas.kra (291.7 MiB) * — Krita

File Edit View Image Layer Select Filter Tools Settings Window Help

com ocilll E o © & @ O [ Opacityii00% . - [ a000px i A B - H B

@  clonelayer-transformmasks_azaleas.kra * [E[E[X] Advanced Color Selec... = Tool Opti...
“ @ Tool Options & x

3

=
Brush Smoothing: ~ Weighted  ~

Distance:
Stroke Ending
Smooth Pressure:

Scalable Distance:

+ AAVON 94

@ Layers

Opacity: 28%

<

[ b) Basic-1 RGB/Alph...btrc.icc 1,754 x 2,480 (291.7 MiB)






_images/Krita_mouse_scroll.png





_images/Krita_new_gradient.png
Gradients

Foreground to Transparent
All -

+ Add... ¥ EEdit..
Stop gradient

Segmented gikdient





_images/Krita_gradient_segment_color_model.png
. . -6
_o 70 I+





_images/elliptical_dab_ratio.png
-Ratioﬁ » +Ratio





_images/Krita_filling_lineart_mask_3.png





_images/cross_channel_filter.png





_images/Krita_filling_lineart_mask_2.png





_images/Krita_filling_lineart_selection_2.png
LLLLLL

NNNNNN

Opacity: 100%






_images/darken.png





_images/Krita_filling_lineart_selection_1.png





_images/Krita_filters_asc_cdl.png
9 A Filter: Slope, Offset, Power(ASC-CDL) — Krita

Default Use last preset  Edit Presets

ASC-CDL color balance
Slope:

'O v Preview Create Filter Mask | <"OK | X Cancel






_images/document_information_screen.png
General

Path: /home/raghu/Downloads/masks_ghostlady.kra

Title: masks_ghostlady

Authoy Subject: is a ghost lady in a darkened hallway, she's turning off the light.

Keywords: Ghost, Lady, Demo File
License/Rights: CC-BY-SA 4.0

Description: This is Demo File created for Krita|

Type: Krita document
Created: Saturday, 16 January, 2016 3:19:20 PM IST, Unknown
Modified: Tuesday, 19 January, 2016 6:59:57 PM IST,

Last printed:

Total editing time: 1 hour and 14 minutes Reset
Revision number: 20

oK Cancel





_images/Krita_filter_gradient_map.png
9 A Filter: Gradient Map — Krita

Default ~ | Uselastpreset |EditPresets | XML

| Gradient Golors || Color Mode

[+ B [Convert to Segment Gradient ' Choose Gradient Preset,

Name: Unnamed

0y

Stop: ® Color
Foreground

Background

0O v Preview [Create Filter Mask|| ##OK | | X Cancel |






_images/Krita_ghostlady_2.png
Layers

Normal

Opacity: 100%

ghost lady

ghostlady white fill
sketch

=]

v

J

[ ] ghostlady lineart
L}

]

=]

>

background






_images/Krita_ghostlady_1.png
Layers

ghost lady

ghostlady white fll
sketch

background






_images/Krita_gradient_segment_blending.png
. . . ‘_‘
-1 70 _o 70 -1





_images/Krita_ghostlady_3.png
Layers

Color Dodge

ghost lady
trans_mask(remake me)
ghostlady lineart
ghostlady white fll

lens_blur_filter_layer(rem...

background






_images/fixed_size_chunks_example.png
butfer ot
10 pixels | | ‘ ‘ l |

[] %

_mm256_mul_ps
A
reads first 8 pixels —

_mm256_mul_ps
cannot read past )‘
the end of the buffer!






_images/Layer-docker-pixelart.png
M= -

I 7 Index color fiter






_images/forced_mask_mode.png
Auto | Predefined  Text

The brush doesn't have

Al O7eg . [ chiselsoft - cpannel
: Mask (150 x 160)
size 267195 px
(tation: ®RD
Spacing: v Auto b.80

Brush mode /Mude selection is blocked

N
* v Preserve Brush Preset Settings

v Filterin Tag Reset Predefined Tip

+import | +Stamp | +Clipboard | &

Vv Auto





_images/Layer-composite.png
®

#
*H
||

B
#
* B
#
|

o

o

Group composites
separately

Layers within group
are composited along
with all layers

@ (9

)

)
EEE

Layer 11

®






_images/flow_opacity_adapt_flow_preset.gif





_images/Krita-tutorial5-III.2-1.png
‘Smearing

Opacity 0.70 - . _ Opacity 0.70
Smudge Rate 0.10 Smudge Rate 0.50

Color Rate 0.50 " Color Rate 0.10

Dulling






_images/Layer_Organization.png
- P 2neab-n
| EREeTN
| SN
- Y sas
[

. YA

- o

- o
- o

o

- o
- o






_images/Krita-tutorial5-III.1-3.png





_images/Krita-tutorial5-I.4.png
SN
x4





_images/Krita_transforms_perspective.png
Opacity: 100%

Paint Layer 1

kgrou






_images/Krita-tutorial2-I.1-2.png
Layer

can
Affect

Group®

can
Affect

Layer

Base 1

Layer

Layer

Base 2

Bon't
affect

Top layer —

Bottom layer Middle layer
Example 1 Example 2.

Triangle+Sphere layers
with alpha-inheritance

Triangle layer with
alpha-inheritance






_images/Krita_transforms_mesh.png
Tool Options Y

Oop-BeEeil Mesh

Mesh size
Columns: 1
Rows: 1

v show handles

v Lock handles symmetrically

Scale handles proportionally

 Apply
Layers & X
Normal A\
Opacity: 100%
=@ icon
* 7  Appe
*l° sackground a

+-Ov A=






_images/Krita-tutorial5-I.5-2.png
Brush path
° p





_images/Krita_transforms_warp.png
Tool Options Y

Oob-peeil warp
Anch Flexibility:
0.0
Subdivide 3
Draw
e @Reset | Apply
Layers & X
Normal \%4
Opacity: 100% =
= o
a






_images/fill_tool_stop_growing.png





_images/Krita-tutorial5-I.5-1.png
Smearing

P Ry 3

Scatter 0.50

Scatter 0.50 Dulling + Size > Fuzzy
+ Rotation > Fuzzy





_images/Krita_transforms_recursive.png





_images/Krita-tutorial5-II.2.png
Smearing

*F

Smooth edge shading
High smudge rate

High Opacity
.. “

- l
'**

Various other stuff

Dulling






_images/Krita-tutorial5-I.6-1.png
Smearing

Gradient -> Distance

/ X

Gradient -> Fuzzy

/ \





_images/LUT_Management_Docker.png
v (@ LT Management o

M) Use Opencoiorio
Color Engine: ‘ r—
I
it Cobrspace: (0 -
Display Device:  <pep =
|View: Raw N
s v
T S
-






_images/fill_tool_what_to_fill.png





_images/Krita-tutorial5-III.1-1.png
Smearing Dulling

Same layer Different layer Same layer Different layer

Same as
Overlay before, after
mode. changing the

color
undemeath






_images/Krita-tutorial5-II.3.png
Scatter

scatter + Rotation > Fuzzy
Predefined Brush Tip Size -> Fuzzy Smearing vs Duling
" others

Smearing ouling Smearing Duling
Rotation > Fuzzy
"+ Scatter.





_images/Krita-tutorial5-III.1-2.png
~ "Hey, look at that nice ground effect! Il make a layer undemeath for the sky!’

~ "Okay, that wasn't the idea.





_images/fill_layer_screentone_type.png





_images/Krita_transforms_deformvsliquefy.png





_images/fill_selection_boundary.png





_images/fill_layer_simplex_noise.png
Layer Name: Simplex Noise]

Color

Looping

Pattern

Frequency:

Ratio:

Simplex Noise

Use Custom Seed






_images/Krita-transform-mask.png





_images/Krita_transforms_liquefy.png





_images/fill_tool_pixel_selection_policies.png





_images/Krita_transforms_free.png
Tool Options & X

ob-pe el Free Transform

Filter:  Bicubic Position
Rotate
rAT -
& AW Scale
Lvd Shea
Position
x 512 px
¥ 505 px
AlB 9 e
* @reset || Apply
Layers & X
Normal 7

=3/ raintiayera

* > sackground

+-Ov A=






_images/Krita_stop_sudden_change.png
Name: unnamed

< > stop#z h 3T
. [ .

At ®  [Opaciuio0oon - [Posiion so.00%

voK || ©cancel





_images/fill_layer_gradient_units.png
©0 320 pixels (20,0)

end point

©0,240) (320,240)





_images/Krita_scenelinear_cat_02.png





_images/fill_layer_gradient_coordinate_system.png
©0

320 pixels (20,0)

240 pxels

©0,240)

start point

end poi
relatly

‘end point X
relative
positioning

(320, 240)





_images/Krita_stroke_selection_3.png
Stroke

Type: Line selection

Line:  Custom color

~ width: 3

Custom color

Stroke selection properties - Krita

px





_images/fill_layer_screentone_grids.png





_images/Krita_stroke_selection_1.png
Stroke selection properties - Krita

Stroke
Type: CurrentBrush  ~
Line: Custom color -
width:

Fill:





_images/fill_layer_screentone_brightness_contrast_example.png





_images/Krita_tablet_stylus.png
QS

A\





_images/fill_layer_screentone_transformation.png





_images/Krita_tablet_drivermissing.png





_images/fill_layer_screentone_postprocessing.png





_images/Krita_transforms_cage.png
deformin,

Opacity: 100

Paint Layer 2






_images/Krita_tablet_types.png





_images/Blending_modes_Darker_Color_Sample_image_with_dots.png





_images/Blending_modes_Decrease_Intensity_Gray_0.4_and_Gray_0.5.png





_images/Blending_modes_Darken_Light_blue_and_Orange.png





_images/Blending_modes_Darken_Sample_image_with_dots.png





_images/Blending_modes_Decrease_Intensity_Light_blue_and_Orange.png





_images/Blending_modes_Decrease_Intensity_Sample_image_with_dots.png





_images/multigrid-dimension-example.png
2P0
=< 0"
g






_images/local-selection-mask.png
[CRNC BNC BNC AN )

2"
=
-
bl

Background

Selection 3
Selection 2

Selection 1






_images/Resize_Canvas.png
Krita v oA

New Size
Width 2480.00 7 px ~
Height: 3508.00 7 px ~ :
v Constrain proportions
Offset
X 000 px v (m
W 000 px v (m
Anchor:  F|A 7
Qe
(0]

oK Cancel





_images/magnetic_selection_mode_1.gif





_images/Resize.png





_images/magnetic_selection_anchor_gap.png





_images/Resources-aldyBrushes.jpg
7R
\ll'lﬂ.\"

\. » —L ]
@8 G500
LI






_images/magnetic_selection_mode_mixed.gif





_images/Resources-GDQuestBrushes.jpeg
li[

Fay A NUK IIE 2y e





_images/magnetic_selection_mode_2.gif





_images/Resources-deevadTextures2.jpg
8

Five textures |

Painting Effects






_images/Resources-conceptBrushes.jpg
CONCEPT & ILLUSTRATION

BRUSH PACK FOR KRITA

T Tt
NShaaR e
YN aY
SaS
SNaaaal
SN A
SN s
NN\ S
SSSSas
T N 3





_images/Resources-iForce73Brushes.png
Environments 2.0 &

ALY
LR R A L A A i
yg&%

KQEHW%“HQNWHQHHQV





_images/multigrid-color-examples.png
) Fill Layer Properties - Krita

| Layer Name: ‘ Layer 2

ol
L °°'_ Shapes Lines | Colors

Screentone Connector: I

Simplex Noise N

. A
[) [ l l
Stop: (mmmm  Opacityi100 o

Color Factors






_images/Resources-eyeodin.png
al

BUNDLE





_images/Resources-jackpackBrushes.jpg





_images/Resources-iForce73CityscapeBrushes.png






_images/Blending_modes_Copy_Sample_image_with_dots.png






_images/Blending_modes_Darken_Gray_0.4_and_Gray_0.5_n.png





_static/images/manual_cover.png
Manual 5.0





_images/Blending_modes_Copy_Green_Sample_image_with_dots.png





_static/images/sidebar-logo.png
= KRITA





_images/Blending_modes_Copy_Red_Sample_image_with_dots.png





_static/images/source-code.png
>





_images/layer-alpha-lock.png
Brush Presets Layers Compositions
Layers

Normal
Opacity: 100%
) E & line art

- colour

e | scanned sketch

—

vl_DvA-—

—_-






_images/lightness_strength_demo.png
Lightness Strength

Variable, pen pressure:





_images/lightness_map.png





_images/lightness_strength_disabled.png
v Genera o | Tt The brush is **not**

enting Hote in Lightness mode
opacity - O7eq . [7] DA RGBA bluegreen small
Flow

Image (81 x 200)

Spacing size: 16795 px
Mirror

] Softness
O Rotation
[ sharpness

Rotation: —

Spacing: v Auto 0.8

] scatter

2 Color

Source

] Darken

O mix

O Hue

] saturation

O value

O Airbrush

] Rate

Painting Mode
ture

Brush mode

Alpha Mask -

Pattarn
strength

¥ Masked Brush
[ Brush Tip

] opacity

H s Fimport || stamp | - Cipboard
o Rato

] Rotation v Auto

v Preserve Brush Preset Settings

Reset Predefined Tip






_images/linear_burn.png





_images/linear.png





_images/linear_height.png





_images/linear_dodge.png





_images/linear_height_ps.png





_images/SeExpr_editor_widgets.png
bla I 0.448

blo I 0925

Pos:

wspline -

'Add new variable






_images/Rotatevector.png





_images/path_tool_usage.png





_images/Rgbcolorcube_HSI.png





_images/Scale_Image_to_New_Size.png
Krita v oA

Pixel Dimensions

Width: 2480 T
o P v 8
Height: 3508 +
Filter: Auto -
Print Size
Width: 827 %
in -8
Height: 11.69 -
Resolution: 300.00 5 Pixels/Inch -

v Constrain proportions

Adjust print size separately

oK Cancel





_images/Save_with_transparency.png
PNG Export Options ? Krita

Large file size small File size
Compression (Lossless). 9

Interlacing

v store alpha channel (transparency)

Embed sRGB profile

Transparent color.





_images/pattern_fill_transform.png





_images/SeExpr_add_variable.png
Variable $var|

Curve | ColorCurve | Int | Eloat

Lookup $u

? Aceptar






_images/SeExpr-David-Revoy.jpg
Layer Name:

Color
Pattern
Screentone
SeExpr
Simplex Noise

Layer3

Fill Layer Properties - Krita

Script | Options

‘Save New Brush Preset.

bla 0.448
3 0925
Pos: 0.471 oo
color  val
Mspline -

‘Add new variable

$val=voronoi(5*[3u,5v, 54,8bla Sblo),
Scolor=ccurve($val,0.995146,0.117647,0.113725,0.25882414,0.092233,[1,0.666667.0]
4,0179612,[1,0.333333,0.498039],4,0,[0.976,0.976,0.976] 4,0.470874,

[0.333333,0,0.498039],4,0.0533981,[1,1,01,4,0.135922,[1,0.361372,0.48572814,0.631068,
[0.27106,0.00458345,0.488398],4);

scolor

oK Cancel





_images/SeExpr_editor.png
Layer Name: Fill Layer 1

Color

Pattern Script | Options
Screentone

SeExpr.

Revoy's Example | & ‘Save New SeExpr Preset
Simplex Noise

color v | 3

$bla=0.44803;
$b10=0.92473;
voronoi (5+[$u, $v,.51,4, $bla,$blo) ;
ccurve(sval,
0.995146, [0.117647,0.113725,0.2588241 ,4,
0.092233,[1,0.666667,01,4,

0.179612, [1,0.333333,0.498039] 4
f'TA a76 0 474 A a7A] 4

Cancelar | | Aceptar






_images/SeExpr_add_variable_vector.png
Variable $color
Curve | ClorCurve | Int | Float | Vector
Default 0.5 5

Min 0

Max

Ocancelar

o

string

? Aceptar






_images/SeExpr_editor_script_error.png
0.179612,[1,0.333333,0.
©,[6.976,0.976,0,9761,4
©.470874,(0.3333333,0,0.498039],4,
©.0533981,(1,1,0].,4
0.135922,11,6,361372,0..485728] .4,
9.631068]

039],4.

L

$color

(75, 323): Wrong number of arguments, should be multiple of 3 plus 1
(68, 324): Assignment operation has incorrect type 'lfetime_error Error'





_images/SeExpr_editor_preset_mgmt.png
David Revoy's Example | & 'Save New SeBxpr Preset

Overwrite Preset





_images/parallel_multiply_example.png
mask

brush

mask

brush

mm256_mul_ps
|

fmu
+

. multiply one pixel at a time

v

Lmu\tiply eight pixels at a time





_images/Resources-mirandaBrushes.jpg
(=13 Ink & fx

S

Lf
IF,’ Lul 4| ois & Water
, “ ’ | .' . Blenders
SaEAde I Texunng






_images/multiply.png





_images/multigrid-offset-examples.png





_images/Resources-raghukamathBrushes.png





_images/Resources-nylnook.jpg





_images/Resources-razcoreBrushes.png





_images/Resources-rakurribrushset.png
[





_images/Resources-wojtrybBrushes.png





_images/overlay.png





_images/Resources-stalcryBrushes.jpg





_images/opacity_spread.png





_images/Rgbcolorcube_2.png





_images/Resources-woltheraBrushes.jpg
Titter B rush b\\ dle

fffffffffffffffffffffff






_images/Rgbcolorcube_3.png
\bit dannel  2bit/chanm|l 2ot /Clannel=
2/hanne 4 /channe| Q /channel=
& wlovsXato\ bHeolors +otal 12 colors forul






_images/Azelea_14_alphainheritance_5.png





_images/Azelea_15_alphainheritance_6.png
File Edit View Image Layer Select Filter Wincow Tools Settincs

FaTE " . & Nm o

am v
L]

Hep

DT PRV !

Advanced Color Selector | palette

screencast_azaleas - screencast_azaleas.kra

v @ Acvanced Color Sekector @ X
[

#

Tool Gptions

v (@ 7o Optiors a

Geometry Options

il eground Calor v

Outiine: Vo Outiine v

& 7o O
R Em A i

Lovers || grusn presets
v @ Laers & x
T IN— | ]
opacity 100%

5 | o avEv A@ A=

RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc 1754 x 2480






_images/Azelea_12_alphainheritance_3.png





_images/Azelea_13_alphainheritance_4.png





_images/Basiccolormanagement_gradientsin4spaces_v2.jpg
sRGB

|

Rec 2020

|

Clay/Adobe RG

f

ACES RGB

|






_images/Basiccolormanagement_compare4spaces.png





_images/Basiccolormanagement_gradientsin4spaces_nonmanaged.png
sRGB

|

Rec 2020

|

Clay/Adobe RG

f

ACES RGB

|






_images/Blend_modes_AND_map.png





_images/Blend_modes_CONVERSE_map.png





_images/gih_multi_dimension_explaination.png
olomomo

OA.\

<~
4

—






_images/generic_gradient_editor_breakdown.png
+ B Conyertto Stop Gradient
Name: GPS Fire Blueis|

< > segment#1

Interpolation: |Linear

+ B Convertto Stop Gradient /i

Use a pop-up gradient preset chooser
Name: GPS Fire Blueish

< > stop#1 @ =

v Show compact gradient preset cho

Left Color: T i ®

Right Colo T [m @ Opacity: 100.00%

v Filterin Tag






_images/gradient_map_brush_tip_flowers_patterned.png





_images/gradient_map.png





_images/gradient_map_brush_tip_rosemaling.png





_images/gradient_map_tips.png
19R2SNH 1CSSLDS
1282907 Tseene
12R209C 128





_images/Blend_modes_NOT_CONVERSE_map.png





_images/Blend_modes_NOT_IMPLICATION_map.png





_images/Blend_modes_NAND_map.png





_images/Blend_modes_NOR_map.png





_images/Blend_modes_XOR_map.png





_images/Blending_modes_AND_Gradients.png





_images/Blend_modes_OR_map.png





_images/Blend_modes_XNOR_map.png





_images/Blending_modes_Addition_Gray_0.4_and_Gray_0.5_n.png





_images/Blend_modes_IMPLIES_map.png





_images/Blending_modes_Allanon_Sample_image_with_dots.png





_images/Blending_modes_Alpha_Darken_Sample_image_with_dots.png





_images/Blending_modes_Addition_Sample_image_with_dots.png





_images/Blending_modes_Additive_Subtractive_Sample_image_with_dots.png





_images/Blending_modes_Burn_Gray_0.4_and_Gray_0.5_n.png





_images/Blending_modes_Burn_Light_blue_and_Orange.png





_images/Blending_modes_Arcus_Tangent_Sample_image_with_dots.png





_images/Blending_modes_Behind_Sample_image_with_dots.png





_images/introduction_to_animation_walkcycle_03_adjusted_tween.gif





_images/import_video.png
9 Import Video Animation — Krita v~
General | Advanced

mp4 B
Metadata

Width: 512 px
Slipknot Height: 512 px
Duration: 1.56 5
Frames: 25
FPS: 16

) 131s

Import Options

FPS: |16 FPS T Startat: 0.00s <

Skip Interval: | 1 3 Duration: | 1565 C

Import into:  New Document

v 0K © Cancel





_static/file.png





_images/introduction_to_animation_walkcycle_03_simple_tween.gif





_static/minus.png





_images/krita-colorize-mask-02.png
Opacity: 100% Size: 4.22 px Flow: 100% Av >

Advanced Color ... Gamu...
Tool Options

v/ Edit key strokes
Show output

Limit to layer bounds

Gap close hint: 30 px

Clean up: 70 %

Key Strokes

Transparent Remove

Layers Brush Presets Undo History

Brush Presets
fave-paint [l Tag, B

BN EP
PR I e

L A A A G

teger/channel) sRGB-elle-V2-srgbtrc.icc 1600 x 1767 (42.8 MiB)





_static/plus.png





_images/krita-colorize-mask-01.png
«FCQ %N \OOQACTASOSO PN





_images/krita-spray-brush-engine-distribution.png





_images/krita-colorize-mask-03.png
Q Opacity: 100% E20d Size: 5.00 px Flow: 60%

aye B Prese do 0
Behind \%
Opa 00% =
- olo e Ma ®
o]e] -
o

a B-elle gb 600 6 4.6 B 0





_images/krita_4_3_image_split_dialog.png
) Image Split - Krita v,

Horizontal Lines [ Use guides

Vertical Lines 1 © [ Use guides

Sort Direction:

® Horizontal
O Vertical

Prefix sketch83

File Type | Krita-document v

(W) Autosave on Split

 Apply ‘ © Close ‘






_images/Blending_modes_Addition_Light_blue_and_Orange.png





_images/Blending_modes_Addition_Red_plus_gray.png





_images/undo_adapters.png
@[ Kisimage

KisSurrogateUndoAdapter

m_postExecutionUndoAdapter

KisPostExecutionUndoAdapier

[+addCommand(cmd - QUndoCommandsP)
|createMacro(name : QStiing)  KisSavedMacroCommand *
|+addMacro(macro - KisSavedMacroComand *)

Kis LegacyUndoAdapter

Ris UndoAdapter

m_legacyUndoAdapter |+ endMacrof)

[+setCommandHistoryListener(istener)

| +removeCommandHistoryListener(istener)
|+emitselectionChanged)
+beginMacro(name : QString)

+addCommand(cmd : QUndoCommand *)
+undoLastCommand)
+presentCommand( : QUndoCommand *

m_undostare m_undostare

KisUndoStore

+endMacro)

[+setCommandHistoryListener(istener)
|+removeCommandHistoryListener(istener)
[¢notifyCommandexecutedicmd : QUndoCommand *)
J¢notifyCommandAddedicmd : QUndoCommand *)
m_undostare | vemitselectionChanged)

+beginMacro(name : QString)

+addCommand(cmd : QUndoCommand *)
+undoLastCommand)
+presentCommand( : QUndoCommand *

Iy

z z

KisSurrogateUndoStore

iz Dumb Undostore Ris DocumentUndostore

QUndostack KoDocument






_images/welcome_screen.png
Start 4 DeEvBuID Cormmi rity

[ New File (Ctrl+N) [] user Manual
[q Getting Started
B3 0pen File (cti+0) L. User Sommuriiy

[ Krita Website
[ source code

Recent Documents Clear
@ Support Krita
demo-apple.kra 1 Powered by KDE

. R

, clonelayer-transformmasks_azaleas.kra

Drag an image into the window to open

News

Third Development Update!
126/05/21 4:26 PM)

This the third development update during our development
fund campaign. The development fu

Krita's Google Summer of Code Students
(18/05/21 6:57 PM)

This year, ike every year since its inception, Krita
participates in the abbreviated vers.

Krita Dev Fund Campaign: Second Update!
(18/05/21 3:39 PM)

Here's our second update on the state of Krita 5. Wee
bringing you these updates to show.

Huion and Krita Competition Winners
116/05/21 4:20 PM)

We have the winners! We had them yesterday already, but
In the excitement of getting her 1.

Krita Dev Fund Campaign — First Update!
(11/05/21 3:33 PM)

Here's our first update on how the work for Krita 5 is going!
Were bringing you these upda. i

Krita is an open source and community-driven tool for digital artists everywhere.
Progress is made possible thanks to ongoing support from our community of contributors, sponsors, and development fund members.






_images/wide_gamut_selector.png
x IIf

@ Wide Gamut Color Selector





_images/Blending_modes_Color_HSI_Sample_image_with_dots.png





_images/Blending_modes_Color_HSL_Sample_image_with_dots.png





_images/Blending_modes_Color_HSI_Gray_0.4_and_Gray_0.5.png





_images/Blending_modes_Color_HSI_Light_blue_and_Orange.png





_images/Blending_modes_Copy_Blue_Sample_image_with_dots.png





_images/Blending_modes_Color_HSV_Sample_image_with_dots.png





_images/Blending_modes_Color_Sample_image_with_dots.png
@
iy ‘e
& o'y
-
‘o
. = 0









_images/hard_mix_ps.png






_images/guides.png
ides

Gu

Show gu

quides

Lock

3





_images/hardness.png





_images/hard_mix_softer_ps.png





_images/height.png





_images/highpass_filter_local_gradient_removal.png





_images/height_ps.png





_images/Blending_modes_CONVERSE_Gradients.png





_images/Blending_modes_Color_Dodge_Sample_image_with_dots.png





_images/highpass_filter_sharpen.png





_static/sidebar-logo.png
= KRITA





_images/Blending_modes_Burn_Sample_image_with_dots.png





_images/Krita-multi-layer-edit.png
Name:

Opaciy: _-

Composite mode: | Normal

yer

Color space: RGB (8-bit integer/channel)
Profile: sRGB-elle-V2-srgbtrc.icc

Properties
v ® Visible
@ Locked

6 Inherit Alpha

174 Alpha Locked

Active Channels
v Blue
v Green
v Red

v Alpha

vox || ®cancel





_images/Blending_modes_Interpolation_Sample_image_with_dots.png





_images/Krita-normals-tutoria_4.png
vHvAZ@=E






_images/Krita-multibrush.png
HR NOACN + %

fiw] &
5 4 % OQKCA 3o M





_images/Blending_modes_Inverse_Subtract_Gray_0.4_and_Gray_0.5_n.png





_images/Krita-normals-tutorial_2.png
AR

I
_.m L)
i
W

[Ee—

LN
o






_images/Blending_modes_Interpolation_X2_Sample_image_with_dots.png





_images/Krita-normals-tutorial_1.png





_images/Blending_modes_Inverse_Subtract_Sample_image_with_dots.png





_images/Krita-popuppalette.png





_images/Blending_modes_Inverse_Subtract_Light_blue_and_Orange.png





_images/Krita-normals-tutorial_3.png
Default

(Generaisettings | LghtSources

¥ ught source
coor.
s w00 &
st 20 &

 Uight Source 2

coor: v
a8 O
Indinaton: 20 G

 Ughtsource3
color: (T

s 42

<

Incinston: 30°

o o

Light source 4





_images/Blending_modes_Lighter_Color_Sample_image_with_dots.png





_images/Krita-sketch_offset_scale2.png
b

0% 5% S0%  75% joo% 1a5% 150% 1% 200%





_images/Blending_modes_Lighten_Sample_image_with_dots.png





_images/Krita-screencast-azaleas.png





_images/Blending_modes_Linear_Burn_Gray_0.4_and_Gray_0.5.png





_images/Blending_modes_Lightness_Sample_image_with_dots.png





_images/Krita-tool-options-text.png
Tool Options o

[

=iGE






_images/Blending_modes_Intensity_Sample_image_with_dots.png





_images/Blending_modes_Increase_Value_Sample_image_with_dots.png





_images/Krita-color-to-alpha.png
Color Sampler:

Tresho: [ 100

IO v Preview






_images/Blending_modes_Increase_Intensity_Sample_image_with_dots.png





_images/Blending_modes_IMPLIES_Gradients.png





_images/Blending_modes_Increase_Luminosity_Sample_image_with_dots.png





_images/Blending_modes_Increase_Lightness_Sample_image_with_dots.png





_images/Blending_modes_Increase_Saturation_HSL_Sample_image_with_dots.png





_images/Krita-incremental-saves.png
20120824 2012:08-24_ 2012-0824_  2012-08-24_
housetree”  housetree” housetréel  housetree_

002.png 003.png 004.png 005.png





_images/Blending_modes_Increase_Saturation_HSI_Sample_image_with_dots.png





_images/Krita-hdr-painting.png
L] Landscape kritaflatten.exr v oA x






_images/Blending_modes_Increase_Saturation_Sample_image_with_dots.png





_images/Krita-layerstyle_hack2.png





_images/Blending_modes_Increase_Saturation_HSV_Sample_image_with_dots.png





_images/Krita-layerstyle_hack.png
v Enable Effects

Styles
Blending Options
Drop Shadow
Inner shadow
Outer Glow
Inner Glow
Bevel and Emboss
Contour
Texture
satin
Color Overlay
Gradient Overlay
Pattem Overlay
v stroke

Layer Styles - Krita

Stroke.
Structure
size: 1 apx 3
Eosition: | Center o
Blend Mode:  Normal -
omer: 0% S
Fill
Color -
Color

?2v A
New.
Import
Export

Preyiew

©ancel





_images/Blending_modes_Hue_HSV_Sample_image_with_dots.png





_images/Blending_modes_Hue_HSL_Sample_image_with_dots.png





_images/Krita-building_for-cats_intro_by-deevad.jpg





_images/Blending_modes_Hue_Sample_image_with_dots.png





_images/Blending_modes_Modulo_Shift_Gradient_Comparison.png





_images/Blending_modes_Multiply_Light_blue_and_Orange.png





_images/Blending_modes_Multiply_Gray_0.4_and_Gray_0.5_n.png





_images/Blending_modes_NAND_Gradients.png





_images/Blending_modes_Multiply_Sample_image_with_dots.png





_images/Blending_modes_NOT_CONVERSE_Gradients.png





_images/Blending_modes_NOR_Gradients.png





_images/Blending_modes_Negation_Sample_image_with_dots.png





_images/Blending_modes_NOT_IMPLICATION_Gradients.png





_images/Blending_modes_Normal_50_Opacity_Sample_image_with_dots.png





_images/Blending_modes_Linear_Dodge_Sample_image_with_dots.png





_images/Blending_modes_Linear_Burn_Sample_image_with_dots.png





_images/Blending_modes_Linear_Light_Light_blue_and_Orange.png





_images/Blending_modes_Linear_Light_Gray_0.4_and_Gray_0.5.png





_images/Blending_modes_Luminosity_Sample_image_with_dots.png





_images/Blending_modes_Linear_Light_Sample_image_with_dots.png





_images/Blending_modes_Modulo_Continuous_Gradient_Comparison.png





_images/Blending_modes_Luminosity_Shine_SAI_Sample_image_with_dots.png





_images/Blending_modes_Modulo_Shift_Continuous_Gradient_Comparison.png





_images/Blending_modes_Modulo_Gradient_Comparison.png





_images/Blending_modes_Linear_Burn_Light_blue_and_Orange.png





_images/Krita_ellipse_from_center.gif





_images/Krita-brushtips-caustics_07.png
jame: Sketch_ink_big

v General
Brush Tip SrE
Brush size

HEr e ¥ Enable Pen Settings.

v Pressure
Pressureln
xTie
Y-Tie

‘Share curve across al settings.

Overwrite Preset | Reload

100%

~ |

Airbrush il direction

Painting Mode Tilt elevation

Speed

Drawing angle
Rotation
Distance

Time.

Far

Default preset| v Temporarily Save Tweaks To Presets

Eraser switch size v (instant Preview)*






_images/Krita_example_differentbrushengines.png





_images/Krita_ellipse_reposition.gif





_images/Blending_modes_Dissolve_Sample_image_with_dots.png





_images/Krita-brushtips-caustics_09.png





_images/Krita_filling_lineart1.png
B/ O0002RT27
DEeN 2@ N
R LW

d and Gu. LUT Ma

Opacity: 100%
* @ ¥ Layer 1(pasted)






_images/Krita-brushtips-caustics_08.png





_images/Krita_example_metamerism.png
L





_images/Blending_modes_Divide_Light_blue_and_Orange.png





_images/Krita-brushtips-caustics_11.png





_images/Krita_filling_lineart11.png
[Z] Ppixelart_Round RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc 807 x1018 (17.1M)






_images/Blending_modes_Divide_Gray_0.4_and_Gray_0.5_n.png





_images/Krita-brushtips-caustics_10.png
Al

ly: 0.48

[opacit

elmlo

28 [cotor

EE L (<

|





_images/Krita_filling_lineart10.png
mal

o
A

N=Col

800

New layer from visible

Tool Options | Toolbox

~ @Tool Options

Edit key strokes
v Show output

Key Strokes

la.. GridandGu.. LUT Manage.

~@Layers

Opacity: 100%

B O yers

¥ colorize Mas.

S|
Y lineart

¢ @ Transparency ...

[ R






_images/Blending_modes_Divisive_Modulo_Continuous_Gradient_Comparison.png





_images/Krita-brushtips-caustics_13.png





_images/Krita_filling_lineart13.png
* ~@Tool Options
Basic Smoothing

Assistant:
Snap single: v

Persian orange

Visible: Yes
Locked:No
Opacity: 100%

Composite Normal
Mode:

Inherit Alpha:No
Alpha Locked: Yes ol

6

=l ° Layer2

-0 v A

color

Tool Options | Toolbox

nd Gu

lineart

¥ white
¥ Unbleached silk
¥ sand

e

i

LUT Manage,






_images/Blending_modes_Divide_Sample_image_with_dots.png





_images/Krita-brushtips-caustics_12.png
oo Qotons | Toox

¥ @ Toolpox a>
NTHE S
//000PR7T2>
ER-E-NRY ]

[ NS

Color Dodge
I opciy: 2%

Layer)





_images/Krita_filling_lineart12.png
\

v putall new layersin a group layer

© @ split Layer ? Krita

Put every layer in its own, separate group layer
v Alpha-lock every new layer

Hide the original layer
v sort layers by amount of non-transparent pixels
v Disregard opacity
Fuzziness: 13003
Palette to use for naming the layers:

+Default -

split a layer according to color

Creates a new layer for every color i the active
layer.

cancel






_images/Blending_modes_Decrease_Saturation_HSL_Sample_image_with_dots.png





_images/Krita-brushtips-caustics_04.png
Name: Sketch_ink_big Overwrite Preset | Reload

v General
S Line it N o A
Brush size
Offsetscale 0%

Blending Mode —
Opacity Density: 5
v size

Rotation
v Uine wictn

Offset scale

Density
v cor

Airbrush Use distance density Simple mode.
CEmIEES v Magnetity V. Baint connection line:

Random RGE

Random opacity

Distance opacity

Default preset v Temporarily Save Tweaks To Presets Eraser switch size V. (instant Preview)*






_images/Krita_ellipse_circle.gif





_images/Blending_modes_Decrease_Saturation_HSI_Sample_image_with_dots.png





_images/Krita-brushtips-caustics_03.gif
Set up from gradients






_images/Krita_deform_brush_useundeformed.png





_images/Blending_modes_Decrease_Saturation_Sample_image_with_dots.png





_images/Krita-brushtips-caustics_06.png
Advanced Col...  Specific Col.
+ @ advanced Color Selector






_images/Blending_modes_Decrease_Saturation_HSV_Sample_image_with_dots.png





_images/Krita-brushtips-caustics_05.png
= e e e - 028 -~ [ [=

[E% % | . 2 [color Dodge






_images/Blending_modes_Difference_Sample_image_with_dots.png





_images/Blending_modes_Decrease_Value_Sample_image_with_dots.png





_images/Krita_basics_primaries.png





_images/Krita_basic_filter_brush.png





_images/Krita-brushtips-bokeh_02.png
< Y. | ¥ & >
< >

Name: Smudge_textured Overwrite Preset|  Reload

v General Scatter amount. v Axis X v AxisY
Brush Tip
g‘:a"g‘tgg it Strength: [N 1.00
Size
spacing Enable Pen Settings
Mirror
v Smudge Length
Smudge Radius -
Color Rate
Rotation
v Scatter a
Overlay Mode
Gradient
Texture
Pattern
Strength

o

<<

Default preset| v Temporarily Save Tweaks To Presets  Eraser switch size v (Instant Preview)* S L] > 1)





_images/Krita_color_mixing_traditional_order.png





_images/Krita-brushtips-bokeh_01.png





_images/Krita_color_mixing_natural_order.png





_images/Blending_modes_Decrease_Luminosity_Sample_image_with_dots.png





_images/Krita-brushtips-bokeh_04.png
@ specific Color Selector
v show Colorspace Selector
Model: [RGB

Depth: 8 8its

profile: ..le-V2-srgbtrcicc ~ 'E1

Color Space Browser

Red:

Green:

Blue:
Color name: #000000

~ @ Advanced Color Selector
| 3
=]

@ Toolbox

B

SoO000rn1T27

DEeN 20N

Palette | Layers
~ @ Layers
Lighter Color

layer 5
layer4
siLayer 3
alayer 1

[CXCICICE






_images/Krita_deform_brush_bilinear.png





_images/Blending_modes_Decrease_Lightness_Sample_image_with_dots.png





_images/Krita-brushtips-bokeh_03.png
< >

Name: Smudge_textured Overwrite Preset | Reload

¥ General Auto Predefined  Text
Brush Tip

Blending Mode

Opacity A-52 Bokey (256 x 256)
Size

Spacing Al =
Mirror

v Smudge Length
Smudge Radius
Color Rate
Rotation

v Scatter

v Overlay Mode

Gradient
Texture

Pattern

Strength

<<

Size: 25600 px 2]
Rotation: 0° B
Spacing: 7 Auto 100 =

Reset Predefined Tip

AutoPrecision: 5 =

Default preset| v Temporarily Save Tweaks To Presets  Eraser switch size






_images/Krita_cpb_mixing.gif





_images/Blending_modes_Decrease_Saturation_HSI_Light_blue_and_Orange.png





_images/Krita-brushtips-caustics_02.png
v General

Brush Tip

Blending Mode

Opacity

v size

v Spacing
Mirror

v

V' Smudge Radius.
Color Rate.

v Rotation

v scatter
Overlay Mode
Gradient

v Texture
Pattern

v strength

‘Smudge mode: | Dulling

Strength

¥ Enable Pen Settings.

v Pressure
Pressureln
Xt
Y-Tie
il direction
Tilt elevation
Speed
Drawing angle
Rotation
Distance
Time.
Fuzzy
Fade
Perspective
Tangential pressure

‘Share curve across al settings.

S—curve again

-

All good smudge brus

es use scaffer,

10

00

High





_images/Krita_deform_brush_examples.png





_images/Blending_modes_Decrease_Saturation_HSI_Gray_0.4_and_Gray_0.5.png





_images/Krita-brushtips-caustics_01.png





_images/Krita_deform_brush_colordeform.png





_images/Krita-animtedbrush1.png
~ @ Layers
Normal

op:
S Q° yers

SEC e
SBP Gy






_images/Krita_basic_assistants.png





_images/Krita-animtedbrush.png





_images/Krita_Undo_History_Docker.png
‘ Undo History

«  Select Rectangle

== CropImage

~— Move Selection

" Crop Image






_images/Krita-animtedbrush4.png
- @ Layers
Normal

Opacity: 100%
* B° wayer1






_images/Krita-animtedbrush2.png
Stamp — Krita
Narme:  leafy-brush

Spacng:  Auto 2,00

¥ Create mask from color
Brush Style

Style: Animated

Selection mode: |Random

oK

2vAQ

Cancel





_images/Krita_basic_channel_rose.png





_images/Krita-animtedbrush_incremental_example.png





_images/Krita-building_for-cats_004-configure_001_by-deevad.jpg





_images/Blending_modes_Grain_Extract_Sample_image_with_dots.png





_images/Krita-building_for-cats_006-installing_by-deevad.jpg





_images/Krita-building_for-cats_005-build_001_by-deevad.jpg
BUiLd INSTALL SOURCES





_images/Blending_modes_Hard_Light_Sample_image_with_dots.png





_images/Krita-building_for-cats_009-want-update_by-deevad.jpg





_images/Blending_modes_Grain_Merge_Sample_image_with_dots.png
T
U R
L]
‘o
A
o ~ @
.





_images/Krita-building_for-cats_008-running-success_by-deevad.jpg





_images/Blending_modes_Hard_Mix_Softer_Photoshop_Sample_image_with_dots.png





_images/Krita-building_for-cats_011-git-update-success_by-deevad.jpg





_images/Blending_modes_Hard_Mix_Sample_image_with_dots.png





_images/Krita-building_for-cats_010-git-update_by-deevad.jpg





_images/Blending_modes_Hue_HSI_Sample_image_with_dots.png





_images/Krita-building_for-cats_013_by-deevad.jpg
GFT - "aiine 0

SOURLLS






_images/Blending_modes_Hard_Overlay_Sample_image_with_dots.png





_images/Krita-building_for-cats_012-git-update-fail_by-deevad.jpg
500RCLS






_images/Blending_modes_Gamma_Illumination_Sample_image_with_dots.png





_images/Krita-building_for-cats_003-get-libs_001_by-deevad.jpg





_images/Blending_modes_Gamma_Dark_Sample_image_with_dots.png





_images/Krita-building_for-cats_002-git-clone_001_by-deevad.jpg





_images/Blending_modes_Geometric_Mean_Sample_image_with_dots.png





_images/Blending_modes_Gamma_Light_Sample_image_with_dots.png





_images/Krita-brushtips-fur_05.png





_images/Krita-brushtips-fur_04.png
4| | &
VAN, g g Y| § 74N
PAFAN T NN

>

<

Name: hair2 Overwrite Preset | Reload
v General
Brush Tip strength: [ 1.00 B
Blending Mode
ORacty v Enable Pen Settings
Flow =
v sie v hare curve across all settings
pacing
Spacin Pressure oy
v Softness B More saturation
Sharpness XTilt
Rotation Tile
o Tilt direction
Soree] Titt elevation
Darken Speed ¢ 4
Mix Drawing angle L
Hue Rotation
v Saturation &
v value v Distance
Airbrush Time 0%
Painting Mode Gy Less saturation
v Texture sy (50% s active color)
Pattern
v strength Perspective 0px 200px

Tangential pressure

Default preset. v Temporarily Save Tweaks To Presets  Eraser switch size v (Instant Preview)*






_images/Blending_modes_Flat_Light_Sample_image_with_dots.png





_images/Krita-brushtips-fur_07.png
V4
¢
/&
’\.
)
)«/

SSReSSRe

g e e 2

e A
S S S

R Em
S S s =

O
M. T i P T T i g P W i





_images/Blending_modes_Exclusion_Sample_image_with_dots.png





_images/Krita-brushtips-fur_06.png





_images/Blending_modes_Fog_Light_Sample_image_with_dots.png





_images/Krita-brushtips-hair_02.png
- I A N 5 A N R A

tuis %ms easier Hin
Waes.






_images/Blending_modes_Fog_Darken_Sample_image_with_dots.png





_images/Krita-brushtips-hair_01.png





_images/Blending_modes_Gamma_Dark_Light_blue_and_Orange.png





_images/Krita-building_for-cats_001-init-dir_001_by-deevad.jpg
BUILD INSTALL SOVRCLLS






_images/Blending_modes_Gamma_Dark_Gray_0.4_and_Gray_0.5_n.png





_images/Krita-brushtips-hair_03.png
[ AL A A ZLEL AL AL

4






_images/Blending_modes_Easy_Burn_Sample_image_with_dots.png





_images/Krita-brushtips-fur_02.png
ZILIA LILPL P Ll EL V]
q LA A2 AR -
« D

Name: hair2 Overwrite Preset | Reload
v General
Brush Tip strength: [ 1.00 B
Blending Mode
Opacity v Enable Pen Settings
Flow E
u g'ze B v share curve across all settings
pacing Y 8
Mirror — 100%
v Softness Pressurein B
Sharpness xTile
Rotation Tile
o il direction
S Titt elevation
Darken Speed
Mix Drawing angle 1
e Rotation
v Saturation b
v value Distance
Airbrush Time
painting Made ey
exture 0%
Pattern fEie
v strength Perspective Low High

Tangential pressure

Default preset. v Temporarily Save Tweaks To Presets  Eraser switch size v (Instant Preview)*






_images/Blending_modes_Divisive_Modulo_Gradient_Comparison.png





_images/Krita-brushtips-fur_01.png





_images/Krita_filling_lineart14.png
File Edit view Image Layer Select Filter Tools Settings Window Help

5 - . B . ;
L3 B8 Normal G Opacity 12000 - - ISiZ& s0.00px - New layer from visible (=R

400

200

Visible:ves
Locked:No
Opacity: 100%
Composite Normal
Mode:

Inherit Alpha:No
Alpha Locked:No

E] Fill_circle RGB (8-bit integer/channel) sRGB-elle-v2-srgbtrc.icc 807 x 1018 (7.0M)






_images/Blending_modes_Equivalence_Sample_image_with_dots.png





_images/Blending_modes_Easy_Dodge_Sample_image_with_dots.png





_images/Krita-brushtips-fur_03.png
= - .g - -L \}r/ fi >
‘ »

Name: hair2 Overwrite Preset | Reload
v General : .
Brush Tip Strength 100 S
Blending Mode
Opacity v Enable Pen Settings
Flow £
v :‘Ze v Share curve across all settings

pacing =
Mirror Pressure _ 100%
v Softness B Higher value
Sharpness XTilt
Rotation -Tile
Scatter
g it direction
ot Titt elevation
Darken Speed
Mix Drawing angle
Hue Rotation
v Saturation
v Value . v Distance
Airbrush Time 0%
Painting Mode Fuzzy > Lower value
v Texture sy (50% s active color)
Pattern =
v strength R L 200 px

repeat

Length: | 200 % px

Default preset. v Temporarily Save Tweaks To Presets  Eraser switch size v (Instant Preview)*






_images/Blending_modes_Erase_Sample_image_with_dots.png





_images/Transform.png





_images/Krita_Gamut_Mask_Docker_2.png
File Edit View Image Layer Select Filter Tools Settings Window Help

Sc BBl K vom

Cfe]m|[@] opay: 100%

Size: 40,00px |+

[Not Saved] (34,1

-
=
-

) [x] 9 GamutMaskTemplate_1538408289 kra [Modified] (1,5 MiB) [x] 2"

= (@)

Rotation: 0°

Gam... | Brus...

)
0 Tag &1

v \-e
v @

Search

Edit the gamut mask

new mask )

Description creating a new mask
from scratch...

Title

RGB/Alpha (8-bit i..le-V2-srgbtrc.icc

200% 200 (1,5 MiB)

L7 Layers Qo
TE-Ov A= &

FitPage ——






_images/Transform_Tool_Options_Liquify.png
Tool Options o X

ob-Bee Liquify

e Mode: Build Up -

o mm b

& e )

4, Flow: 02

@ spacing: [| 0.20 5
Reverse:





_images/Transform_Tool_Options.png
~ @Tool Options

Oopb- B e s

Fiter: [ Lanczos3

A=
< >

Posiion

x 3000 px

¥ 3000 px

o0





_images/Introduction_to_animation_06.png
Animation Timeline 4 4 = ) b D
- o

1 2 El
—
A walkeyde ® 2 or i --77

4

i






_images/Tut_Clipping_1.png
v @Layers
Normal

B ¥ Layer s Merged
[~ from gmic... = O
B color Y

Y eyewhites -

® hair Y
B ¥ lightgreen -
| R

¥ Layer6
..

DIRCINC NCRNC RNC RNCINC 2O JNC )






_images/Transform_Tool_Options_Warp.png
Tool Options o X

opecre warp
Anchor Strength Flexibility:
strong (Rigid) - 00
Anchor Points,
o Subdivide -

Draw





_images/Introduction_to_animation_08.png
777
7Y





_images/Krita_New_File_Template_A.png
[} custom Document Animation Templates

[} create from Clipboard

Animation-Japanese-JP

271 Comic Templates

Design Templates

[O] DSLR Templates

Texture Templates

Use This Template.






_images/Tut_Clipping_3.png
B ¥ Layer s Merged
B ¥ newlayerfromg
B/ color

B eyes

[atiny |
o
mm ¥ cyewhites
¥ hair

B © lightgreen
-

®
®
®
®
®
®
®
(g






_images/Introduction_to_animation_07.png





_images/Krita_Layers_Docker.png
D et
HY o ]
B transtorm Mask 1

(8 i

Layer5

Layers
Layer3

Layer 2 (HSVIHSL Adjustment)

Layer 1 [

=
«
L]
<
>
t
[ [}





_images/Tut_Clipping_2.png
@ File Edit View Image Layer Select Filter Tools Settings Window Help

5 |~ 38 Normal - @ @ o [Vopacity 100 ;- [USize: 2406px 3 A\~ B @ Aboutkiita

10 200, 30 40 . 5p____600 700 800

¥ hair

B © lightgreen

°
=
&
°
3|
&
°
s
S
=4
= > @Layers &x
Normal -~
g Opacity: 100% =
—] ® B 7 Loyer s verged =
= =
= )|
1 * @2 color
N ® D epes
1 ) =l
2| . iris
14 ® mm ¥ eye-whites
| ©
<
(g

= B sin
@ . -
1 8 v A= [

[ inking_brush_soft RGB (8-bit integer/channel) sRGB-elle-V2-srgbtrc.icc 807 x1018 (21.6M)





_images/Inking_patterned.png





_images/Krita_Configure_Shortcuts.png
onfigure Kiita

@) General Shortcuts

[E Canvas Input Settings.
™ Dispay search:
© Color Management
< Performance

& Tablet settings

Ed Canvas-only settings.
& Author

Python Plugin Manager
6" GMic-Gt Integration
@ Color Selector Settings

Action  Shortcut | Alternate
~ Hello

» Hello
v Kita
Animation
Blending Modes.
Fiters
[
Layers
Painting
Tool Shortcuts
Brushes and Stuff
Edit

»
»
»
»
»
»
»
Mer
»
»
»
»
»
»






_images/Time_sheet_1.png
TITELE

CUT

SECOND

0+ /8

MEMO

. BTETE DL CAMERA
7 —
(4]
FURH| ) n
[§%2 1]
U
E) N

[T DR






_images/Inking_aliasresize.png





_images/Krita_Color_Selector_Types.png





_images/Text-editor-example.png
L]

File  Edit

Placeholder Text






_images/Introduction_to_animation_01.png
9 [Not Saved] — Krita

® File Edit View Image Layer Select Filter Tools Settings Window Help

& = B o “ o w O I W soop (A >k E

0 [100., 200 300 , 490, 500 , 600, 700, 890 990, 1000 , 1100 1200

Toolbox | specific Color Selector

rNTES
B ooornt>2
o+
w2

La.. ToolOp.. Advanced Color Sel..
@ Layers & X

Normal

+-Ov A=

Animation Timeline 4 4 = <

0 1 8
+4 o

A Background ® & X I . I

‘<

[ b)Basic6 Details RGB/Alpha (8-bit integer/channel) SRGB-elle-V2-sr 1,280 x 1,024 (0 B)






_images/Krita_Filter_layer_invert_greenchannel.png





_images/Toolbars_Shown.png
File
v Brushesandstwff N\





_images/Krita_Digital_Color_Mixer_Docker.png
@ Digital Colors Mixer
OReset

L]
X





_images/Timeline_insertkeys.png
Insert Keyframes — Krita @

Number of frames: 8
Erame timing: 2
side:
© Left/Before

Right / After

© cancel






_images/Introduction_to_animation_03.png





_images/Krita_Gamut_Mask_Docker.png
Gamut Masks

L) 9
¥

+e
(2

0.0

b

-ﬁ‘





_images/Introduction_to_animation_02.png
*Wl° walkeyde
= ¥ environment Y-t






_images/Krita_Filter_layer_invert_greenchannel1.png





_images/Introduction_to_animation_05.png
Animation Timeline 4 4 = ) b D

+
A walkeyde ®






_images/Introduction_to_animation_04.png





_images/Strokeandfillstroke.png
‘Stroke and Fill @

Hxmml._ 8

o= T






_images/Strokeandfill.png
®m/m(

(@@ @] o

100






_images/Krita_Artistic_Color_Selector_Docker_3.png
Artistic Color Selector &
. ® Rstation: 1200 3| [®] B
* BiE)
© — =
ol - ©:
grert Seturation Reset to defagl






_images/Tag_Management.png
Brush Presets & X
Digital v OTag =

i@ Delete this tag





_images/Krita_Artistic_Color_Selector_Docker_2.png
v Show background color indicator

v Show numbered value scale

Color Space
(]
o HSY HSV HSL HsI
Luma Coefficients
©
Red: 02126 3 Green: 07152 3| Blue: 00722 3

Gamma: 2,2

o

‘Gamut Mask Behavior )
Enforce gamut mask o Just show the shapes
Default Selector Steps Settings )
© I e
9

o
8

o





_images/Strokeprops.png
|) Stroke Properties.

o [——]

Width: 100 px.

Cap: O 0@ ®O=

Joi: erp OF O

Miter imit; 2.00px

B

B

[— TeJ[——1¢J

ae





_images/Ink_speed.png
7 Enable Pen Settings

Share curve across all settings
v Pressure

Pressurein
XTilt
-Tilt
Tilt direction
Tilt elevation
v/ speed
Drawing angle
Rotation
Distance
Time
Fuzzy Dab
Fuzzy Stroke 0%
Fade
Perspective
Tangential pressure

100

slow Fast






_images/Krita_Channels_Docker.png
¥ @channels






_images/Task-set.png
v (@ Tasksets

Save

~

Rectangular Selection Tool

~

rop Tool
Undo Select Rectangle

Deselect

Freehand Brush Tool






_images/Ink_gpen.png
v Enable Pen Settings

v Share curve across all settings
v Pressure

Pressureln
XTilt

Y-Tilte
Tilt direction
Tilt elevation

Speed
Drawing angle
Rotation

Time

Fuzzy Dab

Fuzzy Stroke 0%
i Low High
[—

Tangential pressure

100%






_images/Krita_Brush_Preset_Docker.png
2 RS S

-
v
e

PRAS

INT™)

NN

24

SO

pd

WE €
,‘ﬂc’iuﬂ
-l ] 5






_images/Tags-krita.png
Brush preses ax

e ~ 10 e, (B
Bala'
EE%E
(A 1 | /B
[]






_images/Krita_4_0_text_kerning.png
Kerning on| Valhalle
N&KWWM





_images/Stroke_rigger.gif





_images/Krita_4_0_preferences_python_plugin_manager.png
) Configure Krita 2v A

& G Python Plugin Manager

£] Keyboard Shortcuts

@ Canvas Input Settings R I

"= Display (] Assign Profile to Image Assign a profile to an image without converting it.

9 Color Management [J color Space Plugin to change color space to selected documents

& Performance [®] comics Project Management Tools Tools for managing comics.

& Tablet settings [J Document Tools Plugin to manipulate properties of selected documents
El canvas-only settings [J Export Layers Plugin to export layers from a document

2 Author [ Filter Manager Plugin to filters management

® python Plugin Manager

& GMic-Qt Integration
@ Color Selector Settings. Hello World
This Is a simple example of a Python script for Krita
It demonstrates how to set up a custom extension and a custom docker!

The docker can be found In settings — dockers — HelloDocker, and the extension In tools — scripts —
HelloDocker.

This itself is a simple htm based manual file, which'll show up when selecting the plug-in In settings
configure Krita — Python Plugin Manager

Restore Defaults v OK || ® cancel





_images/Stroke_fingers.gif





_images/Krita_4_4_brushengine_texture_lightness_gradient_demo.png
;.
@ o
oD

Lightness Map Gradient Map





_images/Stroke_shoulder.gif





_images/Stroke_selection_2.png





_images/Krita_Add_Shape_Docker.png
v (@ Add shape

Rectan Elipse Artsticl Text





_images/Stroke_wrist.gif





_images/Krita_Artistic_Color_Selector_Docker.png





_images/Krita_Preferences_Tablet_Settings.png
@ General o
5] Keyboard Shorteuts

[ Canvas Input Settings
. Dicplay
© Color Management -

Input Pressure Global Curve:

Performance

] Canvas-only settings
& Author

Python Plugin Manager
6" GMic-Gt Integration
@ Color Selector Settings

00
LowPressure High Pressure
Tablet Input API (changing this requires restarting Krit2)

o WinTab
‘Windows 8+ Pointer Input (depends on Windows k) (EXPERIVENTAL)

Restore Defauts






_images/Keys_drafts.png
- L BV 5 L THRLT
TFEWN (A, B, C. . .)

M BFLA
TR DE L SN DR
B € Lo 3
T






_images/Krita_Small_Color_Selector_Docker.png





_images/Krita_Shape_Properties_Docker.png
¥ (@ shape Properties &

[ 11500px &

Comer radius 11500px &





_images/Kiki_cLUTprofiles.png





_images/Krita_Specific_Color_Selector_Docker_2.png
Specific Color Selector &P X

RGB/Alpha (8-bit integer/channel) v %
Model: ' RGB/Alpha -
[Depth: | 8-bit integer/channel -
[Profile: 'sRGB-elle-V2-srgbtrc.icc (Default) SE

© RGB  HsV





_images/Kiki-pixel-art.png





_images/Krita_Specific_Color_Selector_Docker.png
Specific Color Selector P X
RGB/Alpha (8-bit integer/channel) - %

Red I s -

Green: .

sue: I > -

© RGB  HsV

o





_images/Kiki_matrix_profile.png





_images/Krita_Toolbar.png
pno@a >cilll = Enoml

v O B D Opachy100% S Shee 4000 x

=M 4

\l4





_images/Kiki_lowbit.png





_images/Krita_Specific_Color_Selector_Docker_3.png
Specific Color Selector

RGB/Alpha (8-bit integer/channel) -~ %

_ 5000 3

v T 0000 -

RGB © HsV





_images/Introduction_to_animation_19.png
Animation Curves 4

~ Transform Mask 1

= Position(x)  ®
= Position(Y)  ® =
= Rotation (X) @ =
= Rotation ()  ®
= Rotation ()  ®
= Scale (X) -
= scale (Y) ) E
= Shear (X) Il =
Shear () ) = ]
| -






_images/Krita_Preferences_Color_Management.png
@ General
£ Keyboard Shortcuts
B Canvas Input Settings
. Display

= Performance
& Tablet settings

£ Canvas-only settings
& Author

@ Python Plugin Manager
& GMic-Qt Integre
@ Color selector Settings

n

Restore Defaults

Configure Krita
Color

General | Display | Soft Proofing

Default color model for new images: RGB/Alpha (8-bit integer/channel)

When Pasting Into Krita From Other Applications

Assume sRGB (like images from the web are supposed to be seen)

in other applications)

« Assume monitor profile
Ask each time

Note: When copying/pasting

v Use Blackpoint Compensation
v Allow Little CMS optimizations (uncheck when using linear light RGB or XY2)

Enforce palette colors: always select the nearest color from the active palette.

» Cancel





_images/Introduction_to_animation_18.png





_images/Krita_Predefined_Brushes.png
1) Bristies-3 Large Smooth |
~/ PR

v Generl
Brush Tip
Blending Mode
Opacity
Flow
Size
] Ratio
I
Miror
] Softness.
(] Sharpress
[ Rotation
] Lightness Srength
] scatter
v Color
Source
] Darken
O mix
O Hue
[ saturation
O value
[ Airbrush
] Rate
Painting Mode
v Texture
] Pattem
Strength
¥ Masked Brush
] Brush Tip
O Size
Gpacity
Flow
] Ratio
[ Miror
[ Rotation
[ Scatter +import || +Samp || - Cipboard

Eraser switch sie V Eraser swich opacty  Temporarly Save Twesks To Preses

‘Save New Brush preset.

bristles_circle_dense(bristles_circle_dense.png)

Mask (256 x 256)

e 00
Rotaton 3
el 053

V Presarve Brush Prese Setings

Reset Precfined T

V' tnstantpreviens





_images/Introduction_to_animation_20b.png
Animation Timeline L N 4] #2450 1 SRR 100% | & A

+ o 2 4 6 8 10 12 14 16 18 20 2 24 26 28 30 E?) 34 36 38 40 42 a4 46 a8
Transform Mas...
# hands e

# walkcyde  ®





_images/Krita_Preferences_General.png
X v oA

Configure Krita

[Eenesti General

Keyboard Shortcuts
B Canvas Input Settings

. Display
© Color Management

= Performance
& Tablet settings

£ Canvas-only settings
& Author

@ Python Plugin Manager
& GMic-Qt Integrs
@ Color selector Settings

n

Restore Defaults

Cursor | Window | Tools | File Handling

Cursor Shape:  No Cursor
Outline Shape:  Preview Outline
While painting...

v show outline

v Use effective outline size

Cursor Color: NN

Miscellaneous





_images/Introduction_to_animation_20a.png





_images/Krita_Preferences_Display.png
General

Display
Keyboard Shortauts 537

Canvas Input Settings

Display v Canvas Graphics Acceleration
[ETR—"

e Slate Current Renderer Direct3D 11 via ANGLE

Tablet settings Preferred Renderer (needs restart): | Auto (Direct3D 11 via ANGLE) -
Canvas-only settings

SRR ]

Author Scalng Mode: | High Qualty Fitring -
© Color Selector Settings
7 ¥ Use texture buffer
& GMic-Qt Integration
Python Plugin Manager & Warning(s):

« Intel graphics drvers tend to have fssues with OpenGL 50 ANGLE wil be used by default. You may manally switch to OpenGL but t s
ot guaranteed to work propery.

HOR

Display Format: Rec. 2020 PQ (10 b1t)
Current Output Format: ~ Rec. 2020 PQ (10 bt)

Preferred Output Format: | Rec. 2020 PQ (10 bt)

Transparency Checkerboard: sz 32px 3

Canvas Border Color:

sdectonowray: || opaly ko s
weicis: [ St showi a: 240000%
e Window Scrlbors Gokorchnels ncolo

v Enable curve antr-alsing Enable selection outline antr-allasing

Hide layer thumbailpopup Move checkers when scrolling

Restore Defauits oK Aol





_images/Introduction_to_animation_walkcycle_02.gif
\
PESS





_images/Introduction_to_animation_20c.png
Animation Curves

Transform Mask 1

Position (X)
Position (V)
Rotation (X)
Rotation (Y)
Rotation (2)
scale (X)
Scale (¥)
Shear (X)
Shear (v)

4

[CICXCXCRCICRCRCNCY

15

mA

Val:0.00 +
pal

s






_images/Krita_Pixel_Brush_Settings_Popup.png
y) Texture Reptile & ‘Save New Brush Preset...

- '\'l“‘ @ Puclengne JE——

¢ Genewl A nuo bredeined | Ted

Brush Tip

e o 2

s E

Opacity L

] ot [
Sze
Ratio .
e
& Horzors: (G £
Sharpness sk Type: verscs: G B
Rotation
Scoter Dt =

+ " Color . s - E

Source s e
Darken = o Spikes: | 2 3
Mix 3
M —1 o E
Saturation oersy: [
Value
Abrush Spacng: Ao [ o0 :
[

Painting Mode

" Heture

v patiem

7 Strength

+ Masked Brush





_images/Krita_Pixel_Brush_Settings_Mirror.png
General Horizontally Verticaly

sy |
i H e
arecy o

Ve J
i —
=)
Sofn [vimEswE— S

Sharpess: Mirtored
Rotation

Color

painting Mode |
v Texure

pattern |
v strength B

Not mirrored

Tangential pressure: Low High





_images/Introduction_to_animation_15.png
WIHFESATIA 0 1234567891

Filter Onionf5kins by Frame Color

o

Tint: 72.73%

| Previous frames Next frames [





_images/Krita_Pixel_Brush_Settings_Sharpness.png
b) Basic:3 Flow | & Save New Brush Preset.
@ PixelEngine O A Overwrite Brush

Scratchpad
v
General S 5 -
Brush Tip
Blending Mode
Opacity Strength: 81% B
Flow
O size v Enable Pen Settings ZINFANRE K
] Ratio 1.0
P

ressure
[ spacing =E .

ressureln
O Mirror
O Softness O xite

harpness (v p—
] Rotation [ Tilt direction
[ Scatter [ Tilt elevation
v color [ speed
Source [ Drawing angle 0.0
] Darken [ Rotation y— o B T
0 Mix O pistance
v Share curve across all settings

O] Hue O Time
(] saturation [ Fuzzy Dab Curves calculation mode:  multiply -
(] value [ Fuzzy stroke
[ Airbrush [ Fade
O Rate ) —r
Painting Mode
¥ Texture

Eraser switchsize  Eraser switch opacity v Temporarily Save Tweaks To Presets V anstancPreview






_images/Introduction_to_animation_14b.png





_images/Krita_Pixel_Brush_Settings_Rotation.png
General

BrusnTip
Blending Mode
Opadity

v sz
Spacing
Mirror

Softness

painting Mode
v Texure

v strength

s, I -

V' Enable Pen Settings
V' Share curve across al settings

3600
Pressureln

Fuzzy

Fade o

ective
Tangential pressure:





_images/Introduction_to_animation_17.png
Animation Timeline

+
# hands.

A walkcydle ®

1]

4

)

4

]
3

15





_images/Krita_Pixel_Brush_Settings_Spacing.png
General

BTy L., i,
Blending Mok )
Opaciy V Enable Pen Settings
S curve sl setings
100w

Color

painting Mode
v Texure

B
v strength o

Tangential pressure:





_images/Introduction_to_animation_16.png
Animation Timeline

L}

4

)

4

3

[}

12

13

14

15

16





_images/Krita_Pixel_Brush_Settings_Size.png
v General

BusnTp g Swensth: [ —
B

Blending M.
Gy 2 v Enable Pen Settings
Flow 3
v q _ v Share curve across all settings
o g 100%
Spacing 3
wiror 3
Softness 3
Sharpn... 3
it direction
Rotation 4 Tilt di
Scater 3 it elevation
v coor Speed
Source 3 Drawing angle
Darken 3 Rotation
o 2 rance
= @ Dist
Ssturat.. 3 Time
Vae 8 Fuzzy Dab,
Arbrush 8 Fuzzy Stroke -
Painting M... 3 o
v Texture o
rspective Low
Pattem 4 Persp . e
v Stength 3 Tangential pressi





_images/Introduction_to_animation_10.png





_images/Krita_Overview_Docker.png





_images/Tut_Clipping_5.png
DINCINC NCRNC RNC RN CINC RNC INC )

= chiny.
9

w9 ris

mm ¥ eyewhites

B ¥ lightgreen
B © ciipping Group 10
B © Mask Layer

B ° sin

-

= e






_images/Introduction_to_animation_09.png





_images/Krita_Opacity_Slider.png
Opacity: 0.62





_images/Tut_Clipping_4.png
v @Layers
Normal

mm ¥ eyewhites

¥ hair

B © lightgreen
-

CINCINC IO aNC )






_images/Introduction_to_animation_12.png





_images/Krita_Patterns_Docker.png
< O« ) )< )< )

B





_images/Introduction_to_animation_11.png
29

Clip Start:
Clip End:

Frame Rate:






_images/Krita_Patterns.png
@ B8/ | Normal

Patterns | Custom Pattern

01_canvas.png (512 x 512)






_images/Tut_Clipping_6.png
[CINCINC RNC N C INC INC IO INC )

L]

Opacity: 100%
[
D12 Clipping Group 11

El Layer 16

[

ites






_images/Introduction_to_animation_13b.png
Animation Timeline 4 4 = ) |> |>| 7 Remove Keyframe [m] 7]
0 Remove Frame and Pull 9 10 1 12 13 14 15

peeenn MITICENOE

i






_images/Introduction_to_animation_13.png
Animation Timeline 4 4 = ) |} IN #2:
0 1112 13 14 15 16

e -----------------

i






_images/Krita_Pixel_Brush_Settings_Flow.png
BrusnTip
Blending Mode.
Flow.

v sz
Spacing
Mirror
Softness
Sharpress:
Rotation
Scatter

v Color

Source.

Mix

Hue
Saturation
Value

Airbrush
painting Mode
v rexture

pattern
v strength

- opacty: [N e -

SV Erable penSetings
¥ Share curve across alsetings
Opage

B Perspective Transparent
Tangential pressure: Low High





_images/Introduction_to_animation_14.png





_images/projection_animation_02.gif





_images/Settings_cursor_triangle_lefthanded.png





_images/projection_animation_04.gif
Example = L4119 Down.
=

et A\ O
=





_images/projection_animation_03.gif





_images/Krita_4_0_colorize_mask_clean_up.png





_images/Settings_cursor_white_pixel.png





_images/projection_animation_06.gif





_images/Settings_cursor_triangle_righthanded.png





_images/projection_animation_05.gif





_images/Krita_2_9_colormanagement_group1.png





_images/Settings-curves.png
v Enable Pen Settings 4N G N Y @)

100%
@

[] Pressureln
[ XTilt

] Y-Tit

] Tilt direction 0%
(] Tilt elevation
[] Speed

(] Drawing angle
[] Rotation

[] Distance

] Time Low 75% & High
[] Fuzzy Dab
(] Fuzzy Stroke
[] Fade Curves calculation mode: | multiply
[] Perspective

] Tangential pressure

0%

v Share curve across all settings






_images/Krita_2_9_colormanagement_blending_2.png





_images/Separate_Image.png
A Separate Image - Krita

Current color model: RGB/Alpha (8-bit integer/channel)
Source

o Current layer

Flatten all layers before separation

Alpha Options

Copy alpha channel to each separated channel as an alpha channel

* Discard alpha channel

Create separate separation from alpha channel

Output to color, not grayscale

Activate the current channel

Cancel





_images/Krita_2_9_colormanagement_group3.png





_images/Settings_cursor_black_pixel.png





_images/Krita_2_9_colormanagement_group2.png





_images/Settings_cursor_arrow.png





_images/Krita_3_0_1_Brush_engine_ratio.png





_images/Settings_cursor_no_cursor.png





_images/projection_animation_01.gif





_images/Krita_2_9_colormanagement_group4.png





_images/Settings_cursor_crosshair.png





_images/Krita_4_0_Preset_Icon_Library_Dialog.png
] Preset Icon Library — Krita ?v A

Tool image: Color adjustment:

 Hue39s
V4 / © saturatonzza
&

BRI

| Midgraylevel8.5

Emblem icon:

/ ‘e

*
‘60

~ OK © cancel






_images/Settings_cursor_tool_icon.png





_images/Krita_3_1_brushengine_texture_07.png
Subtract Multiply
Brightness Brightness
-05 0.0 0.5 -0.5 0.0 0.5

°0 o0

Contrast

00 900 H:

158J3U0)





_images/Settings_cursor_small_circle.png





_images/Krita_4_0_brush_curve_calculation_mode.png
000000000002 000+0+0

1

mMm< 0o~





_images/Krita_4_0_Save_New_Brush_Preset_Dialog.png
) Save New Brush Preset —Krita 2 v ~ @

Brush Name: | b)_Basic-5_Size Copy|

balnslnithist ea Load Existing Thumbnail

X

Load Scratchpad Thumbnail

/\ Load Image
Load from Icon Library

Clear Thumbnail

Cancel save





_images/Se_voronoi_5.png





_images/Se_voronoi_4.png
ypu~
LA
LA





_images/SeExpr_overwrite_preset.png
David Revoy's Example | ¢ ‘Save New SeExpr Preset...
Overwrite Preset

o A





_images/SeExpr_first_render.png
alpha (git 325dd1d

Normal

N N =]
mi
A OTeg | EL
AW Ao
= -~ [
El b)ea e Opa RGB/Alpha (8-bit integer/channel) sRGB-elle gbi 024 x 1.024 (12,0 MiB 5 90%





_images/SeExpr_rename_preset.png
save

Cancel

o





_images/SeExpr_prop_1.png
Fill Layer Properties - Krita

Layer Name: Fill Layer 1

Color
Pattern
Screentone
SeExpr &% Disney noisecolorz &
Simplex Noise

Script | Options

‘Save New SeExpr Preset.
Overwrite Preset

(SN

$color = [0.5,0.5,1
$color

Cancelar | | Aceptar






_images/processings_framework.png
KisProcessingVisitor

[Fisitiode)

ProgressHelper

|+updater() - KoUpdater *

| [FProgressielpertnode - Kistode

Kis Node

KisNodeProgressProxy.

KisProcessingApplicator

Kisimage

[+KisProcessingApplicatorimage, node, recursive, emitsignals, name)
[+applyVisitortuisitor, sequentialty, exclusivity)
[+applyCommandivisitor, sequentiality, exclusivity)

[vend0

| UpdateCommand

Zdrmantaiess

EmitimageSignalsCommand

Gt

<<instantiate>>

KisimageSignalRouter

KisStrokeStrategyUndoCommandBased

[+KisStrokeStrategyUndoCommandBased(name, undo, undoAdapter, initCommand, finishCommand)






_images/SeExpr_script.png
Layer Name: Fill Layer 3

Color
Pattern Script
Screentone
SeExpr
Simplex Noise

Options

David_Revoy's Example

Cancelar | | Aceptar





_images/SeExpr_save.png
Save New SeExpr Preset—Krita
Preset name:  Disney_noisecolor2 Copy
Load Existing Thumbnail
Load [mage

Render Script to Thumbnail

Clear Thumbnail

Ocancelar | | & Guardar






_images/Se_voronoi_2.png





_images/Se_voronoi_1.png





_images/Se_voronoi_3.png





_images/Storyboard_row_mode.png
Storyboar&d
Export - Comments -

0 scenel 05 :8f :Action Dialogue
Bella puts all the Bella (to herself) : This
money that she has on  is so lttle. What would

the table. tis only a
dollar and 27 cents
g Bella gets sad

8 scene2 05 :5f :Action

Dialogue

Bella lies down onthe 1 ike sleeping so much,
sofa, tired. The room is
dimly It

Action Dialogue

Bella looks out the
window abeant.






_images/Krita_4_0_kinetic_scrolling.gif
,ﬁ ﬁ 5;. Normal Ve @ Opacity: 1.00
500 1000






_images/Storyboard_uper_buttons.png
Export * Comments ~

=}

=]





_images/Storyboard_thumbnailonly_view.png
Storyboarsd
Export - Comments

0 scenel 0s






_images/Krita_4_0_preferences_author_page.png
@ General
[ Keyboard Shortcuts.

& canvas Input Settings
™ Display

© Color Management

= performance

& Tablet settings

[E canvas-only settings

& Author

® Color Selector Settings.
® python Plugin Manager
6" G'Mic-Qt Integration

Restore Defaults

Author

Example

Nickname:

Given Name:

Title:

Company:

Contact:

Configure Krita v~

vl +]|a
ExampleMan
John Family Name: | Doe
Mr. Initials: | D.
John's Studio Position: |a
1 2

Homepage http://example.com

Emall John@doe.com

Add contact info Remove contact info

~ OK ©® cancel





_images/Stroke_arm.gif





_images/Krita_4_0_letter_and_word_spacing.png
No Adjustment.
Letter spacing: 2
Letter spacing:-2
Word spacing: 5
Wordspacing:-5





_images/Stroke_Selection_4.png





_images/Krita_4_0_colorize_mask_usage_10.png
Layers

Behind

BS ey
B adylineart

¥ Colorize Mask 1

B2 background

main lineart

. ¥ getails






_images/Storyboard_arrange.png
mode

pn——
es——





_images/Krita_4_0_colorize_mask_usage_09.png
Layers
Behind

Opacity: 100%
THD ey
® HY ladylineart
® ¥ Colorize Mask 1
® B P background
® ¥ colorize Mask 1

® @Y manfnen
© BT dewis

<
L]
<
>
i}

Q@
<X





_images/Starting-krita.png
L Krita VoA X

File Edit View Image Layer Select Filter Tools Settings Window Help

& WO Opacity: 10 Siz A-> 5 T
Advanced Color Selec... Tool Opti...
6] & X

Start 4 DevBuLD Community News

[ New File (Ctrl+N) [] user Manual
[ cetting Started

PP Open File (Ctri+0) [ user Community
[ Krita Website

[ source code
@ Support Krita

. Powered by KDE
. demo-apple kra # Powere enable news

| [
3

clonelayer-transformmasks_azalea

Recent Documents  clear

Drag an image into the

window to open

Krita is an open source and community-driven tool for digital artists everywhere.
Progress is made possible thanks to ongoing support from our community of contributors, sponsors, and development fund members.






_images/Krita_4_0_colorize_mask_usage_12.png
] n
B ° radylineart
5}

BW® Amethyst = 0 F
W ® raletaupe = 0 F
B® Auum am

B ®  whie

Color

E ¥ colorize Mask 1

B background

B mainlineart

B®  deuis
5}

BS e

Color






_images/Storyboard_comment.png
Comments ~

@ Action





_images/Krita_4_0_colorize_mask_usage_11.png
Layers

Normal

BS ey
B radylineart

¥ Colorize Mask 1

B background

B mainlineart
=)

WS e
[
Raw Umber

Color

Dark Taupe

details

o
o
o
o
g
o
o

Colorize Mask 1






_images/Storyboard_column_mode.png
Storyboar&d
Export - Comments - a B

0 scenel 0s

8 scene2

Action Action

Bella puts all the money  Bella lies down on the
that she has on the table.  sofa, tired. The room is

Itis only a dollar and 27 dimly lt
Dialogue Dialogue L
Bella (to herself) : Thisis 1 like sleeping so mu

S0 ttle. What would | get
with this?





_images/Krita_4_0_edge_detection.png





_images/Storyboard_grid_mode.png
Storyboar&d
Export - Comments

0 scenel 0s 8 °

Action
Bella puts all the money * Bella lies down on the
that she has on the table.  sofa, tired. The room is

sonly a dollarand 27 dimly It

Dialogue Dialogue

Bella (to herself) : Thisis 1 ke sleeping so much.
o little. What would | get

with this?

23 scened 0s 26
a8 o






_images/Krita_4_0_dirty_preset_icon.png
Brush Presets =0
* My Favorites m

v Filter in Tag






_images/Storyboard_commentonly_view.png
Storyboar&d

Export - Comments - a g
0 scenel 0s :6f : 8 scene2 Os 35f :|°
Action Action

Bella puts all the money - Bella lies down on the

that she has on the sofa, tired. The room is

table. Itis only a dollar _ dirmy i

Dialogue Dialogue

Bela (to herself) : Thisis 1 ke sleeping so much.

so ittle. What would |
get with this?

13 scene3 0s  :10f : 23 scened Os  6f :
Action Action

Bella looks out the “ Bela looks at her hairs
window absent- in the mirror. Deciding to





_images/Krita_4_0_height_to_normal_map.png
- . -

- . \‘ - y
“ W

Radius: 1.0 Radius: 3.0 Radius: 9.0

Original Heightmap The Above as Normalmap in Blender





_images/Krita_4_0_hard_mix_ps.png





_images/Softproofing_adaptationstate.png





_images/Snap-orthogonal.png
amrE





_images/Krita_4_0_colorize_mask_usage_08.png
Layers
Behind

Opacity: 100%
*HZ gy
® H?Y ladylineart
® ¥ Colorize Mask 1
®B®  packground
® ¥ colorize Mask 1

® @ moininen
® T e

<
L]
<
>
i}

@®@4NO





_images/Softproofing_regularsoftproof.png





_images/Krita_4_0_colorize_mask_usage_07.png
Layers

Behind
Opacity: 100%
*THD gy
® H?Y ladylineart
® ®

. Colorize Mask 1
®B® packground

® @Y mainlineart

® WY deis

<
L]
<
>
i}





_images/Softproofing_gamutwarnings.png





_images/Krita_4_0_colorize_mask_gap_close_hint.png





_images/Shape-editing-tool-tool-options.png





_images/projection_image_02.png





_images/Krita_4_0_colorize_mask_edge_detection.png





_images/Shape-editing-tool-example.png





_images/projection_image_01.png





_images/Krita_4_0_colorize_mask_usage_01.png
Paa— -

Layers
Normal

Opacity: 100%
CHT gy

® B ladylineart
®B® packground

® MY mainlineart

® WY deis

Hv O v A

i}





_images/Smart-patch.gif
® Fle Edt View Image Layer Select Fiter Tools Settings Window Help

spcnicone | o





_images/projection_image_04.png
Advanced Color Sel. Specific Col

~ @ Advanced Color Selector

Tool Options | Toolbox

~ @Tool Options
Shear

Position

x[64lpx g

¥: 616 px  |Horizontal Translation

o ® Reset A
~ @ palette

S mE EE

v~

Opacity: 47% E
=l wp -
= I © frontview -

i s ol
-






_images/Krita_4_0_colorize_mask_show_output_edit_strokes.png





_images/Skew.png





_images/projection_image_03.png





_images/Krita_4_0_colorize_mask_usage_03.png
®
®
®
®
®
®

Opacity: 100%

lady lineart
¥ colorize Mask 1
background

B ° mainlineart

H®  deuis






_images/Snap-intersection.png





_images/Krita_4_0_colorize_mask_usage_02.png
Layers

Behind
Opacity: 100%
*H® oy
® H?Y ladylineart
. ®

. Colorize Mask 1
®B® packground
® @Y mainlineart
® WY deis

=
<
L]
<
>
i}

& x
vl v
@®@<NO





_images/Snap-extension.png





_images/projection_image_05.png





_images/Krita_4_0_colorize_mask_usage_05.png
Layers

Behind
Opacity: 100%
*H® oy
® H?Y ladylineart
. @

®B®  packground
® @Y mainlineart
® W7 dewis

By O v A

i}

Colorize Mask 1





_images/Krita_4_0_colorize_mask_usage_04.png
Layers 8 x

Behind vl v
Opacity: 100% S

*THY gy

® HY lad